Basic (Two-level) Page Tables

Operating Systems - CSCI 402

20 12 >I -
VA: Page # Offset
vpn |
4KB Physical Page
Page Table . |
vn=0[| M{R|[Prot| Physical Page #
vpn=1| T et T e
vpn=2| .- T e e
L »[PagéTable Entry |---= 20 12
VA: | Virtual Page # (vpn) Offset
y
MMU
! v
PA: [Physical Page # (ppn) | Offset
18 12
vpn=2%-1

Copyright © William C. Cheng

Basic (Two-level) Page Tables

»I =

4KB Physical Page

——

Operating Systems - CSCI 402

VIM|R|[Prot| Physical Page #

- -

- -
- -
- -

- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
-

V: validity (or "present")

R: reference (set when page is

Prot: what type of access is allowed
Q in general, can have more bits

and include "no access"
Q in x86, only one bit

20 12
VA: Page # Offset
vpn |
Page Table .
vn=0f |
von=1| T T
vpn=2 .- S A s
—> _P—ag‘é'T.';lbIe Entry =
= M: modified
Cll
referenced)
r—
vpn=2%-1 =

Copyright © William C. Cheng

no shared/private bit here

20

=

Operating Systems - CSCI 402

Basic (Two-level) Page Tables

20 12 -
e
VA: Page # Offset I
vpn |

4KB Physical Page

Page Table . |
von=o[1 T V|M|R|Prot| Physical Page #
ven=1[T e e T
vpn=2| -7 I T L

-
——————
—————————
——————
———————

- »{ Page Table Entry | _..-----""""

ﬁ} A page table entry is analogous to the
base and bounds registers approach
= protection has "lower resolution” here

) More than 4GB physical memory
= "physical page number"” would be
more than 20 bits long
Q in x86: Physical Address N
Extension (PAE) 2

vpn=2%-1

Copyright © William C. Cheng

Operating Systems - CSCI 402

Basic (Two-level) Page Tables

20

VA:

Page #

12 -
|
Offset I
|

vpn

Page Table

4KB Physical Page

-
——

vpn=0

_________ V|M|R|Prot| Physical Page #

vpn=1

'ﬂ
“
P

- - -

- -
-

vpn=2

—'
-
-
“
P

-
-
- -
- - -
- - -
- - -
- - -
- - -
- - -
L - - -
- -

-
- -
- -
- -

> >
- P
- -
- —’
- -
- P

-
- -
- -
- -
- -
- -
- -

_Pagé Table Entry

-
-
-
-
-
-
-
-

) Page table is a kernel data structure

sitting in memory (not in MMU)

= during address translation, need to

read a PTE from across the bus

= at the end of address translation,

access memory across the bus

vpn=2%-1

= that’s fwo memory accesses |
O costly (slow) 4

Copyright © William C. Cheng

Operating Systems - CSCI 402

Basic (Two-level) Page Tables

20 12 -
e
VA: Page # Offset I
vpn |

4KB Physical Page

Page Table . |
von=o[] T V|M|R|Prot| Physical Page #
ven=1[T e e T
vpn=2| ..o T T e

-
——————
—————————————
———————
——————
———————

- »{ Page Table Entry | _..-----""""

) Location of page table is part of
the context for a process
= |f virtual address is used, need to
translate it to a physical address
before giving it to the CPU
= for x86, the physical address
of the page table is stored

I
vpn=21 in the CR3 register 2y

23

Copyright © William C. Cheng

Page Table
access access CPU
virtua(;oaddr virtu1a(;0addr l l
1 | | 100, B ,

Process A Process B

0S

page size = 4K 4K 4K 4K/

/ 2

7
l
1_

- - - - table for A
7

Operating Systems - CSCI 402

Page Tables

-

- table for B

’I— table for OS

RAM

) A page table is associated with each process
= OS may have its own page table

ﬁ} MMU contains the hardware that can perform address translation
to map virtual address to physical address
= MMU got turned on some time during boot

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Table
access CPU
virtual addr
T 20000, Bl Page Tables
_ - - — - tableforA
Process A Process B MMU . _
, ~——1 tableforB
// S N
0S A ’I— table for OS
/”’— //
page size =4K 4K 4K 4Ky ... [4

RAM

) Page fault
= page table does not have the requested address

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Table
access CPU
virtual addr
T 20000, Bl Page Tables
_ - - — - tableforA
Process A Process B MMU . _
, ~——1 tableforB
// S N
0S A ’I— table for OS
/”’— //
page size =4K 4K 4K 4Ky ... [4

RAM

) Page fault
= page table does not have the requested address I I

= OS finds a free page frame, any free page frame
Q what if no free page frame is available?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Table
access CPU
virtual addr
T 20000, Bl Page Tables
S - - —- tablefor A
Process A Process B MMU . _
| ~——F tableforB
-~ <~
7 YRS
OS - /———’I— table for OS
/”’—— // 4
page size =4K 4K 4K 4Ky ... [4

RAM

) Page fault

= OS finds a free page frame, any free page frame

= page table does not have the requested address I I

Q what if no free page frame is available?
= OS loads the requested page from disk

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Table
access CPU
virtual addr
T 20000, Bl Page Tables
S - - —- tablefor A
Process A Process B MMU . _
N ——F table for B
-~ /'</
OS s /_—,—’———’I— table for OS
- /
page size =4K 4K 4K 4Ky .. ’/ ¥

RAM

) Page fault
= page table does not have the requested address I I

= OS finds a free page frame, any free page frame
Q what if no free page frame is available?

= OS loads the requested page from disk |
= QS fixes page table and restarts user memory reference 2334

Copyright © William C. Cheng

Operating Systems - CSCI 402

Basic (Two-level) Page Tables

—> Two main problems
1) performance
Q lookup in page table requires one memory access
Q to access memory starting with a virtual address will take
at least ftwo memory accesses
& that’s twice as slow
2) page table takes up a lot of space
Q most entries are not used

ﬁ> We will first look at solutions for the space problem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page-Table Size

_) Consider a full 2°*-byte address space
= assume 4096-byte (212-byte) pages
= 4 bytes per page table entry
= the page table would consist of 232/912 (= 220) entries
= its size would be 2°° bytes (or 4 megabytes)

) This is a general scaling problem
= solutions:
Q hierarchy (e.g., forward-mapped page tables) or hash page
tables
Q virtual linear page tables (i.e., page tables in virtual memory)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Paged Segmentation

4 16 12
Virtual Addressjg # Page # Offset
D

Seg Table Entry N

Page Table Entry

Segment table Page tables

Physical page
ﬁ> If a process only uses 4 segments, it would need 4 page tables

— a total of 256K page table entries (if an entry is 4 bytes |
long, this would take up 1MB) 3134

Copyright © William C. Cheng

Operating Systems - CSCI 402

level) Page Table
10 12
Virtual Address | Page Dir # Page # Offset

_

Forward-Mapped (Multi
10

Page Dir Entry N

Page Table Entry

Page Dir Table Page Tables

c> Intel x86

Physical page

Copyright © William C. Cheng

Operating Systems - CSCI 402

level) Page Table
10 12
Virtual Address | Page Dir # Page # Offset

_

Forward-Mapped (Multi
10

Page Dir Entry N

Page Table Entry

Page Dir Table Page Tables

Physical page

333

_> What's the minimum page table overhead?

Copyright © William C. Cheng

Operating Systems - CSCI 402

level) Page Table
10 12
Virtual Address| Page Dir # Page # Offset

_

Forward-Mapped (Multi
10

Page Dir Entry N

Page Table Entry

Page Dir Table Page Tables

Physical page
_> What's the minimum page table overhead?
— 16KB - one page dir table and three page tables (two for |
&)

low addresses and one for high addresses)
Copyright © William C. Cheng

34

Operating Systems - CSCI 402

level) Page Table
10 12
Virtual Address| Page Dir # Page # Offset

_

Forward-Mapped (Multi
10

Page Dir Entry N

Page Table Entry

Page Dir Table Page Tables

Physical page
—> Main drawback (will deal with this later)

= fwo physical memory accesses just to map a virtual |
address to a physical address 3534

Copyright © William C. Cheng

Operating Systems - CSCI 402

level) Page Table
10 12
Virtual Address| Page Dir # Page # Offset

_

Forward-Mapped (Multi
10

X86 processor

CR3 ¢
Page Dir Entry N
DA Page Table Entry
>
Page Dir Table Page Tables

Physical page
ﬁ> Forward-mapped page table is used in x86 processors
= CR3 contains physical address of the base address of the |
&)

page directory table of the currently running process
Copyright © William C. Cheng

Operating Systems - CSCI 402

Forward-Mapped (Multilevel) Page Table

4KB Physical Page

——

_________ VIM|R|[Prot| Physical Page #

- -
- -
- -
- -
- -

20 12 >I
VA: Page # Offset
vpn |
Page Table .
vpn=0)
vpn=1| 1T
vpn=2| .- D S

-
-

- -
- -
- -
- -
- -
- -
- --

- -

--—-

> >
- P
- -
\ -
- -
- P

-
- -
- -
- -
- -—-
- -
- -
- -
- -

—— Pagé Table Entry

-
-
-
-
-
-
-
-

ﬁ} weenix runs on an x86 CPU

= X86 CPU uses a forward-mapped

page table in the hardware

Q PTE is not like the above picture

= but the programming abstraction

is a basic (two-level) page table

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.2 Hardware Support
for Virtual Memory

_, Forward-Mapped Page Tables
_) Linear Page Tables

) Hashes Page Tables

) Translation Lookaside Buffers
ﬁ> 64-Bit Issues

) Virtualization

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linear Page Table

2 21 9

Virtual Address | S VPN Offset

/
N

Space

) Kind of like the complete
(large) page table

approach
= except that this large Space S Physical page
table is in virtual Page Table

address space
N
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

VAX Linear Page Translation

VA: |00 VPN Offset

00 BR

PTEA: |10 VPN Off
k | set 00 AS
10 BR >
10 PT 00 PT
10 AS @!’}_

% = PTEA: Page Table Entry Address 10\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linear Page Table Management

ﬁ} 00 and 01 page tables each require contlguous locations in 10 space
= with 512-byte pages, 8MB (= 4bytes x 2°)each
Q memory cost was $40,000 per MB for the VAX
Q maximum of 64 such page tables (to fill up 500MB of physical
memory)
Q (need room for other things, e.g. OS)

ﬁ} Reduce size requirements with partial page tables
= length register constrains size of each space

Copyright © William C. Cheng

Operating Systems - CSCI 402

Traditional Unix with Linear PTs

) With traditional Unix,
using a length register text
worked pretty well

data

00 AS bss

dynamic

v
}

Copyright © William C. Cheng

_, Not so well with
modern Unix

Copyright © William C. Cheng

Modern Unix

00 AS

01 AS

text

data

bss

dynamic

Y

mapped file

mapped file

A

stack3

A

stack?2

A

stackil

Operating Systems - CSCI 402

Operating Systems - CSCI 402

7.2 Hardware Support
for Virtual Memory

_, Forward-Mapped Page Tables
_) Linear Page Tables

_) Hashes Page Tables

) Translation Lookaside Buffers
ﬁ> 64-Bit Issues

) Virtualization

Copyright © William C. Cheng

Operating Systems - CSCI 402
Hashed Page Tables 1

= a collision resolution chain
VA: Paqe # Offset is a list of key/value pairs
for keys that hashed to the
same bucket

00 Tag \
@ Link
PT Entr Tag Tag
o bits 01] _Tag Link Link
Ll PT Entr PT Entr
PT Entr
10 Tag
Link
PT Entr A
11 Tag
Link
PT Entr
Physical page
ﬁ> Only allocated pages are present Physical page
= works well for sparcely allocated address space Physical page

—= too much overhead (tag and link) when there are large |
regions of allocated memory 4534

Copyright © William C. Cheng

Operating Systems - CSCI 402

Clustered Page Tables

17 3 12

VA:

Copyright © William C. Cheng

Page #

Offset

Tag

Link

PT Entry

PT Entry

PT Entry

PT Entry

Tag

PT Entry

Link

PT Entry

PT Entry

PT Entry

PT Entry

PT Entr
Tag

PT Entry

PT Entry

Link

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entry

PT Entr

PT Entr

Physical pages

463

Operating Systems - CSCI 402

Inverted Page Tables

()
Each entry contains
= PID
= page humber
= physical page

number

Inverted Page Table

) Page table is indexed by physical page number
= nhumber of entries in IPT tends to be limited and smali
—= how do you map page number (i.e., VPN) to physical page
number? 3

47

Copyright © William C. Cheng

Operating Systems - CSCI 402

Inverted Page Tables

VA: ﬁe # Offset
PID

PID |Tag |PTE| Link D

()

Hash Table

Inverted Page Table

) Page table is indexed by physical page number
= number of entries in IPT tends to be limited and small
= how do you map page number (i.e., VPN) to physical page
number? 3

48

Copyright © William C. Cheng

