
No space for new segment, make room by swapping out a segment

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

use a validity bit for each segment (in addition to access

control bits, which are omitted from the picture below)

MMU

Physical
Memory

200
Process A

low

100

1000

2600

 ≈

high

 ≈

v
=

1

1000

2200

10300

200
9000

v
=

1
v

=
1

v
=

1

Swap

Out

cmp

fault

9000

10300

2200

5800

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

2600

5800

Inner

Core

No space for new segment, make room by swapping out a segment

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

use a validity bit for each segment (in addition to access

control bits, which are omitted from the picture below)

MMU

Physical
Memory

200
Process A

low

100

1000

2600

 ≈

high

 ≈

v
=

1

10300

200
9000

v
=

1
v

=
0

v
=

1

cmp

fault

9000

10300

2200

5800

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

2600

5800

 OS

Inner

Core

78

No space for new segment, make room by swapping out a segment

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

use a validity bit for each segment (in addition to access

control bits, which are omitted from the picture below)

MMU

Physical
Memory

200
cmp

fault

Process A

access
virtual addr

678

low

100

1000

2600

 ≈

high

 ≈

v
=

1

10300

200
9000

v
=

1
v

=
0

v
=

1

9000

10300

2200

5800

heap seg

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

Swap

In

2600

5800

 OS

Inner

Core

78heap seg

No space for new segment, make room by swapping out a segment

1000

1000

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

use a validity bit for each segment (in addition to access

control bits, which are omitted from the picture below)

MMU

Physical
Memory

200
cmp

fault

Process A

access
virtual addr

678

low

100

1000

2600

 ≈

high

 ≈

v
=

1

10300

200
9000

v
=

1
v

=
1

v
=

1

9000

10300

1000

5800

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

2600

5800

Inner

Core

78heap seg

No space for new segment, make room by swapping out a segment

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

use a validity bit for each segment (in addition to access

control bits, which are omitted from the picture below)

MMU

200
cmp

fault

Process A

access
virtual addr

678

100

1000

2600

v
=

0
v

=
0

v
=

0
v

=
0

-

-

-

-

code

data

heap

stack

0

200

300

400

600

1600

2000

4600 OS

you can swap out all the segments

you can start with all the

segments as if they were swapped

out

Inner

Core

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

Remember this?

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

Remember this?

this is the representation of the address space of a user process

each segment corresponds to an as_region

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

stack

text
data
bss

dynamic

private/shared bit is part of as_region

anon
obj

anon
obj

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swapping / Backing Store

Every user space memory segment needs a corresponding disk

image, in case the user process needs to be swapped out

what about kernel memory?

stack

text
data
bss

dynamic

it’s OS-dependent - in Windows, some kernel memory

can be swapped out

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory

Memory

Disk

Process 1

Process 2

Process 3

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.2 Hardware Support

for Virtual Memory

Forward-Mapped Page Tables

Linear Page Tables

Hashes Page Tables

Translation Lookaside Buffers

64-Bit Issues

Virtualization

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Structuring Virtual Memory

divide the address space into fixed-size pages

Paging

divide the address space into variable-size segments

(typically each corresponding to some logical unit of the

program, such as a module or subroutine)

Segmentation (just discussed)

internal fragmentation possible

external fragmentation possible

not very common these days

"first-fit" is slow

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Paging

Ex: 1GB (2
 30

) of physical memory (divide into pages of same size)

Map a 32-bit virtual address to physical address (number of bits

depends on how much physical memoroy you have)

VA: Virtual Page # (vpn) Offset

20 12

we will assume page size is 4KB = 2
 12

PA: Physical Page # (ppn) Offset
18 12

MMU

Address translation in paging: convert virtual page number to

physical page number

offset within page stays the same

think of all memory as an array of fixed size pages

page 262143

page 262142

page 262141

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Paging

Ex: 1GB of physical memory with 4KB pages

2
 18

 physical pages

1GB Physical Memory

...

4KB Pages

4KB Pages

4KB Pages

...

4KB Pages

4KB Pages

4KB Pages

MMU and page table (mostly in software)

Many hardware mapping techniques

translation lookaside buffers (TLB)

page 0

page 1

page 2

Map fixed-size pages into physical memory (into physical pages)

address space is divided into pages

physical memory is divided into pages

(of the same size)

indexed by virtual page number

indexed by physical page number

need a lookup table to map virtual page

numbers to physical page numbers

terminology: an address (either

physical or virtual) is page-aligned if

its least significant 12 bits are all zero

there is a one-to-one mapping

between page frames and

allocated physical pages

we use "page frame" and

"physical page" interchangeably

contains a physical page number

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Managing Allocated Physical Pages: Page Frames

Physical Memory

4KB Pages

0

1

2

3

4

pagenum is not the "page number" mentioned here!

Weenix note for kernel 3:

page frames can be shared

"physical pages" can be shared

A page frame data structure / object is used to maintain information

about physical pages and their association with important kernel

data structures

Page Frame

Page

...

contains a virtual address for

reading/writeing the page

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Frames

It is important to be able to perform both forward lookup and

reverse lookup

forward lookup: given a virtual address of a process, find page

frame

the kernel must use a

virtual address to write

into a physical page or

read the content of a physical page

reverse lookup: given a page frame,

find processes and virtual

addresses that map to this

page frame

Physical Memory

Page Frame

Objects

4KB Pages

0

1

2

3

4

weenix page frame data

structure is a bit involved

see kernel 3 FAQ

usually requires pointer math

VA: Virtual Page # (vpn) Offset

20 12

PA: Physical Page # (ppn) Offset
18 12

MMU

4KB Physical Page

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Basic (Two-level) Page Tables

Physical Page #ProtRMV

VA: Page # Offset

20 12

Page Table

Page Table Entry

vpn

vpn=0

vpn=1

vpn=2

vpn=220-1

