Operating Systems - CSCI 402

Swapping / Backing Store

ﬁ> No space for new segment, make room by swapping out a segment
= use a validity bit for each segment (in addition to access

control bits, which are omitted from the picture below)
low

Inner |[fault 2200
| Swap .-ttt el
Lare S - S I
l 5800
P 12600
Process A 9000 {1l —Pcrmp -
>] 'l .
0 200 7' . (%)00
code 10300| ="~ B '7"\\
200 (o0 (2| - 10300
300
data 2200 |} N T
600 Physical
heap 5800 | 1 Memory
2000
stack
4600

Copyright © William C. Cheng

Process A
0
code
200
300
data
400
600
heap
1600
2000
stack
4600

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swapping / Backing Store

ﬁ} No space for new segment, make room by swapping out a segment
= use a validity bit for each segment (in addition to access
control bits, which are omitted from the picture below)

faul
Inner |fault
Core

9000 || =5 o
200 | °|| 7
10300[-1[K
100 | >
2200 [
1000 | > [k,
5800 [~)
2600 | > ‘

low

5800
Izsoo
9000 .
200
10300
Physical .-
Memory .-~

’
L d
4

Inner |fault
access
virtual addr Core
67| 8 heap segl78
Process A 9000 T ’ ;cmp
200 | =
0 4’ == w'
code 10300| ~ |
200 |00 | > ;
300
data 2200 o
400 (19000 | >|¥%.~
600
heap 5800 | v
2000 :
stack
4600 MMU

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swapping / Backing Store

ﬁ} No space for new segment, make room by swapping out a segment
= use a validity bit for each segment (in addition to access
control bits, which are omitted from the picture below)

low
Swap & }----. ..
In
5800
o 2600
*l’l‘ "l
' 9000 .
. 200 ,
10300
hlghl . | /,'
Physical .~
Memory .-~
- "" I
0S - oy,

Operating Systems - CSCI 402

Swapping / Backing Store

ﬁ} No space for new segment, make room by swapping out a segment
= use a validity bit for each segment (in addition to access
control bits, which are omitted from the picture below)

access <
virtual addr Core .
67| 8 heap segl78 '
Process A 9000 |- ;Cmb
200 | > y
0 4""" w'
code 10300| ([~ .
200 |90 |2]|
300 o
data 1000 | —f]
400 |[Hggo]=|| .~
600
heap 5800 | v i
2000
stack
4600 MMU

Copyright © William C. Cheng

low

1000
1000

5800
I 2600

9000

200

10300

U

Physical
Memory

Inner [fault
access
virtual addr Core
678 heap segl78 \
Process A ol - N ;
200 | >
0 A /
code - Jol| ™
200 N o
100 | = %
300 |‘“‘ ‘\
data - loll ™
400 (Moo | =[k.
600
heap =)
1600 2600 g ..
2000 o
stack
4600 MMU

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swapping / Backing Store

ﬁ} No space for new segment, make room by swapping out a segment
= use a validity bit for each segment (in addition to access
control bits, which are omitted from the picture below)

Q you can swap out all the segments

<— O you can start with all the

segments as if they were swapped
out

Operating Systems - CSCI 402

Swapping / Backing Store

as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7fffd000-7fffffff
rx, shared rw, private rw, private rw, shared rw, private
file file
object object

_, Remember this?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swapping / Backing Store

text
data
bss
dynamic
stack
as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 71fd000-7fFffff
rx, shared rw, private rw, private rw, shared rw, private

file file
object object

ﬁ> Remember this?
= this is the representation of the address space of a user process
Q each segment corresponds to an as_region

& private/shared bit is part of as_region

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swapping / Backing Store

text
data
bss
dynamic
stack
as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-4 1 ffffff 7fffd000-7fffffff
rx, shared rw, private rw, private rw, shared rw, private
anon anon
file obj file obj
object object

ﬁ> Every user space memory segment needs a corresponding disk
Image, in case the user process needs to be swapped out
= what about kernel memory?
Q it’s OS-dependent - in Windows, some kernel memory |
&

can be swapped out .
Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory

Process 1

Process 2

Process 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.2 Hardware Support
for Virtual Memory

_) Forward-Mapped Page Tables
_) Linear Page Tables

) Hashes Page Tables

) Translation Lookaside Buffers
ﬁ> 64-Bit Issues

) Virtualization

Copyright © William C. Cheng

Operating Systems - CSCI 402

Structuring Virtual Memory

_) Segmentation (just discussed)
= divide the address space into variable-size segments
(typically each corresponding to some logical unit of the
program, such as a module or subroutine)
= external fragmentation possible
= "first-fit" is slow
= not very common these days

_) Paging
= divide the address space into fixed-size pages
= internal fragmentation possible

Copyright © William C. Cheng

Operating Systems - CSCI 402

Paging

ﬁ} Map a 32-bit virtual address to physical address (hnumber of bits
depends on how much physical memoroy you have)
= think of all memory as an array of fixed size pages

—= we will assume page size is 4KB = 2 12

ﬁ> Ex: 1GB (2 30) of physical memory (divide into pages of same size)
20 12
VA: Virtual Pafe # (vpn) Offset

MMU

' '

PA: Physical Page # (ppn) | Offset
18 12

ﬁ> Address translation in paging: convert virtual page number to

physical page number |
— offset within page stays the same s @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Paging
ﬁ} Map fixed-size pages into physical memory (into physical pages)

= address space is divided into pages
Q Indexed by virtual page nhumber
= physical memory is divided into pages

(of the same size) page 0| 4KB Pages
Q Indexed by physical page number page 1| 4KB Pages
= need a /ookup table to map virtual page page 2| 4KB Pages

numbers to physical page numbers

) Ex: 1GB of physical memory with 4KB pages
= 2" physmal pages
= terminology: an address (either
physical or virtual) is page-aligned if
its least significant 12 bits are all zero

page 262141 4KB Pages
page 262142| 4KB Pages
page 262143| 4KB Pages

ﬁ> Many hardware mapping techniques 1GB Physical Memory
= MMU and page table (mostly in software) |
= translation lookaside buffers (TLB))‘

Copyright © William C. Cheng

Operating Systems - CSCI 402

Managing Allocated Physical Pages: Page Frames

ﬁ} A page frame data structure / object is used to maintain information
about physical pages and their association with important kernel
data structures 4KB Pages
= contains a virtual address for

reading/writeing the page

contains a physical page number Page
there is a one-to-one mapping
between page frames and
allocated physical pages Page Frame

Q we use "page frame" and

"physical page" interchangeably

— page frames can be shared

Q "physical pages” can be shared

[

[

Physical Memory

ﬁ> Weenix note for kernel 3:

= pagenum is hot the "page humber" mentioned here! N

=/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Frames

) ltis important to be able to perform both forward lookup and

reverse lookup

— forward lookup: given a virtual address of a process, find page
frame

= reverse lookup: given a page frame, 4KB Pages
find processes and virtual Page Frame
addresses that map to this Objects
page frame

_) weenix page frame data
structure is a bit involved 2

= the kernel must use a
virtual address to write 3

into a physical page or

read the content of a physical page 4

Q usually requires pointer math

= see kernel 3 FAQ gy

Copyright © William C. Cheng

Basic (Two-level) Page Tables

Operating Systems - CSCI 402

20 12 >I -
VA: Page # Offset
vpn |
4KB Physical Page
Page Table . |
vn=0[| M{R|[Prot| Physical Page #
vpn=1| T et T e
vpn=2| .- T e e
L »[PagéTable Entry |---= 20 12
VA: | Virtual Page # (vpn) Offset
y
MMU
! v
PA: [Physical Page # (ppn) | Offset
18 12
vpn=2%-1

Copyright © William C. Cheng

