Operating Systems - CSCI 402

Ch 7: Memory Management

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management

Processes 0S File System

kernel text
A Buffer Cache

kernel stack
other stuff

\ \

+ Stack kernel stack _
Stack + other stuff Networkin g

Stack

Physical
Memory

ﬁ> Challenges
= what to do when you run out of space?

|
= protection ‘?}

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Address-Space Concept

) Protect processes from one another

) Protect the OS from user processes

ﬁ> Provide efficient management of available storage
= [llusion of large memory
= sharing (code, data, communication)
= nhew abstraction (such as pipes, memory-mapped files)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Address

|- 32 >
Virtual Address

—) Who uses virtual address?
= USer processes
— kernel processes
= pretty much every piece of software

ﬁ> You would use a virtual address to address any memory location in
the 32-bit address space

) Anything uses physical address?
= nothing in OS

= well, the hardware uses | physical address
physical address (and the
processor is hardware) device
= the OS manages the Memory
hysical address space (A
phy p By

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Address

|- 32 >
Virtual Address

ﬁ} To access a memory location, you need to specify a memory
address
= [n a user process (or even a kernel process), you would use a
virtual address to address any memory location in the 32-bit
address space

ﬁ} Why would you want to access a memory location?
= e.(d., to fetch a machine instruction
Q you need to specify a memory location to fetch from
Q how do you know which memory location to fetch from?
<& EIP (on an x86 machine), which contains a virtual address

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Address
| 32 >

Virtual Address

ﬁ} To access a memory location, you need to specify a memory
address
= [n a user process (or even a kernel process), you would use a

virtual address to address any memory location in the 32-bit
address space

ﬁ} Why would you want to access a memory location?
= e.(d., to fetch a machine instruction

= e.g., to push EAX onto the stack

Q you need to specify a memory location to store the content
of EAX

Q how do you know which memory location to write to?
& ESP, which contains a virtual address

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Address

|- 32 >
Virtual Address

ﬁ} To access a memory location, you need to specify a memory
address
= [n a user process (or even a kernel process), you would use a
virtual address to address any memory location in the 32-bit
address space

ﬁ} Why would you want to access a memory location?
= e.g., to fetch a machine instruction
= e.(g., to push EBP onto the stack
= e.g., x = 123, where x is a local variable
Q you need to specify a memory location to write 123 to
Q how do you know which memory location to wrote to?
<& EBP, which contains a virtual address

ﬁ> Is there any CPU register that contains a physical address? .

Copyright © William C. Cheng

Operating Systems - CSCI 402

Basic Idea: Address Translation

ﬁ} We want the same virtual address to get "translated” to a different
physical address, depending on which process is running

= how?
low:
access access 1200
virtual addr virtual addr) ¢ 300
100 100
t | | 1 | Physical
Process A Process B Memory
9500
— ISOO
Inner .
Core |[V.-A=100 P.A.
high {'}
a(2(150) 2=
Processor 23/

Copyright © William C. Cheng

—= don’t address physical memory directly

Basic Idea: Address Translation
ﬁ} One level of indirection with a Memory Management Unit (MMU)

Q address out of CPU "inner core" is virtual

= use a Memory Management Unit (MMU)

Operating Systems - CSCI 402

Q virtual address is translated into physical address via MMU
Q physical memory can be located anywhere

low: .
access access 1200
virtual addr virtual addr ¢ 300
100 100]
L_ J | Physical
Process A Process B Memory
9500
— ISOO
—»-Teqs |
Inner = MMU
Core |[V.A P.A.
high {'}
a(2(150) 2=
Processor 38\

Copyright © William C. Cheng

—= don’t address physical memory directly

Basic Idea: Address Translation
ﬁ} One level of indirection with a Memory Management Unit (MMU)

Q address out of CPU "inner core" is virtual

= use a Memory Management Unit (MMU)

Operating Systems - CSCI 402

Q virtual address is translated into physical address via MMU
Q physical memory can be located anywhere

low: '
access access 1200
virtual addr virtual addr > ¢ 300
100 100
L_ J Physical
Process A Process B Memory
9500
ISOO
—»-Teqs |
Inner = MMU
Core (100 1300
high {'}
a(2(150) 2=
Processor 5y

Copyright © William C. Cheng

—= don’t address physical memory directly

Basic Idea: Address Translation
ﬁ} One level of indirection with a Memory Management Unit (MMU)

Q address out of CPU "inner core" is virtual

= use a Memory Management Unit (MMU)

Operating Systems - CSCI 402

Q virtual address is translated into physical address via MMU
Q physical memory can be located anywhere

low: .
access access 1200
virtual addr virtual addr ¢ 300
100 100
L_ J Physical
Process A Process B Memory
9500
—>
I 500
—»-[Teqs |
Inner = MMU
Core (100 9600
high
Processor 3 55!’}
36 J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address Translation
ﬁ} Protection/isolation

_ lllusion of large memory

I:> Sharing

ﬁ> New abstraction (such as memory-mapped files)

low
access access
virtual addr virtual addr
100 100
t | | 1 _,| Physical
Process A Process B Memory
—-[Teqs |
Inner = MMU
Core .
high
(B
Processor A Y/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Fence

low
Inner |fault
Core 5
l1 00
User Area _
fense Physical
Memory
100
MMU

high

—) Inthe old days
= if a user program tries to access OS area, hardware (very simple
MMU) will generate a trap
= does hot protect user pocesses from each other

|
Q there’s only one user process anyway 383 2?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Fence and Overlays
_—
C

N~

User
Area

Resident

ﬁ} What if the user program won’t fit in memory?
— use overlays
= programmers (not the OS) have to keep track of which overlay
is in physical memory and deal with the complexities of
managing overlays

&

39

Copyright © William C. Cheng

Operating Systems - CSCI 402

Base and Bounds Registers

| fault low
nner
access er le— > 1200
virtual addr Core i ¢
100 300
l1 oo\
L— BN
base Phvsi
cmp ysical
Process A Process B /VO
bounds Mem ory
base = 1200 base = 9300 MMU 100+1200 9300
bounds = 300 bounds = 500
500
_, Multiple user processes high' -

= OS maintains a pair of registers for each user process
Q bounds register: address space size of the user process
Q base register: start of physical memory for the user process

— address relative to the base register

= virtual memory reference >= 0 and < bounds, independent of
base (this is known as "position independence"’)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Base and Bounds Registers

| fault low
nner
access er le— 1200
virtual addr Core ¢
100 300
l1 00
'J base\@ Physical
D ysica
Process A Process B
bounds :"' Memory
base = 1200 base = 9300 - 9300
bounds =300 bounds = 500 MMU 10049300 > 1500
_, Multiple user processes high' -

= OS maintains a pair of registers for each user process
Q bounds register: address space size of the user process
Q base register: start of physical memory for the user process

ﬁ} MMU registers are part of the context of a process
= In kernel 1, a PCB has something called pagedir (MMU
register for x86 CPU uses a different scheme) HATNN
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Generalization of Base and Bounds: Segmentation

ﬁ} One pair of base and bounds registers per segment
= code, data, heap, stack, and may be more
= e.g., compiler compiles programs into segments

access
virtual addr
350
Process A
0
code
200
300
data
400
600
heap
1600
2000
stack
4600

Copyright © William C. Cheng

faul low
Inner | 24% 2200
Core 1000
data sengO 5800
ok S Izsoo
92000' ',::cmp
o) F 205
10300} 7" |50+10300 "~
100 |/ s Ll 10300
2200 | . T T
1000 | }” high .
P Physical
5800 f Memory
2600
MMU s
2y

Operating Systems - CSCI 402

Access Control With Segmentation

) Access control / protection
= read-only, read/write

low
Inner fault
execute er le——-r? R 2200
virtual addr Core 1000
150 code segl1 50 5800
L- VS Izeoo
Process A 9000 |R{| Z>mp) -~
0 200 |O 7’ 9000
PEiiaply = — 200
code 10300(R [[150+9000 | *-
200 100 |W|{ 10300
300 !
data 2200 R 'l' = ~
400 1000 |W]|| ./ high! :
600 Physical
heap 5800 |R|’ Memor
2000
stack]

Copyright © William C. Cheng

Operating Systems - CSCI 402

Access Control With Segmentation

) Access control / protection

= read-only, read/write

write
virtual addr
150
Process A
0
code
200
300
data
400
600
heap
1600
2000
stack
4600

Copyright © William C. Cheng

low
Inner Lault e 2200
Core e 1000
code segl1 50 5800
Y S I 2600
9000 [R | Z&Cmn)
s T2 AN 9000
PSS ~e (—P] 200
10300| R [[150+9060] -
100 |W|{ 5 10300
2200 [R[| - -
1000 (V]| .~ high .
Physical
5800 |RT Memory
2600 (W
I
MMU W)y

Process A

9000

200

(@ Qs

10300

100

=2

2200

1000

=g v

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sharing Segments

) Can simply setup base and bounds
registers to share segments

Process B

Inner

Core

9000

200

OoX

9000

200

(@R

10300

100

== 1]

7600

300

=3

2200

1000

=2

20500

400

=3

-

Shared

Physical
Memory

Operating Systems - CSCI 402

Sharing Segments
ﬁ} Can simply setup base and bounds

registers to share segments low
Inner
Core)
| O Shared
Process A Process B 9000 |Rf| .-
200 |Of| -~
9000 |R 9000 |R ,
200 (9) 200 (@) 7600 |R[.t
300 |W
10300| R 7600 [R 55555 !
100 |W w R[_
=0 200 |W high! .
2200 |R| |20500|R Physical
1000 |W 400 |W Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Segmentation Fault
ﬁ} Segmentation fault

= virtual address not within range of any base-bounds registers

| fault low
nner u
access -t) .- 2200
virtual addr Core 1000
40 data segl1 50 5800
L— S I 2600
Process A 9000 g =>lmp
0 200 7’ — 9000
code 10300 RH-
200 100 |W|{ 10300
300 ' N
data 2200 |R ' ~ .
400 1000 [W|| .~ high| —|
600 Physical
heap 5800 |R { Memor
2000
stack]

Copyright © William C. Cheng

Segmentation Fault

_) Segmentation fault
= virtual address not within range of any base-bounds registers

= OF access is incompatible

write
virtual addr
150
Process A
0
code
200
300
data
400
600
heap
1600
2000
stack
4600

Copyright © William C. Cheng

Inner
Core

code segl1 50

9000
200

(@R

10300
100

=3

2200
1000

=3

5800
2600

== 1

MMU

4

Operating Systems - CSCI 402

low
R - 2200
‘ 1000
5800
B 2600
A
9000
. 200
10300
high —
Physical
Memory
|
3(2(160) o=
£y

Operating Systems - CSCI 402 1
Memory Mapped File

= nheed more pairs of MMU

I:> Memory Mapped File registers in hardware
= the mmap () system call

= canh map an entire file (or part of it) into a segment

low

access < 4 400
virtual addr Core
8178 mm file 1 segl178 \
Process A 9000 | Ry ;@
200 |O|| g~ | : 9000
gooo | (A ;! 20
mm file 1 10300| R [[178+400 "7-
8820 100 |W 10300
: Physical
D‘ extra || 400 |R ,: Memory
..... registers 820 |W :
......... \ 1

Copyright © William C. Cheng

Operating Systems - CSCI 402 -1

CO py-on-Wl‘ite = set R/O bit for private,

|:> Copy-on-write (C OW): R/W memory segment
= a process gets a private copy of the segment after a thread in
the process performs a write for the first time

low

read |nner fault 400
virtual addr Core
312
data segl12
| i x:’. .. — RIO 2000
Process A 92000 g Zwlemp) [
0 00 Pl 9000
code 2000 [R [[12+2000
data] | 1 private - -
400 o highl |
600 tf?ls bltt Physical
hea orten no
P 1600 in MMU Memory
2000
stack |
4600 MMU / ;@_

Copyright © William C. Cheng

Operating Systems - CSCI 402 -1

Copy-On-Write

ﬁ} Copy-on-write (COW):
= a process gets a private copy of the segment after a thread in
the process performs a write for the first time

= first time write to this
segment traps into OS

| fault low
write nner < 400
virtual addr Core
312
data segl12
L_ P O o 2000
Process A 9000 g Zwlemp) |
0 200 |21 |7 9000
code 2000 [R[[12+2000
data 30 |—’ private - -
400 L high! - |
600 tf?ls bltt Physical
hea orten no
P 1600 in MMU Memory
2000
stack |
4600 MMU Dy

Copyright © William C. Cheng

write
virtual addr
312

t

Process A
0
code
200
300
data
400
600
heap
1600
2000
stack
4600

Copyright © William C. Cheng

Copy-On-Write

ﬁ} Copy-on-write (COW):
= a process gets a private copy of the segment after a thread in
the process performs a write for the first time

—

this bit
often not
in MMU

Inner
Core

fault

data segl12

9000 (R
200 |O

S o

600 |R
100 (W

private

MMU

low

- -
’—

fear

R/O

high!

Physical
Memory

Operating Systems - CSCI 402

400
600

2000

9000

write
virtual addr
312

t

Process A
0
code
200
300
data
400
600
heap
1600
2000
stack
4600

Copyright © William C. Cheng

Copy-On-Write

ﬁ} Copy-on-write (COW):
= a process gets a private copy of the segment after a thread in
the process performs a write for the first time

—

this bit
often not
in MMU

Inner
Core

fault

data segl12

9000 (R
200 |O

S o

600 |R

Operating Systems - CSCI 402 -1

= future write to this segment

will not trap into OS

low

- -
’—

R/O

100 (W

private

MMU

~

high!

Physical
Memory

400
600

2000

9000

