
Ch 7: Memory Management

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management

Stack

Stack

Stack

kernel stack
other stuff

kernel text

kernel stack
other stuff

Buffer Cache

Physical
Memory

Processes OS File System

Networking

what to do when you run out of space?

Challenges

protection

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Address-Space Concept

Protect processes from one another

Protect the OS from user processes

Provide efficient management of available storage

illusion of large memory

sharing (code, data, communication)

new abstraction (such as pipes, memory-mapped files)

Virtual Address

user processes

Who uses virtual address?

 32

kernel processes

You would use a virtual address to address any memory location in

the 32-bit address space

nothing in OS

Anything uses physical address?

well, the hardware uses

physical address (and the

processor is hardware)

pretty much every piece of software

Memory

physical address

device

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Address

the OS manages the

physical address space

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Address

in a user process (or even a kernel process), you would use a

virtual address to address any memory location in the 32-bit

address space

To access a memory location, you need to specify a memory

address

e.g., to fetch a machine instruction

Why would you want to access a memory location?

you need to specify a memory location to fetch from

how do you know which memory location to fetch from?

EIP (on an x86 machine), which contains a virtual address

Virtual Address

 32

in a user process (or even a kernel process), you would use a

virtual address to address any memory location in the 32-bit

address space

To access a memory location, you need to specify a memory

address

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Address

e.g., to fetch a machine instruction

Why would you want to access a memory location?

how do you know which memory location to write to?

ESP, which contains a virtual address

e.g., to push EAX onto the stack

you need to specify a memory location to store the content

of EAX

Virtual Address

 32

e.g., to fetch a machine instruction

Why would you want to access a memory location?

how do you know which memory location to wrote to?

EBP, which contains a virtual address

e.g., to push EBP onto the stack

you need to specify a memory location to write 123 to

e.g., x = 123, where x is a local variable

Virtual Address

 32

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Address

in a user process (or even a kernel process), you would use a

virtual address to address any memory location in the 32-bit

address space

To access a memory location, you need to specify a memory

address

Is there any CPU register that contains a physical address?

P.A.V.A=100
high

low

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Basic Idea: Address Translation

We want the same virtual address to get "translated" to a different

physical address, depending on which process is running

Physical
Memory

Processor

Inner
Core

Process A Process B

access
virtual addr

100

access
virtual addr

100

500

9500

300

1200

 ≈ ≈

how?

P.A.V.A
high

low

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Basic Idea: Address Translation

One level of indirection with a Memory Management Unit (MMU)

MMU

don’t address physical memory directly

address out of CPU "inner core" is virtual

virtual address is translated into physical address via MMU

use a Memory Management Unit (MMU)

Physical
Memory

regs

Processor

Inner
Core

Process A Process B

access
virtual addr

100

access
virtual addr

100

500

9500

300

1200

physical memory can be located anywhere

 ≈ ≈

address out of CPU "inner core" is virtual

1300

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Basic Idea: Address Translation

One level of indirection with a Memory Management Unit (MMU)

Inner
Core

MMU

don’t address physical memory directly

virtual address is translated into physical address via MMU

use a Memory Management Unit (MMU)

Physical
Memory

regs

Processor

high

 ≈ ≈

low

500

9500

300

1200

Process A Process B

access
virtual addr

100

access
virtual addr

100

physical memory can be located anywhere

100

address out of CPU "inner core" is virtual

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Basic Idea: Address Translation

One level of indirection with a Memory Management Unit (MMU)

Inner
Core

MMU

don’t address physical memory directly

virtual address is translated into physical address via MMU

use a Memory Management Unit (MMU)

Physical
Memory

9600

regs

Processor

high

 ≈ ≈

low

500

9500

300

1200

Process A Process B

access
virtual addr

100

access
virtual addr

100

physical memory can be located anywhere

100

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address Translation

Protection/isolation

Illusion of large memory

Sharing

New abstraction (such as memory-mapped files)

Inner
Core

MMU

Physical
Memory

regs

Processor

high

low

Process A Process B

access
virtual addr

100

access
virtual addr

100

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Fence

if a user program tries to access OS area, hardware (very simple

MMU) will generate a trap

In the old days

there’s only one user process anyway

does not protect user pocesses from each other

User Area

OS

Inner

Core

MMU

Physical
Memory

fense

100

100

fault

high

low

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Fence and Overlays

Resident

Overlay

programmers (not the OS) have to keep track of which overlay

is in physical memory and deal with the complexities of

managing overlays

User

Area

use overlays

What if the user program won’t fit in memory?

500

9300

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Base and Bounds Registers

virtual memory reference >= 0 and < bounds, independent of

base (this is known as "position independence")

address relative to the base register

MMU

Physical
Memory

base

100

100+1200

bounds
cmp

fault

Process A Process B

access
virtual addr

100

base = 1200
bounds = 300

base = 9300
bounds = 500

300

1200

 ≈ ≈

low

highMultiple user processes

OS maintains a pair of registers for each user process

bounds register: address space size of the user process

base register: start of physical memory for the user process

Inner

Core

base register: start of physical memory for the user process

Multiple user processes

OS maintains a pair of registers for each user process

bounds register: address space size of the user process

500

9300

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Base and Bounds Registers

MMU

Physical
Memory

base

100

100+9300

bounds
cmp

fault

Process A Process B

base = 1200
bounds = 300

base = 9300
bounds = 500

300

1200

 ≈ ≈

low

high

access
virtual addr

100

MMU registers are part of the context of a process

in kernel 1, a PCB has something called pagedir (MMU

register for x86 CPU uses a different scheme)

Inner

Core

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Generalization of Base and Bounds: Segmentation

code, data, heap, stack, and may be more

One pair of base and bounds registers per segment

MMU

Physical
Memory

9000

50

50+10300

200
cmp

fault

Process A

access
virtual addr

350

low

10300

100

2200

1000

5800

2600

 ≈

high

 ≈

1000

2200

10300

200
9000

e.g., compiler compiles programs into segments

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

data seg

2600

5800

Inner

Core

5800

2200

MMU

Physical
Memory

9000

150

150+9000

200
cmp

fault

Process A

low

10300

100

1000

2600

 ≈

high

 ≈

1000

2200

10300

200
9000

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

code seg

2600

5800

R
O

R
W

R
W

R
W

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Access Control With Segmentation

read-only, read/write

Access control / protection

execute
virtual addr

150

Inner

Core

5800

2200

MMU

Physical
Memory

9000

150

150+9000

200
cmp

fault

Process A

write
virtual addr

150

low

10300

100

1000

2600

 ≈

high

 ≈

1000

2200

10300

200
9000

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

code seg

2600

5800

R
O

R
W

R
W

R
W

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Access Control With Segmentation

read-only, read/write

Access control / protection

Inner

Core

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing Segments

Can simply setup base and bounds

registers to share segments

MMU

Physical
Memory

9000

200
Process A

low

10300

100

2200

1000

...

 ≈

high

 ≈

R
O

R
W

R
W

Process B

200

100

1000

R
O

R
W

R
W

9000

200

7600

300

20500

400

...

R
O

R
W

R
W

Shared

9000

10300

2200

...

Inner

Core

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing Segments

Can simply setup base and bounds

registers to share segments

MMU

Physical
Memory

200
Process A

low

300

400

...

 ≈

high

 ≈

R
O

R
W

R
W

Process B

200

100

1000

...

R
O

R
W

R
W

200

300

400

...

R
O

R
W

R
W

Shared

9000

7600

20500

9000

10300

2200

9000

7600

20500

Inner

Core

5800

2200

MMU

Physical
Memory

9000

150

200
cmp

fault

Process A

access
virtual addr

450

low

10300

100

1000

2600

 ≈

high

 ≈

1000

2200

10300

200
9000

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

data seg

2600

5800

R
O

R
W

R
W

R
W

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Segmentation Fault

virtual address not within range of any base-bounds registers

Segmentation fault

Inner

Core

5800

2200

MMU

Physical
Memory

9000

150

200
cmp

fault

Process A

write
virtual addr

150

low

10300

100

1000

2600

 ≈

high

 ≈

1000

2200

10300

200
9000

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

code seg

2600

5800

R
O

R
W

R
W

R
W

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Segmentation Fault

virtual address not within range of any base-bounds registers

Segmentation fault

or access is incompatible

Inner

Core

178mm file 1 seg

the mmap() system call

Memory Mapped File

MMU

Physical
Memory

9000

178+400

200
cmp

fault

Process A

access
virtual addr

8178

10300

100

...

400

820

 ≈

high

 ≈

R
O

R
W

R
W

can map an entire file (or part of it) into a segment

10300

200
9000

400

low

mm file 1
8000

8820

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Mapped File

 OS

extra
registers

Inner

Core

need more pairs of MMU

registers in hardware

2000

12data seg

Copy-on-write (COW):

MMU

Physical
Memory

9000

200
cmp

fault

Process A

read
virtual addr

312

low

2000

100

...

 ≈

high

 ≈

R
O

R
O

a process gets a private copy of the segment after a thread in

the process performs a write for the first time

9000

400

private

12+2000code

data

heap

stack

0

200

300

400

600

1600

2000

4600 0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-On-Write

this bit
often not
in MMU

R/O

Inner

Core

set R/O bit for private,

R/W memory segment

2000

a process gets a private copy of the segment after a thread in

the process performs a write for the first time

low

 ≈

high

 ≈

9000

400

12+2000

12data seg

Copy-on-write (COW):

MMU

Physical
Memory

9000

200
cmp

fault

Process A

write
virtual addr

312

2000

100

...

R
O

R
O

private

code

data

heap

stack

0

200

300

400

600

1600

2000

4600 0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-On-Write

this bit
often not
in MMU

R/O

Inner

Core

first time write to this

segment traps into OS

2000

a process gets a private copy of the segment after a thread in

the process performs a write for the first time

12data seg

Copy-on-write (COW):

MMU

Physical
Memory

9000

200
cmpProcess A

write
virtual addr

312

low

600

100

...

 ≈

high

 ≈

R
O

R
W

9000

400

private

600

fault

code

data

heap

stack

0

200

300

400

600

1600

2000

4600

copy

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-On-Write

this bit
often not
in MMU

R/O

Inner

Core

2000

a process gets a private copy of the segment after a thread in

the process performs a write for the first time

12data seg

Copy-on-write (COW):

MMU

Physical
Memory

9000

200
cmpProcess A

write
virtual addr

312

low

600

100

...

 ≈

high

 ≈

R
O

R
W

9000

400

private

12+600

600

fault

code

data

heap

stack

0

200

300

400

600

1600

2000

4600 0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-On-Write

this bit
often not
in MMU

R/O

Inner

Core

future write to this segment

will not trap into OS

