Operating Systems - CSCI 402

S5FS Free List: Deallocation - Case (1)

Free

Me

r NDEL Free

head 2
L 99 ——__
Super Block I
]] (un-used)
ﬁ} When a disk block is freed
0 —

= that block’s address is added to the
list of free blocks in the superblock

Copyright © William C. Cheng

S5FS Free List: Deallocation - Case (1) 1

g
F':ee = super block is cached in
Disk memory
Block = no need to write to disk
\
(0 Free
free DiSk
list < Block
97
head 2
. 99 ——__
Super Block I
(un-used)

> When a disk block is freed
= that block’s address is added to the
list of free blocks in the superblock

0 —>

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free List: Deallocation - Case (2)

R

Free
Disk
Block

Free
Me
[0
-
free
list
head 2
L 99 ——__
Super Block

> When a disk block is freed

= that block’s address is added to the
list of free blocks in the superblock

= |if the list is full

Q copy first node from super block
into the newly freed block and update superblock

Copyright © William C. Cheng

(un-used)
0 —
97
98 — -
99 —

®

Operating Systems - CSCI 402

S5FS Free List: Deallocation - Case (2)

A — O\

99

Free
Disk
Block

(0
free 1
list §
head 2
L 99 .
Super Block

> When a disk block is freed

= that block’s address is added to the
list of free blocks in the superblock

= |if the list is full

Q copy first node from super block
into the newly freed block and update superblock

Copyright © William C. Cheng

(un-used)

0

97

98

—

99

—]

®

Operating Systems - CSCI 402

S5FS Free List: Deallocation - Case (2)

0

1

99

free
list <
head

.

Y\

N

N

L
L

N
N

L
L

99

Free
Disk
Block

Super BID)F

ﬁ} When a disk block is freed
= that block’s address is added to the
list of free blocks in the superblock

= if the list is full

Q copy first node from super block

into the newly freed block and update superblock
Copyright © William C. Cheng

(un-used)

0

97

98

—

99

—]

B

0 —

—

S5FS Free List: Deallocation - Case (2) 1

r

- | — = one disk write to copy
\ disk block pointers
= only happens 1 out of
99 100 frees
(NBCL Free
free NEL DiSk
list < Block
head L
L 99
Super BI@
]] (un-used)
ﬁ} When a disk block is freed _ L
= that block’s address is added to the
list of free blocks in the superblock
= if the list is full 57
QO copy first node from super block = > |
into the newly freed block and update superblock 934

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free List

> Why 100 disk pointers in each free block?
= to reduce the number of disk accesses
Q for every 100 times you need to allocate/deallocate a free

block, you only need to go to the disk 1 time (on the average)
& effective allocation/deallocation time is 100 times faster!
= |s the reason also to reduces the length of the free list?

Q no
Q but reducing the length of the free list reduces the

number of disk accesses
& correct, but that’s a secondary effect
& it’s important to be able to distinguish between what’s

primary and what’s secondary effects

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List

1] 1
[4 N 2[1
12 \\3 1
6 \ 4] 0
inode 11 o 1
) 6/ 0
cache

J 7| 1
8| 1
9/ 0
- LS. 10 1
11[0
Super Block 12l
13[0
14 1
15[1

) Inodes (in the i-list) are

marked free (0) or not free (1) I-list
= use a "bitmap" to store this
= no additional organization in the i-list

= the superblock caches free inodes (i.e., in the inode cache) (N\

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List

) - ; 1 boot
= \\3 1 super
6] 4[0
inode 11 o 1 Al
cache 6| 0 [bitmap
~N 7 1
8| 1 data
\ TR 9[0
10| 1
11| 0
Super Block
P 12(0 = can store location of
13| 0 bitmap, # of inodes,
14(1 etc. in super block
. - 15[1 = bitmap can be cached
ﬁ> Inodes (in the i-list) are in me.':,oryfor speed
marked free (0) or not free (1) I-list U

= use a "bitmap" to store this
= nho additional organization in the i-list

= the superblock caches free inodes (i.e., in the inode cache) 3
Sy

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List

_ 11 boot

4 N 2[1
12 \\3 1 super

6 S 4] 0
ingde< 11 5 1 I-list

6 0 | [bitmap |

cache | -5
8 1 data

L 13 N 91 0

10(1

11 0

Super Block 1210

13[0

14 1

15 1

_) The inode cache

= to allocate an inode, simply I-list
mark it not free and remove it from the inode cache

—= to free an inode, simply mark it free and add to the inode
cache if there is room / (5!,)_

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List: Allocation - Case (1)

1

([4 N 2

12 \\3

6 3 4

inode 11 S

) 6
cache

J 7

8

9

L 13 N 10

11

Super Block 12

13

14

15

) lf the inode cache is not empty ..[.

= mark an inode not free and
remove it from the inode cache
Q eXx: need a free inode

Copyright © William C. Cheng

-l |lololo|=|O|l=|=|O|l=|O|=]|=]|—

I-list

boot
super

I-list
| bitmaE

data

Operating Systems - CSCI 402

S5FS Free Inode List: Allocation - Case (1)

13
[P 4 2 1
12 \ 3| 1
6 3 nE
inode 11 o 1
cache< oL
. 71
8| 1
o[0
13
- > 10[1
11[0
Super Block 12l
13[0
141
_ _ 15[
) lf the inode cache is not empty ..[.

= mark an inode not free and I-list
remove it from the inode cache
Q eX: nheed a free inode
<& inode 4 is now allocated (i.e., not free)

Copyright © William C. Cheng

boot
super

I-list
| bitmaE

data

Operating Systems - CSCI 402

S5FS Free Inode List: Allocation - Case (2)

_ X ; 1 boot
3 a3 super
4 K
inode | X S 1 HAls
cache oL | [bitmep |
% 7[
g 1 data
- » 10[1
11[1
Super Block 1203
13[1
14[1
_ _ 15[1
_) lf the inode cache is empty

= scah the i-list to refill it I-list
Q to help out with the scan, the super block keeps the first free
inode in the i-list ("low water mark™)

% need to maintain this entry when necessary 3
B2y

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List: Deallocation - Case (1)

_ % ; 1 boot
» K super
6 \ 4] 1
inode _ 11 \5 ! Hist
cache g ? L bitmap_
8| 1 data
L 13 N 91 0
10(1
11[0
Super Block 1207
13[0
14[1
15[1
_) lf the inode cache is not full [
= add inode number to inode cache I-list
= Update bitmap to indicate that the inode is how free
= update "low water mark"” in super block if necessary
Q ex: free inode 8 gy

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List: Deallocation - Case (1)

_ 11 boot
8 2| 1
% K super
6 J 4] 1
inode) 11 5[1 I-list
cache g S | [oitmap
8 0 data
L 13 N 91 0
10(1
11{ 0
Super Block 127
13[0
14(1
15(1
_) lf the inode cache is not full [
= add inode number to inode cache I-list
= update bitmap to indicate that the inode is how free
= update "low water mark"” in super block if necessary
Q ex: free inode 8 gy

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Free Inode List: Deallocation - Case (2)

_ 11 boot
4 J 2[4
12 \\3 1 SHel
6 R 4]0
inode | 11 o 1 Hlist
6(0 | [bitmap |
cache | 13
8| 1 data
L 13 N 91 0
10[1
110
Super Block 12l
13[0
14] 1
15[1
ﬁ> If the inode cache is full

= no need to modify inode cache I-list
= update bitmap to indicate that the inode is how free
= update "low water mark"” in super block if necessary

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Summary

_) To create a file
= get a free inode
Q update i-list, inode cache, and "low water mark"

) First write to a file
= get a free block
Q update free list

) More writes to the file
= may need to get a free block and update free list

) To delete a file
= add disk block(s) to free list
= mark inode free in i-list, update inode cache and "low water mark"

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Summary

ﬁ} In designing a file system, one tries to minimize the number of
disk operations
= read vs. write
= sequential access vs. random access
Q S5FS gives O(1) number of disk operations for random access

inode

—]

e

Copyright © William C. Cheng

Operating Systems - CSCI 402

6.1 The Basics of
File Systems

_)> UNIX’s S5FS
_) Disk Architecture
_) Problems with S5FS

) Improving Performance

Copyright © William C. Cheng

Operating Systems - CSCI 402

Disk Architecture

) How do you get to a particular Sector

byte of data on the disk? _----""~~ "~ "~-- -
= what does a disk look 1) Track
like? s -7
Disk heads ' '
(on top and bottom : ‘0
of each platter) | "
. @

~~— ——’
e mm mm mm = =

) Clearly, this looks nothing like the S5FS layout
= or any logical file system layout
Copyright © William C. Cheng

<

&

Operating Systems - CSCI 402

Disk Architecture

Sector

.- == ~
ad \\
I i TraCK
S 7
I \\ ’/

Disk heads '

(on top and bottom : "0
of each platter) ,

N

<

~~— ——’
e mm mm mm = =

ﬁ} Smallest addressable unit is a sector

— disk address = (head/surface#, cylinder/track#, sector#)
Copyright © William C. Cheng

24

Rhinopias Disk Drive

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes
Sectors/track 500-1000; 750 average
Tracks/surface 100,000

Storage capacity

307.2 billion bytes

Average seek time

4 milliseconds

One-track seek time

.2 milliseconds

Maximum seek time

10 milliseconds

ﬁ> Disk access time: time to copy a sector from disk to controller
= gccess time = seek time + rotational latency + data transfer time
Q some people would use the term "response time" to mean

"access time'', but we should avoid the use of the term

"response time"
Copyright © William C. Cheng

25

Operating Systems - CSCI 402

B

Operating Systems - CSCI 402

Ch 7: Memory Management

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

