
if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child
 process */
 close(1);
 close(2);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 exit(1);
 }
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 exit(1);
 }
 execl("/home/bc/bin/program", "program", 0);
 exit(1);
}
/* parent continues here */

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirecting Output ... Twice

stdout and stderr both go into the same file

would it cause any problem?

Every call to open() creates a new entry in the system file table

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output

Kernel address space

File-descriptor
table (per process)

Child’s

address space

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
execl(...)

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output

Kernel address space

File-descriptor
table (per process)

Child’s

address space

1 WRONLY 0
inode

pointerFile descriptor 1

ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
execl(...)

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output

Kernel address space

1 WRONLY 0
inode

pointer

File-descriptor
table (per process)

Child’s

address space

File descriptor 2

1 WRONLY 0
inode

pointerFile descriptor 1

ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
execl(...)

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output

Kernel address space

1 WRONLY 0
inode

pointer

File-descriptor
table (per process)

Child’s new

address space

1 WRONLY 0
inode

pointer

ref mode loc inode

remember, extended address space survives execs

File descriptor 2

File descriptor 1

let’s say we write 100 bytes to stdout

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output After Writing 100 Bytes

Kernel address space

1 WRONLY 0
inode

pointer

File-descriptor
table (per process)

Child’s new

address space

File descriptor 2

1 WRONLY 100
inode

pointerFile descriptor 1

write() to fd=2 will wipe out data in the first 100 bytes

that may not be the intent

ref mode loc inode

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing Context Information

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child
 process */
 close(1);
 close(2);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 exit(1);
 }
 dup(1);
 execl("/home/bc/bin/program", "program", 0);
 exit(1);
}
/* parent continues here */

use the dup() system call to share context information

if that’s what you want

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space
...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup(1);
...

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space

1 WRONLY 0
inode

pointer

File descriptor 1 ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup(1);
...

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space

File descriptor 2

2 WRONLY 0
inode

pointer

File descriptor 1 ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup(1);
...

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space

File descriptor 2

2 WRONLY 0
inode

pointer

File descriptor 1 ref mode loc inode

There is also a dup2() system call

...
close(1);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup2(1, 2);
...

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and File Descriptors

int logfile = open("log", O_WRONLY);
if (fork() == 0) {
 /* child process computes something, then does: */
 write(logfile, LogEntry, strlen(LogEntry));
 ...
 exit(0);
}
/* parent process computes something, then does: */
write(logfile, LogEntry, strlen(LogEntry));
...

remember, extended address space survives execs

also fork()

It would be useful to be able to share file context information with

a child process

when fork() is called, the child process gets a copy of the

parent’s file descriptor table

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Descriptors After Fork

Kernel address space

Parent’s

address space

parent and child processes get separate file descriptor

table but share extended address space

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Descriptors After Fork

Kernel address space

Parent’s

address space

1 WRONLY 0
inode

pointer

logfile

parent and child processes get separate file descriptor

table but share extended address space

ref mode loc inode

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Descriptors After Fork

Kernel address space

Parent’s

address space

2 WRONLY 0
inode

pointer

logfile

Child’s

address space

logfile

parent and child processes get separate file descriptor

table but share extended address space indirectly

ref mode loc inode

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Descriptors After Fork

Kernel address space

Parent’s

address space

2 WRONLY 0
inode

pointer

logfile

Child’s

address space

logfile

parent and child processes can communicate using such a

shared file descriptor, although difficult to synchronize

ref mode loc inode

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

the sending process behaves as if it has a file descriptor to a

file that has been opened for writing

A pipe is a means for one process to send data to another

directly, as if it were writing to a file

sender
process

receiver
process

the receiving process behaves as if it has a file descriptor to a

file that has been opened for reading

The pipe() system call creates a pipe object in the kernel and

returns (via an output parameter) the two file descriptors that

refer to the pipe

one, set for write-only, refers to the input side

the other, set for read-only, refers to the output side

a pipe has no name, cannot be passed to another process

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

int p[2]; // array to hold pipe’s file descriptors
pipe(p); // creates a pipe, assume no errors
 // p[0] refers to the read/output end of the pipe
 // p[1] refers to the write/input end of the pipe
if (fork() == 0) {
 char buf[80];
 close(p[1]); // not needed by the child
 while (read(p[0], buf, 80) > 0) {
 // use data obtained from parent
 ...
 }
 exit(0); // child done
} else {
 char buf[80];
 close(p[0]); // not needed by the parent
 for (;;) {
 // prepare data for child
 ...
 write(p[1], buf, 80);
 }
}

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

parent creates a pipe object in the kernel

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

p[0]

parent creates a pipe object in the kernel

p[1]

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

p[0]
p[1]

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

parent and child processes get separate file descriptor

tables but share extended address space

p[1]

(read)
(write)

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

child closes the write-end of the pipe

p[0]
p[1]

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

p[1]

(read)
(write)

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

child closes the write-end of the pipe

parent closes the read-end of the pipe

p[0]
p[1]

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

p[1]

(read)
(write)

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

child closes the write-end of the pipe

parent closes the read-end of the pipe

p[0]
p[1]

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

p[1]
(write)

(read)

(read)

(write)
int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Command Shell

execute a command

the shell needs to create a pipe

Now you know enough to write a command shell

redirect I/O

pipe the output of one program to another

cat f0 | ./warmup1 sort

close the read-end of the pipe

create two child processes

in the first child

in the 2nd child

have stdout go to the write-end of the pipe

close the write-end of the pipe

have stdin come from the read-end of the pipe

exec "cat f0"

exec "./warmup1 sort"

run a program in the background

primes 1000000 > primes.out &

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Random Access In Sequential I/O

"man lseek" gives

fd = open("textfile", O_RDONLY);
// go to last char in file
fptr = lseek(fd, (off_t)(-1), SEEK_END);
while (fptr != -1) {
 read(fd, buf, 1);
 write(1, buf, 1);
 fptr = lseek(fd, (off_t)(-2), SEEK_CUR);
}

off_t lseek(int fd, off_t offset, int whence);
whence can be SEEK_SET, SEEK_CUR, SEEK_END

if succeeds, returns cursor position (always measured from

the beginning of the file)

otherwise, returns (-1)

errno is set to indicate the error

read(fd,buf,1) advances the cursor position by 1, so

we need to move the cursor position back 2 positions

