Operating Systems - CSCI 402

Redirecting Output ... Twice

ﬁ} Every call to open () creates a new entry in the system file table

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child
process */
close(1l);
close (2);

if (open("/home/bc/Output", O_WRONLY) == -1) {
exit (1) ;

}

if (open("/home/bc/Output", O_WRONLY) == -1) {
exit (1) ;

}

execl ("/home/bc/bin/program", "program", 0);
exit (1) ;
}

/* parent continues here */

—= stdout and stderr both go into the same file
Q would it cause any problem?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Redirected Output

File-descriptor
table (per process)
X
X
-
c.:]..;se (1);
. close(2);
Chl'd’S -> if (open (
"/home/bc/Output",
address space O_WRONLY) == -1) {
exit (1);
}
if (open (
"/home/bc/Output",
O_WRONLY) == -1) {
exit(1l);
Kernel address space }
execl(...)
-

Copyright © William C. Cheng

Operating Systems - CSCI 402

Redirected Output

ref mode loc inode

File-descriptor

inode
File descriptor 1 ﬁ table (per proceSS)I> 1 WRONLY | 0 pointer

~—>
X

close(1);

close(2);

Ch“d’S if (open (

"/home/bc/Output",

address space O_WRONLY) == -1) {
exit(1);

}

==jpr if (open (
"/home/bc/Output",
O_WRONLY) == -1) {

exit (1) ;

Kernel address space }

execl(...)

L

Copyright © William C. Cheng

Operating Systems - CSCI 402

Redirected Output

ref mode loc inode
File-descriptor inode
File descriptor 1 ﬁ table (per proceSS)I> 1 WRONLY | 0 pointer
\»
/—_>
File descriptor 2—J \» 1 | WRONLY | o | 'node
pointer
-
c.:]..;se (1) ;
] close (2);
Chl'd’S if (open (
"/home/bc/Output",
address space O_WRONLY) == -1) {
exit (1);
}
if (open (
"/home/bc/Output",
O_WRONLY) == -1) {
exit (1) ;
Kernel address space }

-ﬁ execl(...)

Copyright © William C. Cheng

Redirected Output

Operating Systems - CSCI 402

File descriptor 1 ﬁ
File descriptor 2 —J

Child’s new
address space

[

\

File-descriptor
table (per proces

)

h»
——>

.

ref mode loc inode
inode

1 WRONLY 0 pointer
inode

1 WRONLY 0 pointer

Kernel addres

s space

= remember, extended address space survives execs
= let’'s say we write 100 bytes to stdout

Copyright © William C. Cheng

Redirected Output After Writing 100 Bytes

Operating Systems - CSCI 402

File descriptor 1 ﬁ
File descriptor 2 —J

Child’s new

[

\

address space

File-descriptor

table (per process)f>

i ~__

ref mode loc inode
inode

1 WRONLY | 100 pointer
inode

1 WRONLY 0 pointer

Kernel address space

—= write () to fd=2 will wipe out data in the first 100 bytes
Q that may not be the intent

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sharing Context Information

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child
process */
close(1l);
close (2);

if (open("/home/bc/Output”", O_WRONLY) == -1) {
exit (1) ;

}

dup (1) ;

execl ("/home/bec/bin/program", "program", O0);

exit (1) ;

}

/* parent continues here */

= use the dup () system call to share context information
Q if that’s what you want

Copyright © William C. Cheng

Operating Systems - CSCI 402

Redirected Output After Dup

Child’s
address space

Copyright © William C. Cheng

File-descriptor
table (per process)

X
X

Kernel address space

close(1l);

close (2);

= if (open (
"/home/bc/Output",
O_WRONLY) == -1) {

exit (1);

}
dup (1) ;

Operating Systems - CSCI 402

Redirected Output After Dup

File-descriptor
File descriptor 1 . table (per process) ref mode loc inode
T inode
% 1| WRONLY | 0 | Joec,
s -
Child’s
address space PP
if (open (
"/home/bc/Output”,
O_WRONLY) == -1) ({
exit (1);
}
Kernel address space =P dup(1);
.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Redirected Output After Dup

File-descriptor
File descriptor 1 . table (per process) ref mode loc inode
T 2 | wronLy | o | Inode
M pointer
File descriptor 2
s -
Child’s
address space PP
if (open (
"/home/bc/Output",
O_WRONLY) == -1) ({
exit (1);
}
Kernel address space >l dup (1) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Redirected Output After Dup

File-descriptor
File descriptor 1 ﬁ table (per process) ref mode loc inode
~—p inode
J’—’ 2 | WRONLY | 0 pointer
File descriptor 2
- p
Child’s
address space PR
"/home/bc/Output",
O_WRONLY) == -1) {
exit (1);
}
dup2 (1, 2);
Kernel address space
\

) There is also a dup2 () system call
Copyright © William C. Cheng

Operating Systems - CSCI 402

Fork and File Descriptors

ﬁ} It would be useful to be able to share file context information with
a child process
— wWhen fork () is called, the child process gets a copy of the
parent’s file descriptor table

int logfile = open("log", O_WRONLY)

if (fork() == 0) {
/* child process computes something, then does: */
write (logfile, LogEntry, strlen(LogEntry));

é;it(O);
}

/* parent process computes something, then does: */
write(logfile, LogEntry, strlen (LogEntry));

= remember, extended address space survives execs
Q also fork ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Descriptors After Fork

Parent’s
address space

J int logfile = open("log",

O_WRONLY) ;
if (fork() == 0) {
write (logfile, LogEntry,
strlen (LogEntry));

<.a:.::|:.t (0);
}
Kernel address Space write (logfile, LogEntry,

strlen (LogEntry));

L

= parent and child processes get separate file descriptor
By
table but share extended address space Y

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Descriptors After Fork

logfile ——< ref mode loc inode
— inode
1 WRONLY | 0 pointer

Parent’s
address space

r

int logfile = open("log",
O_WRONLY) ;

mf- if (fork() == 0) {

write (logfile, LogEntry,
strlen (LogEntry));

exit (0);

}
Kernel address space write(logfile, LogEntry,
strlen (LogEntry)) ;
.
= parent and child processes get separate file descriptor |
table but share extended address space 1634

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Descriptors After Fork

logfile ——< ref mode loc inode
— inode
2 | WRONLY | 0 | oooe,
Parent’s
address space
i —

logfile -J (

int logfile = open("log",
O_WRONLY) ;

if (fork() == 0) {

Ch i Id ,S write (logfile, LogEntry,

strlen (LogEntry));
address space

<.a:.::|:.t (0);
}
Kernel address Space * write (logfile, LogEntry,

strlen (LogEntry));

L

= parent and child processes get separate file descriptor
table but share extended address space indirectly NN

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Descriptors After Fork

logfile ——< ref mode loc inode
— inode
2 | WRONLY | 0 | oooe,
Parent’s
address space
i —

logfile -J (

int logfile = open("log",
O_WRONLY) ;

if (fork() == 0) {

Ch i Id ,S write (logfile, LogEntry,

strlen (LogEntry));
address space

<.a:.::|:.t (0);
}
Kernel address Space * write (logfile, LogEntry,

strlen (LogEntry));

L

= parent and child processes can communicate using such a :
shared file descriptor, although difficult to synchronize "
Copyright © William C. Cheng

Operating Systems - CSCI 402

Pipes

ﬁ} A pipe is a means for one process to send data to another

directly, as if it were writing to a file

sender O) receiver

process process

= the sending process behaves as if it has a file descriptor to a
file that has been opened for writing

= the receiving process behaves as if it has a file descriptor to a
file that has been opened for reading

ﬁ> The pipe () system call creates a pipe object in the kernel and
returns (via an output parameter) the two file descriptors that
refer to the pipe
= onhe, set for write-only, refers to the input side
= the other, set for read-only, refers to the output side

= a pipe has no name, cannot be passed to another process [//AA\
PIp P P | @’

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pipes

int p[2]; // array to hold pipe’s file descriptors
pipe(p); // creates a pipe, assume no errors

// p[0] refers to the read/output end of the pipe

// P[1l] refers to the write/input end of the pipe
if (fork() == 0) {

char buf[80];

close(p[l]); // not needed by the child

while (read(p[0], buf, 80) > 0) {

// use data obtained from parent

}
exit (0); // child done

} else {
char buf[80];
close(p[0]); // not needed by the parent
for (;;) {
// prepare data for child

Q;ite(p[l], buf, 80);
}
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Parent’s
p

address space _
int p[2];
== pipe (p);
if (fork() == 0) {
close(p[1l]);
while (read(p[O],
buf, 80) > 0) {

}
exit (0);

} else {
close(p[0]);
for (;;) {

write (p[1], buf, 80);

Kernel address space)
}
.

= parent creates a pipe object in the kernel |
)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pipes

— (read) 4—{ b
p[1] ——
Parent’s
-
address space int pl2];
pipe (p);
== if (fork() == 0) {
close(p[1l]);
while (read(p[O],
buf, 80) > 0) {

,
exit (0);

} else {
close(p[0]);
for (;;) {

;;ite(p[ll, buf, 80);
Kernel address space)
}
§
= parent creates a pipe object in the kernel Cl}
(o)

Copyright © William C. Cheng

pP[0] —
p[1] —

Parent’s
address space

Operating Systems - CSCI 402

Child’s
address space

~—\

= parent and child processes get separate file descriptor

|

Yy

(read)

(write)

(read)

napy

r

(write)

JIki

/

Kernel address space

o

L

int p[2];
pipe (p) ;
if (fork() == 0) {
close(p[1]);
while (read(p[O],
buf, 80) > 0) {

}
exit (0);

} else {
close(p[0]);
for (;;) {

write (p[1], buf, 80);
}
}

tables but share extended address space

Copyright © William C. Cheng

B

23

pP[0] —
p[1] —

Parent’s
address space

Operating Systems - CSCI 402

Child’s
address space

~—\

napy

— (read)
'—r_» (erte)

L —P> (read) <

Ve (wie) —

/

-

Kernel address space

r

= child closes the write-end of the pipe

Copyright © William C. Cheng

L

int p[2];
pipe (p);
if (fork() == 0) {
close(p[1l]);
while (read(p[O],
buf, 80) > 0) {

}
exit (0);

} else {
close(p[0]);
for (;;) {

write (p[1], buf, 80);
}
}

Operating Systems - CSCI 402

Pipes

— (r&)
PE?} — T L—™ (write) ﬁj))E
b[] —— -
Parent’s }
address space > (read) - /r s 15
/ (w_'e) [) S
{/ if (fork() == 0) {
close(p[1l]);
p[o]_/ while (read(p[O],
p[1]—/ buf, 80) > 0) {
e
. ’ exit (0);
Chlld S } else {
close(p[0]);
address space for (::) {
v.n':':l:.te(p[ll, buf, 80);
Kernel address space)
}
_
= child closes the write-end of the pipe |
= parent closes the read-end of the pipe 253 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pipes

— (r&)
p{?} —1 f_» (write) \j)
b[] —— - D
Parent’s
address space > (read) - [b ol
{ y’ (w_'e) pipe (p) ;
/ if (fork() == 0) {
close(p[1l]);
p[o]_/ while (read(p[O],
p[1]—/ buf, 80) > 0) {
e
. ’ exit (0);
Chlld S } else {
close(p[0]);
address space for (::) {
v.n'::l:.te(p[ll, buf, 80);
Kernel address space)
}
_
= child closes the write-end of the pipe |
= parent closes the read-end of the pipe 263 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Command Shell

ﬁ} Now you know enough to write a command shell
— execute a command
= redirect 1/0
= pipe the output of one program to another
cat £0 | ./warmupl sort
Q the shell needs to create a pipe
Q create two child processes
Q in the first child
& have stdout go to the write-end of the pipe
& close the read-end of the pipe
&> exec "cat £0"
Q in the 2nd child
& have stdin come from the read-end of the pipe
& close the write-end of the pipe
& exec"./warmupl sort"”
= run a program in the background
primes 1000000 > primes.out &

Copyright © William C. Cheng

Operating Systems - CSCI 402

Random Access In Sequential I1/0

fd = open("textfile", O_RDONLY);
// go to last char in file
fptr = lseek(fd, (off_t) (-1), SEEK_END);
while (fptr != -1) {
read (fd, buf, 1);
write (1, buf, 1);
fptr = lseek(fd, (off_t) (-2), SEEK_CUR);

= "man Iseek" gives
off_t lseek(int £d, off _t offset, int whence);
whence can be SEEK _SET, SEEK _CUR, SEEK _END
if succeeds, returns cursor position (always measured from
the beginning of the file)
Q otherwise, returns (-1)
Q errno is set to indicate the error
= read (£d,buf, 1) advances the cursor position by 1, so |
3

[

[

we need to move the cursor position back 2 positions
Copyright © William C. Cheng

