
5.1.1.3 Scheduler

Activations Model

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Problems With Two-level Model

if there are N kernel threads and if N user threads are blocked

in I/O

no other user threads can make progress

Two-level model does not solve the I/O blocking problem

user-level thread schedulers are not aware of the

kernel-level thread scheduler

it may know the number of kernel threads

Another problem: Priority Inversion

how can the user-level scheduler talk to the kernel-level

scheduler?

it’s possible to have a higher priority user thread scheduled

on a lower priority kernel thread and vice versa

people have tried this, but it’s complicated

Solaris solution basically goes back to one-level model

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model - Variation on
Two-Level Model

in other models, we think of the kernel as providing some

kernel thread contexts

then multiplexing these contexts on processors using the

kernel’s scheduler

The scheduler activations model is radically different from the

other models

in scheduler activations model, we divvy up processors to

processes, and processes determine which threads get to

use these processors

the kernel should supply however many kernel contexts it

finds necessary

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler

User
scheduler

User

Kernel

Kernel scheduler

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

kernel scheduler assigns a processor to the process

Let’s say a process starts up running a single thread

if the thread blocks, the process gives up the processor to

the kernel scheduler

code in user-level library notifies the kernel that it needs

two processors

Suppose the user program creates a new thread and

parallelism is desired

when a processor becomes available, the kernel creates a

new kernel context

the kernel places an upcall to the user-level library,

effectively giving it the processor

the user-level library code assigns this processor to the

new thread

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

User

Kernel

Kernel scheduler

a1 a2 b1 b2

Kernel scheduler does not schedule threads

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

User

Kernel

Kernel scheduler

kernel scheduler does an

upcall to offer processor 1

to user scheduler A

a1 a2 b1 b2

Kernel scheduler does not schedule threads

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

User

Kernel

Kernel scheduler

a1 a2 b1 b2

kernel scheduler does an

upcall to offer processor 1

to user scheduler A

user scheduler A chooses

a1 to run on processor 1

kernel does not choose

threads, just processes

Kernel scheduler does not schedule threads

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

user scheduler B chooses

b1 to run on processor 2

b1a1

kernel scheduler does an

upcall to offer processor 2

to user scheduler B

Kernel scheduler does not schedule threads

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

user scheduler B chooses

b2 to run on processor 3

b1a1

Kernel scheduler does not schedule threads

kernel scheduler makes

another upcall to offer

processor 3 to user

scheduler B

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

processor 1 now

becomes available

b1a1

read()

[blocks]

Kernel scheduler can have various scheduling policies

let’s say that thread a1 calls

read() and blocks in the

kernel

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

user scheduler A chooses

a2 to run on processor 1

b1a1

read()

[blocks]

Kernel scheduler can have various scheduling policies

depending on the kernel’s

policy, kernel scheduler may

offer processor 1 to user

scheduler A

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

e.g., when b1’s quantum

expires, kernel can take

away processor from b1

b1a1

read()

[blocks]

Kernel scheduler can have various scheduling policies

kernel notifies the user

schedulers when resources

are available/unavailable

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model

it has not been adopted by a major OS vendor

it can take many many years to take something in research

and move it into the real world

Scheduler Activations Model seems like a good solution for

two-level models

need to conduct extensive experiments to know about all

the pluses and minuses of a new approach

it may not solve all types of priority inversion problems

4.1 A Simple System

(Monolithic Kernel)

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

Low-level Kernel (will come back to talk about this after Ch 7)

Processes & Threads

Storage Management

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Storage Management

primary storage, i.e., physical memory

What physical "devices" can you use to store data?

secondary storage, i.e., disk-based storage

"directly" addressable (using "one level of indirection")

An application is only aware of virtual memory (it thinks virtual

memory is real memory)

physical memory is not considered a "device"

to store files (i.e., implement the abstraction of "files")

to support virtual memory

applications should not care about how much physical memory

is available to it

there may not be enough physical memory for all processes

the OS makes sure that real primary storage is available

when necessary

e.g., an application can allocate a 1GB block of memory while

the machine only has 256MB of physical memory

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory Map

Program 1

Program 2

Program 3

Disk Disk

Memory

virtual memory map

part hardware, part OS

each program thinks

it has its own full

address space

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Storage Management

using sequential I/O: open(), read(), write(), close()

Two ways for an application to access secondary storage

using block I/O: open(), mmap(), close()

Memory management concerns

mapping virtual addresses to real ones

determining which addresses are valid, i.e., refer to allocated

memory, and which are not

keeping track of which real objects, if any, are mapped into each

range of virtual addresses

deciding what should be kept in primary storage (RAM) and what

to fetch from elsewhere

1)

2)

3)

4)

In reality, the OS is too slow since every virtual address needs

to be resolved

some of the virtual memory mechanisms must be built into

the hardware

in some cases, the hardware is given the complete "map"

(i.e., mapping from virtual to physical address)

in other cases, only a partial map is given to the hardware

in either case, OS needs to provide some map to the hardware

and needs a data structure for the map

Virtual Memory Map (vmmap) data structure in the OS

implements the address space

implements memory-mapped files

page table is part of the virtual memory map (it "maps"

virtual address to physical address)

only user part of the address space needs to be represented

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Concerns

referencing an unresolvable

virtual address causes a

segmentation fault (the OS

will deliver SIGSEG to the

process)

A valid virtual address must be ultimately resolvable by the OS

to a location in the physical memory

if it cannot be resolved, the

virtual address is considered

an invalid virtual address

the default action would be

to terminate the process

e.g., virtual address 0

A page fault is not a segmentation

fault if it can be resolved

-

Start Access Physical Addr

4096

8192

12288

16384

R

-

R

R/W

Page Table

Page

Page

Page

0 - -

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Concerns

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

User Address Space Representation

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

start address, length, access permissions, shared or private

as_region (address space region data structure) contains:

if mapped to a file, pointer to the corresponding file object

recall that there is something

called "address space description"

in a PCB

This is related to Kernel Assignment 3 where you need to

create and manage address spaces / virtual memory maps

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

User Address Space Representation

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

text data+bss heap

a 1GB file that
has been

mapped R/W
and shared

stack

text is marked read-execute and shared

In this example, text and data map portions of the same file

data+bss is marked read-write and private to mean that changes

will be private, i.e., will not affect other processes exec’ed

from the same file

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How OS Makes Virtual Memory Work?

no action by the OS

If a thread access a virtual memory location that’s both in primary

storage and mapped by the hardware’s map

a page fault is occurred and the OS is invoked

If a thread access a virtual memory location that’s not in primary

storage or if the translation is not in the hardware’s map

OS checks the as_region address space data structures to

make sure the reference is valid

if it’s valid, the OS does whatever that’s necessary to

locate or create the object of the reference

find, or if necessary, make room for it in primary storage

if it’s not already there, and put it there

if invalid, it turns into a segmentation fault (or bad page fault)

fix up all the kernel data structures then return from page

fault so that application can retry the memory access

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Storage Management

how is the primary storage managed (in terms of "resource

management")?

Two issues need further discussion

how are the objects managed in secondary storage?

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Is The Primary Storage "Resource" Managed?

application processes

then other subsystem won’t get to run

Who needs primary storage?

OS (e.g., terminal-handling subsystem, communication

subsystem, I/O subsystem, etc.)

If primary storage is managed poorly

one subsystem can use up all the available memory

this can even lead to OS crash when a subsystem uses up all

of physical memory

If there are no mapped files, the solution can be simple

assign each process a fixed amount of primary storage

this way, they won’t compete

but is it fair?

they compete for primary storage

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

In Reality, Have To Deal With Mapped Files

An example to demonstrate a dilemma

one process is using all of its primary storage allocation

it then maps a file into its address space and starts

accessing that file

should the memory that’s needed to buffer this file be

charged against the files subsystem or charged against the

process?

If charged against the files subsystem

if the newly mapped file takes up all the buffer space in the

files subsystem, it’s unfair to other processes

If charged against the process

if other processes are sharing the same file, other processes

are getting a free ride (in terms of memory usage)

even worse, another process may increase the memory

usage of this process (double unfair!)

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

In Reality, Have To Deal With Mapped Files

It’s difficult to be fair

We will discuss some solutions in Ch 7

for now, we use the following solution

give each participant (processes, file subsystem, etc.)

a minimum amount of storage

leave some additional storage available for all to compete

it’s difficult to even define what fair means

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Are Objects Managed In Secondary Storage?

file system independent

on Windows, this is called the "I/O manager"

The file system is usually divided into two parts

on Unix, this is called the "virtual file system (VFS)"

file system dependent

on Windows, this is called the "file system"

on Unix, this is called the "actual file system (AFS)"

Kernel Assignment 2

The file system is used to manage objects in secondary storage

supports the "file abstraction"

e.g., FAT32, NTFS, etc.

e.g., ext2, ext3, ext4, etc.

the term "file system" can mean two different things

how to layout data on secondary storage (data structures on

disk)

1)

how to access those data in data structures (code)2)

The file object / inode forms the boundary between VFS and the

AFS (i.e., points to file-system-dependent stuff)
0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Open-File Data Structures
(per process)
file-descriptor

table
(system-wide)

system file table / file object table

FS-dependent
inode table

ref
count access

file
position

(typo in textbook)

inode
pointer

0
1
2
3
4

n-1

the kernel also maintains system file table (or file object table)

In the kernel, each process has its own file-descriptor table

how can this be done?

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Object

class FileObject {
 unsigned short refcount, access;
 unsigned int file_pos;
 ...
 virtual int create(const char *, int, FileObject **);
 virtual int read(int, void *, int);
 virtual int write(int, const void *, int);
 ...
};

what’s this about C++?

But wait ...

real operating systems are written in C ...

subclasses of file object are the actual file objects

The file object is like an abstract class in C++

checkout the DRIVERS kernel documentation (we skipped

this weenix assignment)

similar trick (polymorphism) used in VFS

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Object in C

typedef struct {
 unsigned short refcount, access;
 unsigned int file_pos;
 ...
 void **file_ops; /* to array of function pointers */
} FileObject;

one function pointer for each operation on a file

A file object uses an array of function pointers

where they point to is (actual) file system dependent

but the (virtual) interface is the same to higher level of the OS

Loose coupling between the actual file system and storage devices

the actual file system is written to talk to the devices also in a

device-independent manner

i.e., using major and minor device numbers to reference

the device and using standard interface provided by

the device driver

this is how C implements C++ polymorphism

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File System Cache

the primary storage holding these blocks might be mapped

into one or more address spaces of processes that have this

file mapped

blocks are available for immediate access by read and

write system calls

Recently used blocks in a file are kept in a file system cache

Fancier data structures in storage system and file system

e.g., hash table can be used to locate file blocks in the cache

More details in Ch 6

use a lot of tricks to make them look and feel fast

Storage devices are slow

disks are particularly slow

maybe keyed by inode number

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

(will skip first 13 slides since they overlap with "A Simple OS"

slides)

The notion of a file is our Unix system’s sole abstraction for this

concept of "someplace outside the process"

it has no output!

Our primes program wasn’t too interesting

cannot even verify that it’s doing the right thing

other program cannot use its result

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Files

modern Unix systems have additional abstractions

how does a process write to someplace outside the process?

abstraction of persistent data storage

Files

means for fetching and storing data outside a process

including disks, another process, keyboard, display, etc.

need to name these different places

hierarchical naming structure

part of a process’s extended address space (i.e., data

structures in kernel space for this process)

shared by all processes running on a computer

Directory system

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Naming Files

although each process can have a different view

by redefining what "root" means for the process

Unix provides a means to restrict a process to a subtree

name space is outside the processes

a user process provides the name of a file to the OS

the OS returns a handle to be used to access the file

after it has verified that the process is allowed access

along the entire path, starting from root

user process uses the handle to read/write the file

avoid access checks

Using a handle to refer to an object managed by the kernel is an

important concept

handles are essentially an extension to the process’s

address space

can even survive execs!

0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The File Abstraction

A file is a simple array of bytes

Files are made larger by writing beyond their current end

Files are named by paths in a naming tree

System calls on files are synchronous

File API

open(), read(), write(), close()

e.g., cat

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Handles (File Descriptors)

int fd;
char buffer[1024];
int count;
if ((fd = open("/home/bc/file", O_RDWR) == -1) {
 // the file couldn’t be opened
 perror("/home/bc/file");
 exit(1);
}
if ((count = read(fd, buffer, 1024)) == -1) {
 // the read failed
 perror("read");
 exit(1);
}
// buffer now contains count bytes read from the file

what is O_RDWR?

what does perror() do?

cursor position in an opened file depends on what

functions/system calls you use

what about C++?

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Standard File Descriptors

main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 (void)write(2, note, strlen(note));
 exit(EXIT_FAILURE);
 }
 return(EXIT_SUCCESS);
}

0 is stdin (by default, the keyboard)

Standard File Descriptors

1 is stdout (by default, the display)

2 is stderr (by default, the display)

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back to Primes

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 if (write(1, prime, nprimes*sizeof(int)) == -1) {
 perror("primes output");
 exit(1);
 }
 return(0);
}

Have our primes program write out the solution, i.e., the primes[]

array

the output is not readable by human

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 for (i=0; i<nprimes; i++) {
 printf("%d\n", prime[i]);
 }
 return(0);
}

will always associate "file" with file descriptor 0 (assuming

that the open succeeds)

Whenever a process requests a new file descriptor, the lowest

numbered file descriptor not already associated with an open

file is selected; thus

#include <fcntl.h>
#include <unistd.h>
...
close(0);
fd = open("file", O_RDONLY);

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation of File Descriptors

0123

81

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Running It

if (fork() == 0) {
 /* set up file descriptor 1 in the child process */
 close(1);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 perror("/home/bc/Output");
 exit(1);
 }
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
 ;

close(1) removes file descriptor 1 from extended address

space

file descriptors are allocated lowest first on open()

new code is same as running

% primes 300 > /home/bc/Output

extended address space survives execs

0123

82

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

I/O Redirection

If ">" weren’t there, the output would go to the display

The ">" parameter in a shell command that instructs the command

shell to redirect the output to the given file

% primes 300 > /home/bc/Output

when the "cat" program reads from file descriptor 0, it would

get the data byes from the file "/home/bc/Output"

Can also redirect input

% cat < /home/bc/Output

0123

83

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-Descriptor Table

it also refers to the process’s current context for that file

includes how the file is to be accesses (how open() was

invoked)

A file descriptor refers not just to a file

cursor position

let’s say a user program opened a file with O_RDONLY

Context information must be maintained by the OS and not

directly by the user program

later on it calls write() using the opened file descriptor

how does the OS knows that it doesn’t have write access?

stores O_RDONLY in context

if the user program can manipulate the context, it can

change O_RDONLY to O_RDWR

therefore, user program must not have access to context!

all it can see is the handle

the handle is an index into an array maintained for the

process in kernel’s address space

ref
count

access
mode

file
location

inode
pointer

File-descriptor
table (per process)

this is yet

another pointer

"cursor"

system file table (system-wide)

0123

84

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-Descriptor Table

Kernel address space

User

address space

0
1
2
3

n-1

File
descriptor

context is not stored directly into the file-descriptor table

one-level of indirection

(per process)
file-descriptor

table
(system-wide)

system file table / file object table

FS-dependent
inode table

ref
count access

file
position

(typo in textbook)

inode
pointer

0
1
2
3
4

n-1

We will focus on VFS in Ch 1

0123

85

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VFS vs. AFS

We now know more about the "inode pointer"...

AFS will be covered in Ch 6

0123

86

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

0123

87

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

trap

0123

88

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

trap

check

access

rights...

file obj

0123

89

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

trap

fd

setup

polymorphic

function pointers

at various levels

file obj

0123

90

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

fd

file obj

0123

91

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

fd

file obj

0123

92

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

file obj

0123

93

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

trap

file obj

0123

94

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

≤ 100 bytes

file obj

0123

95

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()
close()

file obj

0123

96

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

trap

close()

0123

97

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

read()
close()

file obj

file obj

0123

98

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

int fd;

fd = open("foo.txt");

char buf[512];

read(fd, buf, 100);

close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

read()
close()

file object not

deallocated if

ref count > 0

