Operating Systems - CSCI 402

5.1.1.3 Scheduler
Activations Model

Copyright © William C. Cheng

Operating Systems - CSCI 402

Problems With Two-level Model

ﬁ} Two-level model does not solve the 1/0 blocking problem
= if there are N kernel threads and if N user threads are blocked
in /O
Q no other user threads can make progress
Q Solaris solution basically goes back to one-level model

) Another problem: Priority Inversion

— user-level thread schedulers are not aware of the
kernel-level thread scheduler
Q it may know the number of kernel threads

= how can the user-level scheduler talk to the kernel-level
scheduler?
Q people have tried this, but it’'s complicated

= [t’s possible to have a higher priority user thread scheduled
on a lower priority kernel thread and vice versa

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model - Variation on
Two-Level Model

ﬁ} The scheduler activations model is radically different from the
other models
= in other models, we think of the kernel as providing some
kernel thread contexts
Q then multiplexing these contexts on processors using the
kernel’s scheduler
= in scheduler activations model, we divvy up processors to
processes, and processes determine which threads get to
use these processors
Q the kernel should supply however many kernel contexts it
finds necessary

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

BRRED P00

User
Kernel

SO

®

43

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

ﬁ} Let’s say a process starts up running a single thread
= kernel scheduler assigns a processor to the process
= if the thread blocks, the process gives up the processor to
the kernel scheduler

ﬁ> Suppose the user program creates a new thread and
parallelism is desired
= code in user-level library notifies the kernel that it needs
two processors
—= when a processor becomes available, the kernel creates a
new kernel context
Q the kernel places an upcall to the user-level library,
effectively giving it the processor
Q the user-level library code assigns this processor to the
new thread

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

User User
scheduler A scheduler B

User
Kernel

[Kernel scheduler]

SOV

ﬁ> Kernel scheduler does not schedule threads 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

|

User
scheduler A

ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng

D

|

User
scheduler B

|

r

[Kernel scheduler

SOV

kernel scheduler does an
upcall to offer processor 1

to user scheduler A

Operating Systems - CSCI 402

Scheduler Activations Model Example

T> D D
User \ User
scheduler A scheduler B

()
kernel scheduler does an

n upcall to offer processor 1

. to user scheduler A

5 = user scheduler A chooses
[. Kernel scheduler a1 to run on processor 1

= kernel does not choose

threads, just processes
_ J

PP

ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

T} D)2 @

Y 4
User \ S User
scheduler A ’ scheduler B

¥ ’
1 [
i [
1 '} r ~
. ' upcall to offer processor 2
: ,' to user scheduler B
E T = user scheduler B chooses
[. Kernel sc¢heduler b1 to run on processor 2

ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

T})

User -

scheduler ll-_]

User
scheduler B

ﬁ> Kernel scheduler does not schedule threads

Copyright © William C. Cheng

'é

|)
r‘------

N

kernel scheduler makes

another upcall to offer

processor 3 to user

scheduler B

= user scheduler B chooses
b2 to run on processor 3

Operating Systems - CSCI 402

Scheduler Activations Model Example

v
aD @ IS e S e
O" *‘

*
' ‘

User . User .
scheduler A ’ scheduler B !

’ ’
) r
| = -® \d
read () : - ayfm m = .
! _",' let’s say that thread a1 calls
" 7 read () and blocks in the
Y . N kernel
[blocks] L ¥ = processor 1 now
[Kernel scheduler | becomes available
J

ﬁ> Kernel scheduler can have various scheduling policies
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

!
'. . [
User " . User .
scheduler A | | S scheduler B K
I q] S s
l. : . ¢ ‘
read () ! N - gufmm==" .
J—_.'_,'__J depending on the kernel’s
' [,' policy, kernel scheduler may
 / .‘ .' ,' offer processor 1 to user
[blocks] | T T scheduler A
[Kernel scheduler | = user scheduler A chooses

a2 to run on processor 1

ﬁ> Kernel scheduler can have various scheduling policies
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

1 “
|
User . User .
scheduler A| , scheduler B K
[|
] i '0'
[- -
¥ s " = mm=
read () . (———&‘ N
&
' ¢ schedulers when resources
Y ! are available/unavailable
[blocks]

|
¥
[|
[

[|
|
JKernel scheduler

= e.d., when b1’s quantum
expires, kernel can take
away processor from b1

PV

ﬁ> Kernel scheduler can have various scheduling policies

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model

ﬁ} Scheduler Activations Model seems like a good solution for
two-level models
= it has not been adopted by a major OS vendor
Q it can take many many years to take something in research
and move it into the real world
& need to conduct extensive experiments to know about all
the pluses and minuses of a new approach

<& 1t may not solve all types of priority inversion problems

Copyright © William C. Cheng

Operating Systems - CSCI 402

4.1 A Simple System
(Monolithic Kernel)

ﬁ> A Framework for Devices

ﬁ> Low-level Kernel (will come back to talk about this after Ch 7)
_) Processes & Threads

G> Storage Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

Storage Management

ﬁ} What physical "devices" can you use to store data?
= primary storage, i.e., physical memory
Q "directly” addressable (using "one level of indirection")
& physical memory is not considered a "device"
= secondary storage, i.e., disk-based storage
Q to store files (i.e., implement the abstraction of "files")
Q to support virtual memory

ﬁ> An application is only aware of virtual memory (it thinks virtual

memory is real memory)

= applications should not care about how much physical memory
Is available to it

= there may not be enough physical memory for all processes

= the OS makes sure that real primary storage is available
when necessary

= e.(g., an application can allocate a 1GB block of memory while
the machine only has 256MB of physical memory / @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory Map

= virtual memory map
Q part hardware, part OS
Q each program thinks

it has its own full
address space 5534

Copyright © William C. Cheng

Operating Systems - CSCI 402

Storage Management

ﬁ} Two ways for an application to access secondary storage
= using sequential I/O: open (), read (), write (), close ()
= using block I/O: open () , mmap (), close ()

—, Memory management concerns

1) mapping virtual addresses to real ones

2) determining which addresses are valid, i.e., refer to allocated
memory, and which are not

3) keeping track of which real objects, if any, are mapped into each
range of virtual addresses

4) deciding what should be kept in primary storage (RAM) and what
to fetch from elsewhere

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Concerns

ﬁ} In reality, the OS is too slow since every virtual address needs
to be resolved
= some of the virtual memory mechanisms must be built into
the hardware
Q In some cases, the hardware is given the complete "map”
(i.e., mapping from virtual to physical address)
Q 1In other cases, only a partial map is given to the hardware
Q In either case, OS needs to provide some map to the hardware
and needs a data structure for the map
& page table is part of the virtual memory map (it "maps"
virtual address to physical address)

ﬁ> Virtual Memory Map (vmmap) data structure in the OS
= Implements the address space
Q only user part of the address space needs to be represented

= implements memory-mapped files
|
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Concerns
) A valid virtual address must be ultimately resolvable by the OS

to a location in the physical memory

= if It cannot be resolved, the
virtual address is considered
an invalid virtual address

= referencing an unresolvable
virtual address causes a
segmentation fault (the OS
will deliver SIGSEG to the
process)
Q the default action would be

to terminate the process
= e.g., virtual address 0

_) A page faultis not a segmentation
fault if it can be resolved

Copyright © William C. Cheng

Page Table
Access | Physical Addr
R ~
R ,/. \
R~ /
Page
Page

Page

Operating Systems - CSCI 402

User Address Space Representation

recall that there is something
called "address space description”
ina PCB

as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7fffd000-7fffffff
rx, shared rw, private rw, private rw, shared rw, private
file file
object object

ﬁ> as_region (address space region data structure) contains:
= slart address, length, access permissions, shared or private
= if mapped to a file, pointer to the corresponding file object

) This is related to Kernel Assignment 3 where you need to (i\
L
=/

create and manage address spaces / virtual memory maps
Copyright © William C. Cheng

Operating Systems - CSCI 402

User Address Space Representation

a 1GB file that

has been
mapped R/W
and shared
as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7ffd000-7fffffff
rx, shared rw, private rw, private rw, shared rw, private
text data+bss heap stack
file file
object object

ﬁ> In this example, text and data map portions of the same file
= lextis marked read-execute and shared
— data+bss is marked read-write and private to mean that changes
will be private, i.e., will not affect other processes exec’ed

from the same file N
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

How OS Makes Virtual Memory Work?

ﬁ} If a thread access a virtual memory location that’s both in primary
storage and mapped by the hardware’s map
= no action by the OS

ﬁ> If a thread access a virtual memory location that’s not in primary
storage or if the translation is not in the hardware’s map
= a page faultis occurred and the OS is invoked
Q OS checks the as_region address space data structures to
make sure the reference is valid
& ifit’s valid, the OS does whatever that’s necessary to
locate or create the object of the reference
& find, or if necessary, make room for it in primary storage
if it’s not already there, and put it there
& fix up all the kernel data structures then return from page
fault so that application can retry the memory access

Q if invalid, it turns into a segmentation fault (or bad page faul
|
; 50 =

62

Copyright © William C. Cheng

Operating Systems - CSCI 402

Storage Management

_, Two issues need further discussion
= how is the primary storage managed (in terms of ""resource
management")?
= how are the objects managed in secondary storage?

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Is The Primary Storage "Resource"” Managed?

_> Who needs primary storage?
= application processes
= OS (e.g., terminal-handling subsystem, communication
subsystem, I/0O subsystem, etc.)
= they compete for primary storage

) If primary storage is managed poorly
= onhe subsystem can use up all the available memory
Q then other subsystem won’t get to run
Q this can even lead to OS crash when a subsystem uses up all
of physical memory

ﬁ} If there are no mapped files, the solution can be simple
= assign each process a fixed amount of primary storage
Q this way, they won’t compete
Q butis it fair?

Copyright © William C. Cheng

Operating Systems - CSCI 402

In Reality, Have To Deal With Mapped Files

_) An example to demonstrate a dilemma
= ohe process is using all of its primary storage allocation
= It then maps a file into its address space and starts
accessing that file
= should the memory that’s needed to buffer this file be
charged against the files subsystem or charged against the
process?

ﬁ> If charged against the files subsystem
= If the newly mapped file takes up all the buffer space in the
files subsystem, it’s unfair to other processes

) lf charged against the process
= if other processes are sharing the same file, other processes
are getting a free ride (in terms of memory usage)
= even worse, another process may increase the memory
usage of this process (double unfair!)

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

In Reality, Have To Deal With Mapped Files

) It’s difficult to be fair
= jt’s difficult to even define what fair means

—> We will discuss some solutions in Ch 7
= for now, we use the following solution
Q give each participant (processes, file subsystem, etc.)
a minimum amount of storage
Q leave some additional storage available for all to compete

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Are Objects Managed In Secondary Storage?

ﬁ} The file system is used to manage objects in secondary storage
= the term "file system” can mean two different things
1) how to /ayout data on secondary storage (data structures on
disk)
2) how to access those data in data structures (code)

) The file system is usually divided into two parts
= file system independent
Q supports the "file abstraction”
Q on Unix, this is called the "virtual file system (VFS)"
& Kernel Assignment 2
Q on Windows, this is called the "//O manager"
= file system dependent
Q on Unix, this is called the "actual file system (AFS)"
& e.g., ext2, ext3, ext4, etc.
Q on Windows, this is called the "file system”
o e.g., FAT32, NTFS, etc. / @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Open-File Data Structures

(per process)
file-descriptor (system-wide) FS-dependent
table system file table / file object table inode table

N\

A WON=O

.,

n-1

ref file inode

count 4C€C€SS position pointer
(typo in textbook)

ﬁ> In the kernel, each process has its own file-descriptor table
= the kernel also maintains system file table (or file object table)

) The file object / inode forms the boundary between VFS and the

AFS (i.e., points to file-system-dependent stuff) |
= how can this be done? 6834

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Object

ﬁ} The file object is like an abstract class in C++
= sUbclasses of file object are the actual file objects

class FileObject {
unsigned short refcount, access;
unsigned int file_pos;

virtual int create(const char *, int, FileObject *¥*);
virtual int read(int, void *, int);
virtual int write(int, const void *, int);

};

ﬁ} But wait ...

= what’s this about C++?
Q real operating systems are written in C ...
Q checkout the DRIVERS kernel documentation (we skipped
this weenix assignment) |
<& similar trick (polymorphism) used in VFS 3 @

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Objectin C

typedef struct ({
unsigned short refcount, access;
unsigned int file_pos;

void **file ops; /* to array of function pointers */
} FileObject;

_) Afile object uses an array of function pointers
= this is how C implements C++ polymorphism
= ohe function pointer for each operation on a file
= Where they point to is (actual) file system dependent
= but the (virtual) interface is the same to higher level of the OS

ﬁ} Loose coupling between the actual file system and storage devices
— the actual file system is written to talk to the devices also in a
device-independent manner
Q i.e., using major and minor device numbers to reference
the device and using standard interface provided by |
the device driver 2.?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

File System Cache

_) Storage devices are slow
— disks are particularly slow
= use a lot of tricks to make them look and feel fast

ﬁ> Recently used blocks in a file are kept in a file system cache
= the primary storage holding these blocks might be mapped
into one or more address spaces of processes that have this
file mapped
Q blocks are available for immediate access by read and
write system calls

ﬁ> Fancier data structures in storage system and file system
= e.g., hash table can be used to locate file blocks in the cache
QO maybe keyed by inode nhumber

ﬁ} More details in Ch 6

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_,> Managing Processes

_, Loading Program Into Processes

_) Files

= (will skip first 13 slides since they overlap with "A Simple OS"
slides)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Files

> Our primes program wasn’t too interesting
= it has no output!
= cannot even verify that it's doing the right thing
= other program cannot use its resulit
= how does a process write to someplace outside the process?

ﬁ} The notion of a file is our Unix system’s sole abstraction for this
concept of "someplace outside the process"
= modern Unix systems have additional abstractions

_ Files

= abstraction of persistent data storage
—= means for fetching and storing data outside a process
Q including disks, another process, keyboard, display, etc.
Q need to name these different places
<& hierarchical naming structure
Q part of a process’s extended address space (i.e., data |
structures in kernel space for this process) 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Naming Files

) Directory system
= shared by all processes running on a computer
Q although each process can have a different view
Q Unix provides a means to restrict a process to a subtree
& by redefining what "root"” means for the process
— name space is outside the processes
Q a user process provides the name of a file to the OS
Q the OS returns a handle to be used to access the file
& after it has verified that the process is allowed access
along the entire path, starting from root
Q user process uses the handle to read/write the file
& avoid access checks

ﬁ} Using a handle to refer to an object managed by the kernel is an
important concept
— handles are essentially an extension to the process’s

address space 3 @!,}_
=

Q cah even survive execs!
Copyright © William C. Cheng

Operating Systems - CSCI 402

The File Abstraction
_) Afile is a simple array of bytes

ﬁ> Files are made larger by writing beyond their current end
ﬁ> Files are named by paths in a naming tree

) System calls on files are synchronous

) File API

= open (), read (), write (), close()
= e.(J., cat

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Handles (File Descriptors)

int £d;

char buffer[1024];

int count;

if ((fd = open("/home/bc/file", O_RDWR)
// the file couldn’t be opened
perror (" /home/bec/£file") ;
exit (1) ;

-1) {

}

if ((count = read(fd, buffer, 1024)) == -1) {
// the read failed
perror ("read") ;
exit (1) ;

}

// buffer now contains count bytes read from the file

= what is O_ RDWR?

= what does perror () do?

= cursor position in an opened file depends on what
functions/system calls you use |
O what about C++? 3 2?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Standard File Descriptors

_, Standard File Descriptors
= 0 is stdin (by default, the keyboard)
= 1 is stdout (by default, the display)
= 2 is stderr (by default, the display)

main () {
char buf[BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read (0, buf, sizeof(buf))) > 0)
if (write(l, buf, n) !'= n) {
(void)write (2, note, strlen(note));
exit (EXIT_FAILURE);

}
return (EXIT_SUCCESS) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back to Primes

ﬁ} Have our primes program write out the solution, i.e., the primes|[]
array

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}

if (write(l, prime, nprimes*sizeof(int)) == -1) {
perror ("primes output");
exit (1) ;

}

return (0) ;

}

= the output is not readable by human

Copyright © William C. Cheng

Operating Systems - CSCI 402

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}
for (i=0; i<nprimes; i++) {

printf ("%d\n", prime[i]);
}

return (0) ;

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation of File Descriptors

ﬁ} Whenever a process requests a new file descriptor, the lowest
numbered file descriptor not already associated with an open
file is selected; thus

#include <fcntl.h>
#include <unistd.h>

close (0);
fd = open("file", O_RDONLY),;

= will always associate "file" with file descriptor 0 (assuming
that the open succeeds)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Running It

if (fork() == 0) {
/* set up file descriptor 1 in the child process */
close(1l);
if (open("/home/bc/Output”", O_WRONLY) == -1) {
perror (" /home/bc/Output") ;
exit (1) ;
}

execl ("/home/be/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid '= wait (0)) /* ignore the return code */

= close (1) removes file descriptor 1 from extended address

space

file descriptors are allocated /owest first on open ()

extended address space survives execs

new code is same as running |
% primes 300 > /home/bc/Output ﬂgg?

Copyright © William C. Cheng

[

[

[

Operating Systems - CSCI 402

/O Redirection

% primes 300 > /home/bc/Output

ﬁ> The ">" parameter in a shell command that instructs the command
shell to redirect the output to the given file
= [If ">" weren’t there, the output would go to the display

G> Can also redirect input
% cat < /home/bc/Output
—= when the "cat"” program reads from file descriptor 0, it would
get the data byes from the file "/home/bc/Output”

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-Descriptor Table

_) Afile descriptor refers not just to a file
= [t also refers to the process’s current context for that file
Q includes how the file is to be accesses (how open () was
invoked)
Q cursor position

ﬁ} Context information must be maintained by the OS and not

directly by the user program

= |et’s say a user program opened a file with O_RDONLY

= |ater on it calls write () using the opened file descriptor

—= how does the OS knows that it doesn’t have write access?
QO stores O RDONLY in context

= if the user program can manipulate the context, it can
change O _RDONLY to O _ RDWR

= therefore, user program must not have access to context!
Q all it can see is the handle
O the handle is an index into an array maintained for the (/7

process in kernel’s address space
Copyright © William C. Cheng

Operating Systems - CSCI 402

File-Descriptor Table

File-descriptor thLS is yet
table (per process) another pointer
0

"cursor"

File

descriptor
P \» ref access file inode

count | mode |location| pointer

1
2
3
-

User
address space

n-1

system file table (system-wide)

Kernel address space

= context is not stored directly into the file-descriptor table |
Q one-level of indirection 4

Copyright © William C. Cheng

Operating Systems - CSCI 402

VFS vs. AFS

> We now know more about the "inode pointer"...

(per process)
file-descriptor (system-wide) FS-dependent
table system file table / file object table inode table

hne .

~AWON=O

n-1

file inode

e
count 9CC€SS position pointer
(typo in textbook)

> We will focus on VFS in Ch 1
= AFS will be covered in Ch 6

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Copyright © William C. Cheng

()
int £d;
open () = fd = open ("foo.txt");
char buf[512];
read (fd, buf, 100);
close (£d) ;
_ J - -
Applications
OS
4) 4)
Process Files o o o
Subsystem Subsystem
_ J _

Operating Systems - CSCI 402

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read(fd, buf, 100);
close (£d) ;

Applications

open ()
_
trap
()
Process
| Subsystem |

Copyright © William C. Cheng

Files

| Subsystem

Operating Systems - CSCI 402

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read(fd, buf, 100);
close (£d) ;

Applications

open ()
_
trap
()
Process
| Subsystem |

Copyright © William C. Cheng

check
access
rights...

Files

| Subsystem

Operating Systems - CSCI 402

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read (fd, buf, 100);
close (£d) ;

Applications

open ()
_ J
trap
()
Process
| Subsystem |

Copyright © William C. Cheng

e ; h
= setup
—FK polymorphic
_ file obj function pointers
Files e o o -
at various levels
| Subsystem

8;€E§}

Operating Systems - CSCI 402

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read(fd, buf, 100);
close (£d) ;

Applications

Process

| Subsystem |

Copyright © William C. Cheng

de!!!!!—}

file obj

Files

| Subsystem

/

open ()

fd

Operating Systems - CSCI 402

Put It All Together

int £d;

= £d = open("foo.txt");

char buf[512];
read (fd, buf, 100);
close (£d) ;

Applications

Process

| Subsystem |

W

Copyright © William C. Cheng

fd=—+

Files

file obj

| Subsystem }

Operating Systems - CSCI 402

Put It All Together

Copyright © William C. Cheng

()
open () int £d;
read() fd = open("foo.txt");
char buf[512];
= read(fd, buf, 100);
close (£d);
g J . .
Applications
OS
4) 4)
a—=
file obj
Process Files o o o
Subsystem Subsystem
_ J _

Operating Systems - CSCI 402

Put It All Together

trap

int £d;
fd = open("foo.txt");
char buf[512];

= read(fd, buf, 100);

close (£d) ;

Applications

Process

| Subsystem |

Copyright © William C. Cheng

de!!!!!—}

file obj

Files

| Subsystem

/

Operating Systems - CSCI 402

Put It All Together

()
open () int £d;
read() fd = open("foo.txt");
char buf[512];
A = read(fd, buf, 100);
close (£d) ;
k []]
<100 bytes Applications
())
a—='
file obj
Process Files o o o
Subsystem Subsystem
_ J _

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Copyright © William C. Cheng

()
open () i—gt o ("foo.txt")
= open ("foo.txt");
riad() char buf[512];
close () read (fd, buf, 100);
= close (£d) ;
_ J
Applications
OS
() ()
fdgw
file obj
Process Files o o o
Subsystem Subsystem
_ J _

Operating Systems - CSCI 402

Put It All Together

open ()
read ()

close ()

trap

int £d;

fd = open("foo.txt");
char buf[512];

read (fd, buf, 100);

= close (£4) ;

Applications

Process

Copyright © William C. Cheng

| Subsystem |

de!!!!!—}

file obj

Files

| Subsystem

/

Operating Systems - CSCI 402

Put It All Together

int £d;

fd = open("foo.txt");
char buf[512];

read (fd, buf, 100);

= close (£4) ;

Applications

Process

| Subsystem |

Copyright © William C. Cheng

file obj

Files

| Subsystem

/

Operating Systems - CSCI 402

Put It All Together

int £d;

fd = open("foo.txt");
char buf[512];
close () read (fd, buf, 100);
= close (£fd) ;

Applications
0S
= file object not
deallocated if
file obj ref count > 0
Process Files e o o g
| Subsystem | | Subsystem

Copyright © William C. Cheng

