
0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Handling - Overview

Interrupt Handling

Deferred Work
Directed

Processing

Interrupts Threads

Thread

preemption

APCs Signals

only do what you must do inside the interrupt handler

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Work

both when executed in interrupt context or thread context

Interrupt handlers run with interrupts masked (up to its interrupt

priority level)

may interfere with handling of other interrupts

they must run to completion (but may be interrupted by a

higher priority interrupt)

it must complete quickly

What to do if an interrupt handler has a lot of work to be done?

defer most of the work to be done after the interrupt handler

returns

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Work

do minimal work now

Solution

do rest later without interrupts masked

TCP header processing can take a long time

Ex: network packet processing

not suitable to do them in a interrupt handler

How?

Memory

I/O Management

Driver

NIC
DMA

interrupt

Network / TCP hdr data

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

user thread
context

Ex: interrupting a kernel thread

stack allows us to return to previous context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void KeyboardInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

kernel thread
context

user thread
context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void DiskInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

Interrupt #7’s
handler frame

interrupt #3
handler context

kernel thread
context

user thread
context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void NetworkInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

Interrupt #7’s
handler frame

Interrupt #23’s
handler frame

interrupt #3
handler context

kernel thread
context

user thread
context

interrupt #7
handler context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void NetworkInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

Interrupt #7’s
handler frame

interrupt #3
handler context

kernel thread
context

user thread
context

interrupt #7
handler context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void DiskInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

Interrupt #7’s
handler frame

interrupt #3
handler context

kernel thread
context

user thread
context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void DiskInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

interrupt #3
handler context

kernel thread
context

user thread
context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void KeyboardInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

Interrupt #3’s
handler frame

kernel thread
context

user thread
context

Ex: interrupting a kernel thread

stack allows us to return to previous context

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev](); // call appropriate handler
 if (PreviousContext == ThreadContext) {
 UnMaskInterrupts();
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

void KeyboardInterruptHandler() {
 // deal with interrupt
 // do minimal work
 ...
 EnQueue(WorkQueue, MoreWork);
}

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Processing

Current thread’s
kernel stack

Kernel
stack

frames

kernel thread
context

user thread
context

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows Interrupt Priority Levels

hardware

software

High

Power fail

Inter-processor

Clock

.

.

.

Device 2

Device 1

DPC

APC

Thread

31

30

29

28

.

.

.

4

3

2

1

0

Windows handles deferred

work in a special interrupt

context

DPC (deferred procedure

call) is a software interrupt

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deferred Procedure Calls

void InterruptHandler() {

 // deal with interrupt, IPL already ≥ 3

 ...
 QueueDPC(MoreWork);
 /* requests an asynchronous DPC interrupt */
}

void DPCHandler(...) {
 while(!Empty(DPCQueue)) {
 Work = DeQueue(DPCQueue);
 Work();
 }
}

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Software Interrupt Threads

void InterruptHandler() {
 // deal with interrupt
 ...
 EnQueue(WorkQueue, MoreWork);
 SetEvent(Work);
}

void SoftwareInterruptThread() {
 while(TRUE) {
 WaitEvent(Work)
 while(!Empty(WorkQueue)) {
 Work = DeQueue(WorkQueue);
 Work();
 }
 }
}

Linux handles deferred work in a special kernel thread

this kernel thread is scheduled like any other kernel thread

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Preemption

Scheduler

running runnable

OS

INT

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Preemption: User-Level Only

void ClockHandler() {
 // deal with clock
 // interrupt
 ...
 if (TimeSliceOver())
 ShouldReschedule = 1;
}

preempt only threads running in user mode

Non-preemptive kernel

if clock-interrupt happens, just set a global flag

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Preemption: User-Level Only

void TopLevelInterruptHandler(int dev) {
 InterruptVector[dev]();
 if (PreviousMode == UserMode) {
 // the clock interrupted user-mode code
 if (ShouldReschedule)
 Reschedule();
 }
}

Reschedule() puts the

calling thread on the run

queue

then call thread_switch()

to give up the processor

The work of rescheduling is

deferred

void TopLevelTrapHandler(...) {
 SpecificTrapHandler();
 if (ShouldReschedule) {
 /* the time slice expired
 while the thread was
 in kernel mode */
 Reschedule();
 }
}

If interrupted a user thread

If interrupted a kernel thread

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Preemption: Full (i.e., Preemptive Kernel)

void ClockInterruptHandler() {
 // deal with clock interrupt
 if (TimeSliceOver()) {
 QueueDPC(Reschedule);
 /* requests an asynchronous DPC interrupt */
 }
}

preemption can happen for a kernel thread

Preemptive kernel

if clock-interrupt happens, setup the kernel thread to give up the

processor when the processor is about to return to the thread’s

context

e.g., in Windows, add the Reschedule() function to the

DPC queue and invoke a DPC interrupt

how?

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Handling - Overview

Interrupt Handling

Deferred Work
Directed

Processing

Interrupts Threads

Thread

preemption

APCs Signals

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Directed Processing

perform given action in context of a particular thread in

user mode

Signals: Unix

roughly same thing, but also may be done in privileged mode

APC (Asynchronous Procedure Calls): Windows

e.g., <Ctrl+C>

generated by hardware and needs to be delievered to the

user process to invoke a singal handler

provides a general callback mechanism for the kernel and for

user processes

software

2

1

0

DPC

APC

Thread

Windows Interrupt Priority Levels

thus, APC is more general than Unix signals

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler

Basic idea is to set up the user stack so that the handler is

called as a subroutine and so that when it returns, normal

execution of the thread may continue

saving and restoring registers

Complications:

signal mask

must first save all registers and later on restore all of them

must block the signal and later on unblock the signal

therefore, when the signal handler returns, it needs to

return to some code that restores all the registers, unblocks

the signal, then return to the interrupted code

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (1)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

IP

Handler

sighandler(

 int sig) {

 ...

}

User Stack X

Previous
frames

func()
frame

Kernel Stack X

"borrow a thread" means borrow both of its stacks!

find thread X’s kernel stack

User Stack X

Previous
frames

func()
frame

User
Registers

IP

Kernel Stack X

so can return
to user context

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (2)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

Handler

sighandler(

 int sig) {

 ...

}

 signal generation
(e.g., due to

hardware interrupt)

if X is the CurrentThread

when interrupt occurred

the kernel stack below

is X’s kernel stack

will borrow thread

X to deliver SIGINT

find thread X’s kernel stack

User Stack X

Previous
frames

func()
frame

User
Registers

IP

Kernel Stack X

so can return
to user context

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (2)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

Handler

sighandler(

 int sig) {

 ...

}

 signal generation
(e.g., due to

hardware interrupt)

if X is not CurrentThread

thread X is already

sleeping and its kernel

stack looks like this

thread X now has

SIGINT pending

later, when thread X

runs again, since it has

SIGINT pending, it will

be borrowed to deliver

SIGINT

User Stack X

Previous
frames

func()
frame

sigframe

IP sigreturn()

Kernel Stack X

User
Registers

IP

copy

Handler

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (3)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

sighandler(

 int sig) {

 ...

}

save X’s kernel stack contents in "sigframe" in X’s user stack

signal handler executed on X’s user stack

Handler

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (4)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

User Stack X

sighandler(

 int sig) {

 ...

}

IP

sighandler()

frame

Previous
frames

func()
frame

sigframe

IP sigreturn()

Upcall

Kernel Stack X

signal handler executed on X’s user stack when X runs again

Handler

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (4)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

User Stack X

sighandler(

 int sig) {

 ...

}

IP

sighandler()

frame

Previous
frames

func()
frame

sigframe

IP sigreturn()

Upcall

Kernel Stack X

must keep the kernel

stack X empty

if sighandler()

makes a system call,

we are fine!

kernel Stack X will be used since this is a system call by X

Handler

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (5)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

sighandler(

 int sig) {

 ...

}

User Stack X

Previous
frames

func()
frame

sigframe

IP sigreturn()

Kernel Stack X

invoke
sigreturn()

system call
on return from
signal handler

Handler

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (6)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

sighandler(

 int sig) {

 ...

}

User Stack X

Previous
frames

func()
frame

sigframe

IP sigreturn()

Kernel Stack X

User
Registers

IP

copy

copy context back into kernel stack and continue

Handler

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Invoking the Signal Handler (7)

Main Line

func(int a1,

 int a2) {

 int i, j = 2;

 for (i=a1;

 i<a2;

 i++) {

 j = j*2;

 j = j/127;

 ...

 }

}

sighandler(

 int sig) {

 ...

}

IP
User Stack X

Previous
frames

func()
frame

iret

Kernel Stack X

exactly where we were before signal delivery starts

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extra Slides

kernel APC: release of kernel resources

Two uses

user APC: notifying a thread of an external event

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Asynchronous Procedure Calls

interrupt handler cannot free storage for buffer and control

blocks until info passed to process

Release of kernel resources

can’t be done unless in context of process

otherwise address space not mapped in

interrupt handler requests kernel APC to have thread,

running in kernel mode, absorb info in buffer and control

blocks and then free them

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Kernel APC

example: asynchronous I/O

similar to a Unix signal

Notifying thread of external event

thread supplies completion routine when starting

asynchronous I/O request

called in thread’s context when I/O completes

called only when thread is in alertable wait state

an option in certain blocking system calls

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

User APC

on notification, thread executes them

Per-thread list of pending APCs

thread in alertable state is woken up and executes pending

APCs when it returns to user mode

User APC

running thread interrupted by APC interrupt (lowest priority

interrupt)

Kernel APC

waiting thread is "unwaited"

execute pending kernel APCs

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

APC Implementation

