Operating Systems - CSCI 402

Interrupt Handling - Overview

Interrupt Handling

/ Directed

Deferred Work- - - - .
Interrupts Threads | APCs Signals
Thread
preemption

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Work

ﬁ} Interrupt handlers run with interrupts masked (up to its interrupt
priority level)
= both when executed in interrupt context or thread context
= may interfere with handling of other interrupts
= they must run to completion (but may be interrupted by a
higher priority interrupt)
Q it must complete quickly

ﬁ> What to do if an interrupt handler has a lot of work to be done?
= ohly do what you must do inside the interrupt handler
= defer most of the work to be done after the interrupt handler

returns

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Work

) Ex: network packet processing
= TCP header processing can take a long time
Q not suitable to do them in a interrupt handler

) Solution f]
= do minimal work now Memory

= do rest later without interrupts masked

|:> How? e
I/0 Management

(Network / TCP [nar[data] |

- interrupt
k (. Driver Jererwet

N— _/

NIC

DMA

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevellInterruptHandler (int dev) {
InterruptVector|[dev] (); // call appropriate handler
if (PreviousContext == ThreadContext) {

UnMaskInterrupts();
while (!Empty (WorkQueue)) ({
Work = DeQueue (WorkQueue) ;
Work () ;
}
}
}
Eﬁzgﬁl user thread
frames context
<!
]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |
= stack allows us to return to previous context 3 @J
7

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevelInterruptHandler (int dev) {
=P InterruptVector[dev] (); // call appropriate handler
if (PreviousContext == ThreadContext) {
UnMaskInterrupts();
while (!Empty (WorkQueue)) {
Work = DeQueue (WorkQueue) ;
Work () ;

A

void KeyboardInterruptHandler () ({
// deal with interrupt Interrupt #3’s kerr;el :hread
// do minimal work handler frame :jn ex
g Kernel
EnQueue (WorkQueue, MoreWork); stack user thread

} frames :j"te"t

]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |

— stack allows us to return to previous context 33 |.’

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevellInterruptHandler (int dev) {

=P InterruptVector[dev] (); // call appropriate handler
if (PreviousContext == ThreadContext) {
UnMaskInterrupts();
while (!Empty (WorkQueue)) ({
Work = DeQueue (WorkQueue) ;

Work () ;
} T
}
} Interrupt #7’s | interrupt #3
handler frame | handler context
<

void DiskInterruptHandler () ({
Interrupt #3’s | kernel thread

// deal with interrupt ot
// do minimal work stElelEtr L e :j" ex
- Kernel
EnQueue (WorkQueue, MoreWork); stack user thread

} frames :j"te’(t

]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |

— stack allows us to return to previous context 93 |.’

Copyright © William C. Cheng

Deferred Processing

void ToplevellInterruptHandler (int dev) {

= InterruptVector[dev] () ;

if (PreviousContext == ThreadContext) {

UnMaskInterrupts();

while (!Empty (WorkQueue)) ({
Work = DeQueue (WorkQueue) ;
Work () ;

void NetworkInterruptHandler () ({
// deal with interrupt
// do minimal work

EnQueue (WorkQueue, MoreWork);

}

) Ex:interrupting a kernel thread

Operating Systems - CSCI 402

// call appropriate handler

T

Interrupt #23’s
handler frame

interrupt #7
handler context

<

Interrupt #7°s
handler frame

interrupt #3
handler context

<]

Interrupt #3’s
handler frame

kernel thread
context

.

Kernel
stack
frames

user thread
context

Current thread’s

kernel stack

— stack allows us to return to previous context

Copyright © William C. Cheng

Deferred Processing

void ToplevellInterruptHandler (int dev) {

InterruptVector|[dev] () ;

= if (PreviousContext == ThreadContext) {

UnMaskInterrupts();
while (!Empty (WorkQueue)) ({
Work = DeQueue (WorkQueue) ;

Work () ;

void NetworkInterruptHandler () ({
// deal with interrupt
// do minimal work

EnQueue (WorkQueue, MoreWork);

}

) Ex:interrupting a kernel thread

Operating Systems - CSCI 402

// call appropriate handler

interrupt #7
T handler context
Interrupt #7°s | interrupt #3
handler frame | handler context
Interrupt #3’s | kernel thread
handler frame | context
Kernel
stack user thread
frames context

Current thread’s
kernel stack

— stack allows us to return to previous context

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevellInterruptHandler (int dev) {

=P InterruptVector[dev] (); // call appropriate handler
if (PreviousContext == ThreadContext) {
UnMaskInterrupts();
while (!Empty (WorkQueue)) ({
Work = DeQueue (WorkQueue) ;

Work () ;
} T
}
} Interrupt #7’s | interrupt #3
handler frame | handler context
<

void DiskInterruptHandler () ({
Interrupt #3’s | kernel thread

// deal with interrupt ot
// do minimal work stElelEtr L e :j" ex
- Kernel
EnQueue (WorkQueue, MoreWork); stack user thread

} frames :j"te’(t

]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |

— stack allows us to return to previous context 123 |.’

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevellInterruptHandler (int dev) {
InterruptVector|[dev] (); // call appropriate handler
= if (PreviousContext == ThreadContext) {

UnMaskInterrupts();
while (!Empty (WorkQueue)) {
Work = DeQueue (WorkQueue) ;
Work () ;
}
}
} interrupt #3
T handler context
void DiskInterruptHandler () ({ : g
// deal with interrupt Interrupt #3’s ke";e' :hread
// do minimal work stElelEtr L e :jn ex
C e Kernel
EnQueue (WorkQueue, MoreWork) ; stack user thread
} frames :j"te’(t
]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |
= stack allows us to return to previous context 3 @J
13

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevelInterruptHandler (int dev) {
=P InterruptVector[dev] (); // call appropriate handler
if (PreviousContext == ThreadContext) {
UnMaskInterrupts();
while (!Empty (WorkQueue)) {
Work = DeQueue (WorkQueue) ;
Work () ;

A

void KeyboardInterruptHandler () ({
// deal with interrupt Interrupt #3’s kerr;el :hread
// do minimal work handler frame :jn ex
g Kernel
EnQueue (WorkQueue, MoreWork); stack user thread

} frames :j"te"t

]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |

— stack allows us to return to previous context 143 |.’

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deferred Processing

void ToplevellInterruptHandler (int dev) {
InterruptVector[dev] (); // call appropriate handler
= if (PreviousContext == ThreadContext) {
UnMaskInterrupts();
while (!Empty (WorkQueue)) {
Work = DeQueue (WorkQueue) ;
Work () ;

void KeyboardInterruptHandler () ({
// deal with interrupt T kernel thread

// do minimal work :jntext
o Kernel
EnQueue (WorkQueue, MoreWork); stack user thread
} frames :j"te"t
]] Current thread’s
) Ex:interrupting a kernel thread kernel stack |
— stack allows us to return to previous context 153 |.’

Copyright © William C. Cheng

Windows Interrupt Priority Levels

hardware A

software -~

Copyright © William C. Cheng

.

Operating Systems - CSCI 402

r

31 High

30 Power fail

29 Inter-processor
28 Clock

4 Device 2

3 Device 1

2 DPC

1 APC

0 Thread

Windows handles deferred

work in a special interrupt

context

= DPC (deferred procedure
call) is a software interrupt

J

Operating Systems - CSCI 402

Deferred Procedure Calls

void InterruptHandler() {
// deal with interrupt, IPL already = 3

QueueDPC (MoreWork) ;
/* requests an asynchronous DPC interrupt */

}

void DPCHandler(...) {
while (!Empty (DPCQueue)) {
Work = DeQueue (DPCQueue) ;
Work () ;

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Software Interrupt Threads

ﬁ} Linux handles deferred work in a special kernel thread
= this kernel thread is scheduled like any other kernel thread

void InterruptHandler() {
// deal with interrupt

EnQueue (WorkQueue, MoreWork) ;
SetEvent (Work) ;

}

void SoftwareInterruptThread() {
while (TRUE) {
WaitEvent (Work)
while (!Empty (WorkQueue)) ({
Work = DeQueue (WorkQueue) ;
Work () ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Preemption

Pers

running unnable

OS

Scheduler

Copyright © William C. Cheng

Operating Systems - CSCI 402

Preemption: User-Level Only

> Non-preemptive kernel
—= preempt only threads running in user mode

= if clock-interrupt happens, just set a global flag

void ClockHandler() {
// deal with clock
// interrupt

if (TimeSliceOver())
ShouldReschedule = 1;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Preemption: User-Level Only

_) lf interrupted a user thread

void ToplevellInterruptHandler (int dev) {
InterruptVector[dev] () ;

if (PreviousMode == UserMode) {
// the clock interrupted user—-mode code
if (ShouldReschedule) f R
Reschedule () ; Reschedule () puts the
y ’ calling thread on the run
y queue
= then call thread_switch ()
ﬁ} If interrupted a kernel thread to give up the pracesson
_ J
void TopLevelTrapHandler(...) {
SpecificTrapHandler () ; d I
if (ShouldReschedule) ({ The work of rescheduling is
. . . deferred
/* the time slice expired keene)

while the thread was
in kernel mode */
Reschedule() ;

}
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Preemption: Full (i.e., Preemptive Kernel)

_) Preemptive kernel
— preemption can happen for a kernel thread
= if clock-interrupt happens, setup the kernel thread to give up the
processor when the processor is about to return to the thread’s

context
= how?
Q e.d., in Windows, add the Reschedule () function to the
DPC queue and invoke a DPC interrupt

void ClockInterruptHandler() {
// deal with clock interrupt
if (TimeSliceOver()) {
QueueDPC (Reschedule) ;
/* requests an asynchronous DPC interrupt */

}
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Handling - Overview

Interrupt Handling

/ Directed

Deferred Work - - - -, .
Interrupts Threads | APCs Signals
Thread
preemption

Copyright © William C. Cheng

Operating Systems - CSCI 402

Directed Processing

ﬁ} Signals: Unix
= perform given action in context of a particular thread in
user mode
= e.g., <Ctrl+C>
Q generated by hardware and needs to be delievered to the
user process to invoke a singal handler

ﬁ} APC (Asynchronous Procedure Calls): Windows
= roughly same thing, but also may be done in privileged mode
Q provides a general callback mechanism for the kernel and for
user processes
<& thus, APC is more general than Unix signals

(|2 [ppc
software § |1 APC
_ |0 Thread
Windows Interrupt Priority Levels 243

Copyright © William C. Cheng

Operating Systems - CSCI 402

Invoking the Signal Handler

ﬁ} Basic idea is to set up the user stack so that the handler is
called as a subroutine and so that when it returns, normal
execution of the thread may continue

ﬁ> Complications:
= saving and restoring registers
Q must first save all registers and later on restore all of them
= signal mask
Q must block the signal and later on unblock the signal
= therefore, when the signal handler returns, it needs to
return to some code that restores all the registers, unblocks
the signal, then return to the interrupted code

Copyright © William C. Cheng

Operating Systems - CSCI 402

Invoking the Signal Handler (1)

Main Line
func (int al,
int a2) {
int i, j = 2; T
for (i=al;
i<a2; sl
_ frame
i++) {
j = §*2; Previous
J = §/127; o frames
4__
- User Stack X
}
Handler
sighandler (
int sig) {
}
Kernel Stack X
= "borrow a thread" means borrow both of its stacks! ; }5!’}—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Invoking the Signal Handler (2)

Main Line
-
SEEE (s By if X is the CurrentThread
int a2) { .
: . A T when interrupt occurred
int i, j = 2;
for (i=al; = the kernel stack below
i<a2; ffunc () is X’s kernel stack
itt) | rame | = will borrow thread
J = j*2; Previou X to deliver SIGINT
3 = 3/127; | signal generation UL
. <. .~ (e.g. dueto User Stack X
} } hardware interrupt)
Handler T
~
sighandler (IP
int sig) { SO can return
50 c User to user context
} Registers)
Kernel Stack X
.] I
= find thread X’s kernel stack s(169) 3=
0

Copyright © William C. Cheng

Operating Systems - CSCI 402

Invoking the Signal Handler (2)

Main Line
func (int al,
int a2) {
int i, j = 2;
for (i=al;
i<az2;
i++) {
J = J*2;
j = 3/127;

4-\

Handler

sighandler (
int sig) {

sighal generation
(e.g., due to
hardware interrupt)

r

T

func ()
frame

Previou:
frames

User Stac

if X is not CurrentThread

= thread X is already
sleeping and its kernel
stack looks like this

= thread X now has
SIGINT pending

= later, when thread X
runs again, since it has
SIGINT pending, it will
be borrowed to deliver
SIGINT

IP

= find thread X’s kernel stack

Copyright © William C. Cheng

User
Registers

SO can return
to user context

Kernel Stack)(

Operating Systems - CSCI 402

Invoking the Signal Handler (3)

Main Line

func (int al,
int a2) {
int i, j = 2;
for (i=al;

b - .
—
—

IP sigreturn()

sigframe

func ()
frame

Previous
frames

\
|
|
1

User Stack X copy

IP

i<az2;
i++) {
J = j*2;
j = 3/127;
}
}
Handler
sighandler (-
int sig) {

User
Registers

Kernel Stack X
) H "Wz "w = H I
= save X’s kernel stack contents in "sigframe" in X’s user stack sd‘,
29

Copyright © William C. Cheng

Invoking the Signal Handler (4)

Main Line

func (int al,
int a2) {
int i, j = 2;
for (i=al;
i<az2;
i++) {
j*2;
3/127;

Handler

int sig) {

sighandler (-

I

Upcall

sighandler ()
frame

IP sigreturn()

sigframe

func ()
frame

Previous
frames

User Stack X

Kernel Stack X

= signal handler executed on X’s user stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Invoking the Signal Handler (4)

Main Line

func (int al,
int a2) {
int i, j = 2;
for (i=al;
i<az2;
i++) {
j*2;
3/127;

Handler

sighandler (
int sig) {

-

I

Upcall

sighandler ()
frame

IP sigreturn()

sigframe

func ()
frame

Previous-
frames

User Stac

must keep the kernel

stack X empty

= if sighandler ()
makes a system call,
we are fine!

Kernel Stack X

= sighal handler executed on X’s user stack when X runs again s
31

Copyright © William C. Cheng

Operating Systems - CSCI 402

Invoking the Signal Handler (5)

Main Line
IP sigreturn()
func (int al,
int a2) {
int 1, J = 2; sigframe
for (i=al; func ()
?<a2; frame
i++) {
j = 3*2; Previous
5 = 3/127; frames
- User Stack X
b invoke
sigreturn ()
m
Handler system call
_ on return from
sighandler(signal handler
int sig) {
}

Kernel Stack X
= Kkernel Stack X will be used since this is a system call by X s

Copyright © William C. Cheng

Invoking the Signal Handler (6)

Main Line

func (int al,
int a2) {
int i, j = 2;
for (i=al;
i<az2;
i++) {
j*2;
3/127;

Handler

sighandler (
int sig) {

IP sigreturn()

sigframe

func ()
frame

Previous
frames

User Stack X

IP

User
Registers

Kernel Stack X

= copy context back into kernel stack and continue

Copyright © William C. Cheng

Operating Systems - CSCI 402

copy

1
I
I

Operating Systems - CSCI 402

Invoking the Signal Handler (7)

Main Line
func (int al,
int a2) {
int i, j = 2; T
for (i=al;
i<a2; SERE ()
: frame
i++) {
j = 3*2; Previous
j = 3/127; P frames
4__
_— User Stack X
}
iret
Handler
sighandler (
int sig) {
}
Kernel Stack X
= exactly where we were before signal delivery starts 3 ;ﬂ’}—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extra Slides

Copyright © William C. Cheng

Operating Systems - CSCI 402

Asynchronous Procedure Calls

_) Two uses
= kernel APC: release of kernel resources
= user APC: notifying a thread of an external event

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel APC

_) Release of kernel resources

= interrupt handler cannot free storage for buffer and control
blocks until info passed to process
can’t be done unless in context of process
otherwise address space not mapped in
interrupt handler requests kernel APC to have thread,
running in kernel mode, absorb info in buffer and control
blocks and then free them

[

[

[

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

User APC

) Notifying thread of external event
= example: asynchronous I/O
= thread supplies completion routine when starting
asynchronous I/O request
= called in thread’s context when I/O completes

Q similar to a Unix signal
Q called only when thread is in alertable wait state

<& an option in certain blocking system calls

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

APC Implementation

) Per-thread list of pending APCs
= ohn notification, thread executes them

_) User APC
= thread in alertable state is woken up and executes pending

APCs when it returns to user mode

_) Kernel APC
= running thread interrupted by APC interrupt (lowest priority
interrupt)
= waiting thread is "unwaited"”
= execute pending kernel APCs

X

Copyright © William C. Cheng

