
0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

5.2 Interrupts

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Handling - Overview

Interrupt Handling

Deferred Work
Directed

Processing

Interrupts Threads

Thread

preemption

APCs Signals

an interrupt handler running on another processor might

access the same data structure

4)

Memory

mutex

INT INT

3

1

4

2

another thread running on the same processor may preempt

this thread and accesses the same data structure

an interrupt handler running on the same processor that

accesses the same data structure

Recall asynchronous activies that may require concurrency control

another thread running on another processor might access

the same data structure

3)

1)

2)

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Synchronization

Futex is a solution to (1) and (2)

let’s look at (3) and (4) now (kernel only)

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Handling

We are focusing on dealing with synchronization/concurrency

issues

What to do if you have non-preemption kernels?

in these systems, a kernel thread can never be preempted

by another thread

this makes the kernel a lot easier to implement!

because don’t have to implement locking inside the kernel

for every shared data structure (although sometimes,

mutex is still needed to synchronize kernel threads)

done in early Unix systems

done in weenix

threads running in privileged mode yield the processor

only voluntarily

this is like your kernel 1 with DRIVERS=1 in Config.mk

may switch to interrupt context, but return to same thread

use interrupt masking to access variables shared with ISRs

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Handling

so you disable preemption

What to do if you have preemption kernels?

for multiple CPUs, use a spin lock to lock out other CPUs

then you can use interrupt masking

threads running in privileged mode may be forced to yield

the processor

How do you disable preemption?

just use a global variable

before you preempt a kernel thread, check this global flag

if the flag says preemption is disabled, don’t preempt

CurrentThread

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Masking

Unmask interrupts interrupt current processing (if interrupt is

pending)

the occurrence of a particular class of interrupts masks further

occurences

What causes interrupts to be masked?

explicit programmatic action

some architectures impose a hierarchy of interrupt levels

e.g., Intel architectures use APIC (Advanced Programmable

Interrupt Controller)

i.e., inside an interrupt service routine (ISR)

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Non-Preemptive Kernel Synchronization

void AccessXThread() {
 ...
 X = X+1;
 ...
}

void AccessXInterrupt() {
 ...
 X = X+1;
 ...
}

int X = 0;

Memory

mutex

INT INT

3

1

4

2

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Non-Preemptive Kernel Synchronization

void AccessXThread() {
 ...
 X = X+1;
 ...
}

void AccessXInterrupt() {
 ...
 X = X+1;
 ...
}

int X = 0;

since we have a non-preemptive kernel, the only thing that

can prevent a kernel thread from executing till completion

is an interrupt

Sharing a variable between a thread and an interrupt handler

cannot use locks to fix it

The above code does not work

analogous to cannot use mutex inside a signal handler

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Non-Preemptive Kernel Synchronization

void AccessXThread() {
 int oldIPL;
 oldIPL = setIPL(IHLevel);
 X = X+1;
 setIPL(oldIPL);
}

void AccessXInterrupt() {
 ...
 X = X+1;
 ...
}

int X = 0;

this is analogous to the solution in Ch 2 to mask signals

Solution is to mask the interrupt

seems to work well in a non-preemptive kernel

let’s look at something more realistic

Q: what data structures do you really share between

thread code and an interrupt service routine?

A: an I/O queue and the RunQueue

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More Relistic Example: Disk I/O

int disk_write(...) {
 ...
 startIO(); // start disk operation
 ...
 enqueue(disk_waitq, CurrentThread);
 thread_switch();
 // wait for disk operation to complete
 ...
}

void disk_intr(...) {
 thread_t *thread;
 ...
 // handle disk interrupt
 ...
 thread = dequeue(disk_waitq);
 if (thread != 0) {
 enqueue(RunQueue, thread);
 // wakeup waiting thread
 }
 ...
}

write()

App

disk_write()

File
System

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More Relistic Example: Disk I/O

int disk_write(...) {
 ...
 startIO(); // start disk operation
 ...
 enqueue(disk_waitq, CurrentThread);
 thread_switch();
 // wait for disk operation to complete
 ...
}

void disk_intr(...) {
 thread_t *thread;
 ...
 // handle disk interrupt
 ...
 thread = dequeue(disk_waitq);
 if (thread != 0) {
 enqueue(RunQueue, thread);
 // wakeup waiting thread
 }
 ...
}

1

2

Problem

disk may be too fast

disk_intr() gets called

before enqueue()

this is a synchronization

problem / race condition

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improved Disk I/O

int disk_write(...) {
 ...
 int oldIPL = setIPL(diskIPL);
 startIO(); // start disk operation
 ...
 enqueue(disk_waitq, CurrentThread);
 thread_switch();
 // wait for disk operation to complete
 setIPL(oldIPL);
 ...
}

Solution

mask disk interrupt

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improved Disk I/O

int disk_write(...) {
 ...
 int oldIPL = setIPL(diskIPL);
 startIO(); // start disk operation
 ...
 enqueue(disk_waitq, CurrentThread);
 thread_switch();
 // wait for disk operation to complete
 setIPL(oldIPL);
 ...
}

Doesn’t quite work!

thread_switch() will switch to another thread and won’t

return back here any time soon to unmask interrupt

moving setIPL(oldIPL) to before thread_switch()

may have race condition in accessing the RunQueue

complication caused by the fact that thread_switch()

does not function like a normal procedure call

Solution

mask disk interrupt

who will enable the disk interrupt?

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modified thread_switch

void thread_switch() {
 thread_t *OldThread;
 int oldIPL;
 oldIPL = setIPL(HIGH_IPL);
 // protect access to RunQueue by
 // masking all interrupts
 while(queue_empty(RunQueue)) {
 // repeatedly allow interrupts,
 // then check RunQueue
 setIPL(0); // unmask all interrupts
 setIPL(HIGH_IPL);
 }
 // We found a runnable thread
 OldThread = CurrentThread;
 CurrentThread = dequeue(RunQueue);
 swapcontext(OldThread->context,
 CurrentThread->context);
 setIPL(oldIPL);
}

You can (and should) use this in kernel 1

IMPORTANT: must only

access RunQueue when

all interrupts are blocked

because RunQueue is

accessed in all interrupt

handlers

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modified thread_switch

void thread_switch() {
 thread_t *OldThread;
 int oldIPL;
 oldIPL = setIPL(HIGH_IPL);
 // protect access to RunQueue by
 // masking all interrupts
 while(queue_empty(RunQueue)) {
 // repeatedly allow interrupts,
 // then check RunQueue
 setIPL(0); // unmask all interrupts
 setIPL(HIGH_IPL);
 }
 // We found a runnable thread
 OldThread = CurrentThread;
 CurrentThread = dequeue(RunQueue);
 swapcontext(OldThread->context,
 CurrentThread->context);
 setIPL(oldIPL);
}

This code is actually much

more tricky that it looks

it can be invoked by a

thread that’s not doing I/O

oldIPL is the oldIPL of a

different thread!

Let’s say that another thread

calls thread_switch()

it’s not doing I/O

its oldIPL is set to 0

Now we call thread_switch()

then we switch to this other

thread and set IPL to 0

(disk interrupt enabled)

our oldIPL set to diskIPL

Thread
object

Stack

Thread
object

Stack

You can use this in kernel 1 & 2

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modified thread_switch

void thread_switch() {
 thread_t *OldThread;
 int oldIPL;
 oldIPL = setIPL(HIGH_IPL);
 // protect access to RunQueue by
 // masking all interrupts
 while(queue_empty(RunQueue)) {
 // repeatedly allow interrupts,
 // then check RunQueue
 setIPL(0); // unmask all interrupts
 setIPL(HIGH_IPL);
 }
 // We found a runnable thread
 OldThread = CurrentThread;
 CurrentThread = dequeue(RunQueue);
 swapcontext(OldThread->context,
 CurrentThread->context);
 setIPL(oldIPL);
}

Problem - busy waiting

the correct way to wait

is to wait while sleeping

can take a long time to

get an interrupt

since there’s nothing to

run, should halt the CPU

Note:

it’s okay to do this in

kernel 1 and kernel 2

this wont’ work for kernel 3

You can use this in kernel 1 & 2

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modified thread_switch

void thread_switch() {
 thread_t *OldThread;
 int oldIPL;
 oldIPL = setIPL(HIGH_IPL);
 // protect access to RunQueue by
 // masking all interrupts
 while(queue_empty(RunQueue)) {
 // repeatedly allow interrupts,
 // then check RunQueue
 setIPL(0); // unmask all interrupts
 HLT // enable interrupt & halt CPU
 setIPL(HIGH_IPL);
 }
 // We found a runnable thread
 OldThread = CurrentThread;
 CurrentThread = dequeue(RunQueue);
 swapcontext(OldThread->context,
 CurrentThread->context);
 setIPL(oldIPL);
}

If you decide to halt the CPU

in weenix, need to watch out

for a race condition

the correct way to wait for

an asynchronous event is:

disable/block it

if event hasn’t ocurred,

enable/unblock and

wait for it in one atomic

operation

1)

2)

this code does not "wait"

properly

Note:

you have to do it this way

(and fix the race condition)

for kernel 3

or live with the possibility

of system freezing

Memory

mutex

INT INT

3

1

4

2

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Preemptive Kernels & Multiple CPUs

What’s different?

Recall asynchronous activies that may require concurrency control

another thread running on the same processor may preempt

this thread and accesses the same data structure

an interrupt handler running on the same processor that

accesses the same data structure

another thread running on another processor might access

the same data structure

an interrupt handler running on another processor might

access the same data structure

3)

1)

4)

2)

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution?

void AccessXThread() {
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

no, can deadlock in AccessXInterrupt() in case (1) when

thread code and interrupt handler runs on the same processor

Does it work?

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

Does it work?

Memory

mutex

INT INT

3

1

4

2

Memory

mutex

INT INT

3

1

4

2

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

Does it work?

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

Does it work?

Memory

mutex

INT INT

3

1

4

2

Memory

mutex

INT INT

3

1

4

2

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

Does it work?

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

Memory

mutex

INT INT

1

2

3

4

yes

Does it work?

order is

important

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

if you mask interrupt first, what would happen if you switch

to a thread what would mess with interrupt masking?

Can we switch the order of DisablePreemption() and

MaskInterrupts()?

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution ...

void AccessXThread() {
 DisablePreemption();
 MaskInterrupts();
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 UnMaskInterrupts();
 EnablePreemption();
}

void AccessXInterrupt() {
 ...
 SpinLock(&L);
 X = X+1;
 SpinUnlock(&L);
 ...
}

int X = 0;
SpinLock_t L = UNLOCKED;

What X are we really talking about?

it may be the RunQueue (use highest IPL)

it may be the I/O queue (use appropriate IPL)

it may be a futex queue (no need to mask interrupt)

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Threads?

perhaps similar to using sigwait for handling signals with

threads

Does it make sense to handle interrupts with threads?

what would be the advantages?

what would be the disadvantages?

Solaris allows interrupts to be handled as threads

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Threads

void InterruptHandler() {
 // deal with interrupt
 ...
 if (!MoreWork)
 return;
 else
 BecomeThread();
 ...
 P(Semaphore); // sleep!
 ...
}

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Threads In Action

Thread
Control
Block

Thread’s
Frames

Thread
Control
Block

Interrupted
Context

Interrupt
Handler’s
Frames

1

2

3

