Operating Systems - CSCI 402

5.2 Interrupts

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Handling - Overview

Interrupt Handling
Deferred Work - - - -, Dlrecte_d

Interrupts Threads APCs Signals

Thread
preemption

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Synchronization

ﬁ} Recall asynchronous activies that may require concurrency control

1) another thread running on the same processor may preempt
this thread and accesses the same data structure

2) another thread running on another processor might access
the same data structure

3) an interrupt handler running on the same processor that
accesses the same data structure

4) an interrupt handler running on another processor might
access the same data structure

o
I

) Futex is a solution to (1) and (2)

= let’s look at (3) and (4) now (kernel only)
Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Handling

ﬁ} We are focusing on dealing with synchronization/concurrency
issues

ﬁ} What to do if you have non-preemption kernels?
= in these systems, a kernel thread can never be preempted
by another thread
Q may switch to interrupt context, but return to same thread
Q threads running in privileged mode yield the processor
only voluntarily
Q this makes the kernel a lot easier to implement!

& because don’t have to implement locking inside the kernel
for every shared data structure (although sometimes,
mutex is still needed to synchronize kernel threads)

Q done in early Unix systems
Q done in weenix
<& this is like your kernel 1 with DRIVERS=1 in Config.mk

= use interrupt masking to access variables shared with ISRs | @J

35

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Handling

> What to do if you have preemption kernels?
= threads running in privileged mode may be forced to yield
the processor
= SO you disable preemption
Q then you can use interrupt masking
= for multiple CPUs, use a spin lock to lock out other CPUs

) How do you disable preemption?
= just use a global variable
Q before you preempt a kernel thread, check this global flag
& if the flag says preemption is disabled, don’t preempt
CurrentThread

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Masking

ﬁ} Unmask interrupts interrupt current processing (if interrupt is
pending)

> What causes interrupts to be masked?
= the occurrence of a particular class of interrupts masks further
occurences
Q Il.e., inside an interrupt service routine (ISR)
= explicit programmatic action
—= some architectures impose a hierarchy of interrupt levels
Q e.g., Intel architectures use APIC (Advanced Programmable

Interrupt Controller)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Non-Preemptive Kernel Synchronization

int X = 0;

void AccessXThread () { void AccessXInterrupt () {

X = X+1; X = X+1;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Non-Preemptive Kernel Synchronization

int X = 0;

void AccessXThread () { void AccessXInterrupt () {
X = X+1; X = X+1;
} }

ﬁ> Sharing a variable between a thread and an interrupt handler
= since we have a non-preemptive kernel, the only thing that
can prevent a kernel thread from executing till completion

IS an interrupt

ﬁ} The above code does not work
= canhnot use locks to fix it
= analogous to cannot use mutex inside a sighal handler / @’_

Copyright © William C. Cheng

Operating Systems - CSCI 402

Non-Preemptive Kernel Synchronization

int X = 0;
void AccessXThread() { void AccessXInterrupt () {
int oldIPL; “ ..
0ldIPL = setIPL (IHLevel); X = X+1;
X = X+1;
setIPL (oldIPL); }

}

ﬁ> Solution is to mask the interrupt
= this is analogous to the solution in Ch 2 to mask signals
— seems to work well in a nhon-preemptive kernel
Q let’s look at something more realistic
Q: what data structures do you really share between
thread code and an interrupt service routine? |
A: an //O queue and the RunQueue 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402
More Relistic Example: Disk I/O
int disk_write(...) {
ééértIO(); // start disk operation
éﬁéueue(disk_waitq, CurrentThread) ;

thread_switch () ;
// wait for disk operation to complete

\ . Ao

void disk_intr(...) { _
thread_t *thread; write () s

// handle disk interrupt

thread = dequeue (disk_waitq); 4 File
if (thread !'= 0) { System
enqueue (RunQueue, thread); diskiwritel)

// wakeup waiting thread
}

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

More Relistic Example: Disk I/O

int disk_write(...) { 4

startIO(); // start disk operatiol = disk may be too fast

> ...
enqueue (disk_waitq, CurrentThread
thread_switch();

// wait for disk operation to d

}

void disk_intr(...) {
thread_t *thread;

// handle disk interrupt

£> thread = dequeue (disk_waitq);
if (thread !'= 0) {
enqueue (RunQueue, thread);
// wakeup waiting thread

}
o

Copyright © William C. Cheng

G

Problem

= disk_intr () gets called
before enqueue ()

= this is a synchronization
problem / race condition

Improved Disk I/O

int disk_write(...) {

int o0ldIPL = setIPL(diskIPL);

startIO(); // start disk operati

enqueue (disk_waitq, CurrentThread

thread_switch () ;
// wait for disk operation to

setIPL (oldIPL);

Copyright © William C. Cheng

r

CL

Solution
= mask disk interrupt

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Improved Disk I/O

int disk_write(...) {

=P int 0ldIPL = setIPL(diskIPL);

startIO(); // start disk operati

enqueue (disk_waitq, CurrentThread

thread_switch () ;
// wait for disk operation to

= setIPL(oldIPL);

}
_) Doesn’t quite work!

r

CL

Solution
= mask disk interrupt

= thread_switch () will switch to another thread and won’t
return back here any time soon to unmask interrupt

Q who will enable the disk interrupt?

Q complication caused by the fact that thread_switch ()
does not function like a normal procedure call

= movVving setIPL (o0ldIPL) to before thread_switch () |

may have race condition in accessing the RunQueue 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Modified thread_switch

(

void thread_switch() { IMPORTANT: must only
thread t *OldThread; access RunQueue When
int oldIPL; all interrupts are blocked
0ldIPL = setIPL(HIGH_IPL); = because RunQueue iS
// protect access to RunQueue by accessed in all interrupt
// masking all interrupts handlers
while (queue_empty (RunQueue)) { \
// repeatedly allow interrupts,
// then check RunQueue

setIPL(0); // unmask all interrupts
setIPL (HIGH_ IPL);

}

// We found a runnable thread
OldThread = CurrentThread;
CurrentThread = dequeue (RunQueue) ;
swapcontext (OldThread->context,

CurrentThread->context) ;
setIPL (oldIPL);

}
) You can (and should) use this in kernel 1

Copyright © William C. Cheng

Operating Systems - CSCI 402

Modified thread_switch

void thread_switch () { r N
thread_t *0ldThread; This code is actually much
int oldIPL; more tricky that it looks
0ldIPL = setIPL(HIGH_IPL) ;| = itcanbeinvokedbya
// protect access to Run(thread that’s not doing 1/0
// masking all inter] = oldIPL is the o1dIPL of a
. : '
while (queue_empty (RunQueue| SR L)
// repeatedly allow interrupts, .
// then check RunQue; Let’s say that another thread +
setIPL(0); // unmask al| calls thread_switch ()
setIPL (HIGH_IPL); = it's not doing I/0 Stack
} = its o1dIPL is set to 0 —
// We found a runnable threaa < [_object
OldThread = CurrentThread; D
CurrentThread = dequeue (Ruj Now we call thread_switch () +
swapcontext (0O1dThread—>con{ = OUr oldIPL setlo diskIPL Stack
CurrentThread-] = then we switch to this other
=P setIPL (oldIPL):; thread and set IPL to 0 Thread
} (disk interrupt enabled) object

) You can use this in kernel 1 & 2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Modified thread_switch

void thread_switch () {

thread_t *0OldThread;

int oldIPL;

oldIPL setIPL (HIGH_IPL);
// protect access to RunQueue by
// masking all interrupts

while (queue_empty (RunQueue)) {
// repeatedly allow interrupts,
// then check RunQueue
setIPL(0); // unmask all interrupt{
setIPL (HIGH_IPL);

(

}

// We found a runnable thread
OldThread = CurrentThread;
CurrentThread = dequeue (RunQueue) ;
swapcontext (OldThread->context,
CurrentThread->context) ;

setIPL (oldIPL);
}

) You can use this in kernel 1 & 2

Copyright © William C. Cheng

L

Problem - busy waiting

= cah take a long time to
get an interrupt

= the correct way to wait
is to wait while sleeping

= since there’s nothing to
run, should halt the CPU

Note:

= it’s okay to do this in
kernel 1 and kernel 2

= this wont’ work for kernel .

Operating Systems - CSCI 402

Modified thread_switch

void thread_switch () { r
thread_t *0OldThread; If you decide to halt the CPU
int o0ldIPL; in weenix, heed to watch out
0ldIPL = setIPL (HIGH_IPL); for a race condition
// protect access to RunQueue by = this code does not "wait"
// masking all interrupts properly _
while (queue_empty (RunQueue)) { = the corre;t way to walttff)r.
// repeatedly allow interrupts, ?;‘ :iss};tge/r;lzg:?teven 1
// then check RunQueue 2) if event hasn’t ocurred,
setIPL(0); // unmask all interruptg el e e S
HLT // enable 1nterrupt & halt CPU wait for it in one atomic
setIPL (HIGH_IPL); operation
} Note:
// We found a runnable thread = you have to do it this way
OldThread = CurrentThread; (and fix the race condition,
CurrentThread = dequeue (RunQueue) ; for kernel 3
swapcontext (OldThread->context, Q or live with the possibilit
CurrentThread->context) ; of system freezing
.

setIPL (oldIPL);
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Preemptive Kernels & Multiple CPUs
) What's different?

ﬁ> Recall asynchronous activies that may require concurrency control

1) another thread running on the same processor may preempt
this thread and accesses the same data structure

2) another thread running on another processor might access
the same data structure

3) an interrupt handler running on the same processor that
accesses the same data structure

4) an interrupt handler running on another processor might
access the same data structure

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution?

int X = 0;
SpinLock_t L = UNLOCKED;

void AccessXThread () { void AccessXInterrupt () {
SpinLock (&L) ; .« ..
X = X+1; SpinLock (&L) ;
SpinUnlock (&L) ; X = X+1;

} SpinUnlock (&L) ;

_, Does it work?
= ho, can deadlock in AccessXInterrupt () in case (1) when
thread code and interrupt handler runs on the same processor

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution ...

int X = 0;
SpinLock_t L = UNLOCKED;

void AccessXThread () { void AccessXInterrupt () {
DisablePreemption(); .« ..
MaskInterrupts(); SpinLock (&L) ;
SpinLock (&L) ; X = X+1;
X = X+1; SpinUnlock (&L) ;
SpinUnlock (&L) ;
UnMaskInterrupts(); }

EnablePreemption () ;

}

ﬁ> Does it work? >
|

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution ...

int X = 0;
SpinLock_t L = UNLOCKED;

void AccessXThread () { void AccessXInterrupt () {
= DisablePreemption () ; c .
MaskInterrupts(); SpinLock (&L) ;
SpinLock (&L) ; X = X+1;
X = X+1; SpinUnlock (&L) ;
SpinUnlock (&L) ;
UnMaskInterrupts(); }

EnablePreemption () ;

}

ﬁ> Does it work? >
|

Copyright © William C. Cheng

Solution ...

int X = 0;

SpinLock_t L = UNLOCKED;

void AccessXThread () {

DisablePreemption();
->MaskInterrupts ();

SpinLock (&L) ;
X = X+1;
SpinUnlock (&L) ;
UnMaskInterrupts();
EnablePreemption () ;

}

D it k?
ﬁ> oes it wor DKXZ TINT

void AccessXInterrupt ()

SpinLock (&L) ;
X = X+1;
SpinUnlock (&L) ;

mutex

Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

{

Operating Systems - CSCI 402

Solution ...

int X = 0;
SpinLock_t L = UNLOCKED;

void AccessXThread () { void AccessXInterrupt () {
DisablePreemption(); .« ..
MaskInterrupts(); SpinLock (&L) ;
=% spinLock (&L) ; X = X+1;
X = X+1; SpinUnlock (&L) ;
SpinUnlock (&L) ;
UnMaskInterrupts(); }

EnablePreemption () ;

}

D it k?
ﬁ> oes it wor DKXZ TINT

mutex

Memory

Copyright © William C. Cheng

Solution ...

int X = 0;

SpinLock_t L = UNLOCKED;

void AccessXThread () {
DisablePreemption();
MaskInterrupts () ;

SpinLock (&L) ;
X = X+1;
SpinUnlock (&L) ;

UnMaskInterrupts();
EnablePreemption () ;

}

ﬁ> Does it work?
= yes
Q orderis
important

Copyright © William C. Cheng

Dg TINT

void AccessXInterrupt ()

SpinLock (&L) ;
X = X+1;
SpinUnlock (&L) ;

Operating Systems - CSCI 402

mutex

Memory

Operating Systems - CSCI 402

Solution ...

int X = 0;
SpinLock_t L = UNLOCKED;

void AccessXThread () { void AccessXInterrupt () {
DisablePreemption(); .« ..
MaskInterrupts(); SpinLock (&L) ;
SpinLock (&L) ; X = X+1;
X = X+1; SpinUnlock (&L) ;
SpinUnlock (&L) ;
UnMaskInterrupts(); }

EnablePreemption () ;

}

ﬁ> Can we switch the order of DisablePreemption () and
MaskInterrupts () ?
= if you mask interrupt first, what would happen if you switch
to a thread what would mess with interrupt masking?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution ...

int X = 0;
SpinLock_t L = UNLOCKED;

void AccessXThread () { void AccessXInterrupt () {
DisablePreemption(); .« ..
MaskInterrupts(); SpinLock (&L) ;
SpinLock (&L) ; X = X+1;
X = X+1; SpinUnlock (&L) ;
SpinUnlock (&L) ;
UnMaskInterrupts(); }

EnablePreemption () ;

}

ﬁ> What X are we really talking about?
= it may be the RunQueue (use highest IPL)
= it may be the 1/O queue (use appropriate IPL)
= it may be a futex queue (no need to mask interrupt)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Threads?
ﬁ} Solaris allows interrupts to be handled as threads

_, Does it make sense to handle interrupts with threads?
= perhaps similar to using sigwait for handling signals with
threads
= what would be the advantages?
= what would be the disadvantages?

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Threads

void InterruptHandler() {
// deal with interrupt

if (!MoreWork)
return,

else
BecomeThread();

P (Semaphore); // sleep!

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Threads In Action

i

Thread’s

Frames (2)

Interrupted

Thread @ Context
Control Thread —

Block Control

@ Block

X

Copyright © William C. Cheng

