
0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

5.1 Threads

Implementations

Strategies

A Simple Thread Implementation

Multiple Processors

Memory

mutex

INT INT

3

1

4

2

this thread never blocks, so there is always something to run

to avoid boundary condition (although this is busy-waiting)

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Straight-threads - Multiple Processors

thread_switch() is no

longer sufficient

run on each processor an

idle thread

Simple approach

void idle_thread() {
 while(1) {
 enqueue(runqueue, CurrentThread)
 thread_switch()
 }
}

normal threads join the RunQueue when ready

code is incomplete (because thread_switch() is

incomplete, the way it was presented here)

it’s meant for uniprocessor

void thread_switch() {
 thread_t NextThread, OldCurrent;
 NextThread = dequeue(RunQueue);
 OldCurrent = CurrentThread;
 CurrentThread = NextThread;
 swapcontext(&OldCurrent->context,
 &NextThread->context);
}

yield()

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Straight-threads - Multiple Processors

When there are multiple processors, the difficulty lies in locking

if (!m->locked) {
 m->locked = 1;
}

if both threads execute the above code concurrently, in

different processors, both threads think they got the lock

Memory

m

No way to implement this with only software

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

often implemented as a machine-level instruction

must execute atomically

how do you guarantee that when there are multiple CPUs?

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

e.g., assume mutex is unlocked, call CAS(&lock, 0, 1)

A[0..31]

D[0..31]

RD

WR

LOCK

mutex is represented as a bit, 0 if unlocked, 1 if locked

Memory

m

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

e.g., assume mutex is unlocked, call CAS(&lock, 0, 1)

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

A[0..31] &lock

D[0..31]

RD

WR

LOCK

0

mutex is represented as a bit, 0 if unlocked, 1 if locked

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

e.g., assume mutex is unlocked, call CAS(&lock, 0, 1)

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

A[0..31] &lock

D[0..31]

RD

WR

LOCK

0

mutex is represented as a bit, 0 if unlocked, 1 if locked

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

e.g., assume mutex is unlocked, call CAS(&lock, 0, 1)

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

A[0..31] &lock

D[0..31]

RD

WR

LOCK

0

&lock

1

mutex is represented as a bit, 0 if unlocked, 1 if locked

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

e.g., assume mutex is unlocked, call CAS(&lock, 0, 1)

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

A[0..31] &lock

D[0..31]

RD

WR

LOCK

0

&lock

1

mutex is represented as a bit, 0 if unlocked, 1 if locked

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

e.g., assume mutex is locked, call CAS(&lock, 0, 1)

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

A[0..31] &lock

D[0..31]

RD

WR

LOCK

1

mutex is represented as a bit, 0 if unlocked, 1 if locked

void spin_lock(int *mutex) {
 while(CAS(mutex, 0, 1)) // textbook is wrong
 ;
}

void spin_unlock(int *mutex) {
 *mutex = 0;
}

Naive spin lock

int CAS(int *ptr, int old, int new) {
 int tmp = *ptr; // get the value of mutex
 if (tmp == old) // if it equals to old
 *ptr = new; // set it to new
 return tmp; // return old
}

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support

Compare and swap machine instruction (pseudo-code in C below)

Can implement spin lock using CAS()
mutex is represented as a bit, 0 if unlocked, 1 if locked

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Spin Lock

void spin_lock(int *mutex) {
 while(CAS(mutex, 0, 1)) // textbook is wrong
 ;
}

void spin_unlock(int *mutex) {
 *mutex = 0;
}

void spin_lock(int *mutex) {
 while (1) {
 if (*mutex == 0) {
 // the mutex was at least momentarily unlocked
 if (!CAS(mutex, 0, 1))
 break; // we have locked the mutex
 // some other thread beat us to it, try again
 }
 }
}

Naive spin lock

Better spin lock

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Blocking Locks

processor time wasted waiting for the lock to be released

Spin locks are wasteful

barely acceptable if locks are held only briefly

threads wait by having their execution suspended

A better approach is to have a blocking lock

a thread much yield the processor and join a queue of

waiting threads

later on, get resumed explicitly

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Blocking Locks

void blocking_lock(mutex_t *m) {
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 thread_switch();
 } else
 m->holder = CurrentThread;
}

void blocking_unlock(mutex_t *m) {
 if (queue_empty(m->wait_queue))
 m->holder = 0;
 else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
}

This code only works on a uniprocessor

void blocking_lock(mutex_t *m) {
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 thread_switch();
 } else
 m->holder = CurrentThread;
}

void blocking_unlock(mutex_t *m) {
 if (queue_empty(m->wait_queue))
 m->holder = 0;
 else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
}

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Blocking Lock Failure Scenario (1)

On a multiprocessor, it may not work (since it has a race condition)

1,2

threads 1 and 2 can both think they’ve got the lock

On a multiprocessor, it may not work (since it has a race condition)

void blocking_lock(mutex_t *m) {
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 thread_switch();
 } else
 m->holder = CurrentThread;
}

void blocking_unlock(mutex_t *m) {
 if (queue_empty(m->wait_queue))
 m->holder = 0;
 else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
}

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Blocking Lock Failure Scenario (2)

1

2

thread 2 holds the mutex and wait queue is empty and

thread 1 tries to lock the mutex at the same time

thread 2 is releasing the mutex

thread 1 may wait forever

Maybe we can fix both scenarios by making these two functions

mutually exclusive (with respect to mutex m)

void blocking_lock(mutex_t *m) {
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 thread_switch();
 } else
 m->holder = CurrentThread;
}

void blocking_unlock(mutex_t *m) {
 if (queue_empty(m->wait_queue))
 m->holder = 0;
 else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
}

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Blocking Lock Failure Scenario (2)

2

maybe we can using a spin lock!

1

void blocking_lock(mutex_t *m) {
 spin_lock(m->spinlock); // okay to spin here
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 thread_switch();
 } else {
 m->holder = CurrentThread;
 }
 spin_unlock(m->spinlock);
}

void blocking_unlock(mutex_t *m) {
 spin_lock(m->spinlock); // okay to spin here
 if (queue_empty(m->wait_queue)) {
 m->holder = 0;
 } else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
 spin_unlock(m->spinlock);
}

Will deadlock because of thread_switch() 0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Working Blocking Locks (?)

void blocking_lock(mutex_t *m) {
 spin_lock(m->spinlock);
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 spin_unlock(m->spinlock);
 thread_switch();
 } else {
 m->holder = CurrentThread;
 spin_unlock(m->spinlock);
 }
}

void blocking_unlock(mutex_t *m) {
 spin_lock(m->spinlock);
 if (queue_empty(m->wait_queue)) {
 m->holder = 0;
 } else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
 spin_unlock(m->spinlock);
}

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Working Blocking Locks (?)

Has a different problem (race condition!)

1

void blocking_lock(mutex_t *m) {
 spin_lock(m->spinlock);
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 spin_unlock(m->spinlock);
 thread_switch();
 } else {
 m->holder = CurrentThread;
 spin_unlock(m->spinlock);
 }
}

void blocking_unlock(mutex_t *m) {
 spin_lock(m->spinlock);
 if (queue_empty(m->wait_queue)) {
 m->holder = 0;
 } else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
 spin_unlock(m->spinlock);
}

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Working Blocking Locks (?)

Thread 1 may be running in both processors!

2

Can you do spin_unlock() inside thread_switch()?

void blocking_lock(mutex_t *m) {
 spin_lock(m->spinlock);
 if (m->holder != 0) {
 enqueue(m->wait_queue, CurrentThread);
 spin_unlock(m->spinlock);
 thread_switch();
 } else {
 m->holder = CurrentThread;
 spin_unlock(m->spinlock);
 }
}

void blocking_unlock(mutex_t *m) {
 spin_lock(m->spinlock);
 if (queue_empty(m->wait_queue)) {
 m->holder = 0;
 else {
 m->holder = dequeue(m->wait_queue);
 enqueue(RunQueue, m->holder);
 }
 spin_unlock(m->spinlock);
}

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Working Blocking Locks (?)

contained in it is an unsigned integer state called value and

a queue of waiting threads

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Futexes

Futex: Linux’s fast user-space mutex (for 1 × 1 model)

safe, efficient kernel conditional queueing in Linux

most of the time when you try to lock a mutex, it’s

unlocked; so just go ahead and lock it (no system call)

if it’s locked (by another thread), then a system call is

required for this thread to obtain the lock

Two system calls are provided to support futexes

futex_wait(futex_t *futex, int val) {
 if (futex->val == val)
 // sleep on the futex queue inside kernel
}

futex_wake(futex_t *futex) {
 // wake up one thread from wait queue if
 // there is any
 ...
}

unsigned int atomic_inc(unsigned int *val) {
 // performed atomically
 return((*val)++); // textbook is wrong
}

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Ancillary Functions

Add 1 to *val, return its original value

unsigned int atomic_dec(unsigned int *val) {
 // performed atomically
 return((*val)--); // textbook is wrong
}

Subtract 1 to *val, return its original value

Just like CAS(), both functions return the previous lock value

e.g., x86 has "lock-prefixed instructions" so you can lock any

consecutive machine instructions together and make them

atomic

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Attempt 1

void lock(futex_t *futex) {
 unsigned int c;
 while ((c = atomic_inc(&futex->val)) != 0)
 futex_wait(futex, c+1);
}

void unlock(futex_t *futex) {
 futex->val = 0;
 futex_wake(futex);
}

slow because futex_wake() is a system call

Problem with unlock()

threads run in lock steps in a multiprocessor environment!

Problem with lock()

futex->val may wrap-around

0 means unlocked; otherwise, locked

futex->val

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Attempt 2

void lock(futex_t *futex) {
 unsigned int c;
 if ((c = CAS(&futex->val, 0, 1) != 0)
 do {
 if (c == 2 || (CAS(&futex->val, 1, 2) != 0))
 futex_wait(futex, 2);
 } while ((c = CAS(&futex->val, 0, 2)) != 0));
}

void unlock(futex_t *futex) {
 if (atomic_dec(&futex->val) != 1) {
 futex->val = 0;
 futex_wake(futex);
 }
}

0 means unlocked

futex->val can only take on values of 0, 1, and 2

1 means locked but no waiting thread

2 means locked with the possibility of waiting threads

textbook

is wrong

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Attempt 2

void lock(futex_t *futex) {
 unsigned int c;
 if ((c = CAS(&futex->val, 0, 1) != 0)
 do {
 if (c == 2 || (CAS(&futex->val, 1, 2) != 0))
 futex_wait(futex, 2);
 } while ((c = CAS(&futex->val, 0, 2)) != 0));
}

void unlock(futex_t *futex) {
 if (atomic_dec(&futex->val) != 1) {
 futex->val = 0;
 futex_wake(futex);
 }
}

textbook

is wrong

the implementation of futex_wait() and futex_wake() must

be atomic to avoid race conditions

https://www.akkadia.org/drepper/futex.pdf

Complications

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Synchronization Summary

used if the duration of waiting is expected to be small

as in the case at the beginning of blocking_lock()

Spin locks

used if the duration of waiting is expected to be long

Sleep (or blocking) locks

optimized version of blocking locks

Futexes

In your kernel assignmen #1, you need to implement kernel threads

very different from user threads

keep in mind that the weenix kernel is non-preemptive

the kernel is very powerful (and therefore, must be bug free,

and therefore, your code must be bug free)

in kernel assignmen #3, you need to implement user

threads/processes (well, MTP=0, still one thread per process)

