Operating Systems - CSCI 402

5.1 Threads
Implementations

_) Strategies
_) ASimple Thread Implementation

) Multiple Processors

Dok,
@ _

mutex

Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Straight-threads - Multiple Processors

r

|:> thread_switch () IS NO void thread_switch() {

longer sufficient thread_t NextThread, OldCurrent;
.y t f . NextThread = dequeue (RunQueue);
= It S meant 1or UnlproceSSOr OldCurrent = CurrentThread;

_ CurrentThread = NextThread;
|:> Simple approach swapcontext (&0ldCurrent—->context,
= run on each processor an } &NextThread—->context) ;
idle thread N
void idle_thread() {
while (1) {
enqueue (runqueue, CurrentThread) }]
ield
thread_switch () Y ()
}

}

Q this thread never blocks, so there is always something to run
to avoid boundary condition (although this is busy-waiting)

Q code is incomplete (because thread_switch () IS
incomplete, the way it was presented here)

(‘\
= normal threads join the RunQueue when ready A @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Straight-threads - Multiple Processors
ﬁ} When there are multiple processors, the difficulty lies in locking

if (!m->locked) {
m—>locked = 1;

}

= if both threads execute the above code concurrently, in
different processors, both threads think they got the lock

m

Memory

_> No way to implement this with only software

Copyright © William C. Cheng

Operating Systems - CSCI 402
Hardware Support
ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
*ptr = new; // set it to new
return tmp; // return old

}

= often implemented as a machine-level instruction
QO must execute atomically
< how do you guarantee that when there are multiple CPUs?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

= int CAS (int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
*ptr = new; // set it to new
return tmp; // return old

}

= e.g., assume mutex is unlocked, call cas (&lock, 0, 1)
Q mutex is represented as a bit, 0 if unlocked, 1 if locked

A[0.31] —)
D[0..31] —
RD _
WR _ m
LOCK _ Memory 3 @—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
= int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
*ptr = new; // set it to new
return tmp; // return old

}

= e.g., assume mutex is unlocked, call cas (&lock, 0, 1)
Q mutex is represented as a bit, 0 if unlocked, 1 if locked

A[0.31] — &lock —
D[0..31] —@—

RD [L__

WR

LOCK _| ; @—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

e if (tmp == old) // if it equals to old
*ptr = new; // set it to new
return tmp; // return old

}

= e.g., assume mutex is unlocked, call cas (&lock, 0, 1)
Q mutex is represented as a bit, 0 if unlocked, 1 if locked

A[0.31] — &lock ———
pfo.311 — 0)

RD [1

WR

LOCK _| ; @—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
= *ptr = new; // set it to new
return tmp; // return old

}

= e.g., assume mutex is unlocked, call cas (&lock, 0, 1)
Q mutex is represented as a bit, 0 if unlocked, 1 if locked

A[0..31] —< &lock >—< &lock >—
D[0..31] 4@ (1

RD [1
WR [1L

LOCK _| ; 2«!)2,—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
*ptr = new; // set it to new
= return tmp; // return old

}

= e.g., assume mutex is unlocked, call cas (&lock, 0, 1)
Q mutex is represented as a bit, 0 if unlocked, 1 if locked

A[0..31] —< &lock >—< &lock >
pfo.311 — 0) (1)
RD [1
WR]
|
LOCK _| | ; @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
*ptr = new; // set it to new
return tmp; // return old

}

= e.g., assume mutex is /ocked, call cAS (&lock, 0, 1)
Q mutex is represented as a bit, 0 if unlocked, 1 if locked

A[0..31] — &lock)

D[0..31] —@

RD [1

WR

|
LOCK _| L ; @—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support

ﬁ} Compare and swap machine instruction (pseudo-code in C below)

int CAS(int *ptr, int old, int new) {
int tmp = *ptr; // get the value of mutex

if (tmp == old) // if it equals to old
*ptr = new; // set it to new
return tmp; // return old

}

_, Can implement spin lock using cas ()
= mutex is represented as a bit, 0 if unlocked, 1 if locked

_, Naive spin lock

void spin_lock (int *mutex) ({
while (CAS (mutex, 0, 1)) // textbook is wrong

’

}

void spin_unlock (int *mutex) ({

*mutex = 0; [
))

Copyright © William C. Cheng

Operating Systems - CSCI 402

Spin Lock

> Naive spin lock

void spin_lock (int *mutex) ({
while (CAS (mutex, 0, 1)) // textbook is wrong

’

}

void spin_unlock (int *mutex) ({
*mutex = 0;

}
) Better spin lock

void spin_lock (int *mutex) ({
while (1) {
if (*mutex == 0) {
// the mutex was at least momentarily unlocked
if (!CAS (mutex, 0, 1))
break; // we have locked the mutex
// some other thread beat us to it, try again

Copyright © William C. Cheng

Operating Systems - CSCI 402

Blocking Locks

) Spin locks are wasteful
— processor time wasted waiting for the lock to be released
= barely acceptable if locks are held only briefly

) A better approach is to have a blocking lock
= threads wait by having their execution suspended
= a thread much yield the processor and join a queue of
waiting threads
Q later on, get resumed explicitly

Copyright © William C. Cheng

Operating Systems - CSCI 402

Blocking Locks

void blocking_lock (mutex_t *m) ({
if (m—>holder '= 0) {
enqueue (m—>wait__queue, CurrentThread);
thread_switch () ;

} else
m—>holder = CurrentThread;

}

void blocking_unlock (mutex_t *m) {
if (queue_empty (m—>wait_queue))
m—>holder = 0;
else {
m—>holder = dequeue (m—>wait_queue);
enqueue (RunQueue, m—>holder);
}
}

ﬁ} This code only works on a uniprocessor

Copyright © William C. Cheng

Operating Systems - CSCI 402

Blocking Lock Failure Scenario (1)

1o Vvoid blocking_lock (mutex_t *m) {

= if (m->holder != 0) {

enqueue (m—>wait__queue, CurrentThread);
thread_switch () ;

} else
m—>holder = CurrentThread;

}

void blocking_unlock (mutex_t *m) {
if (queue_empty (m—>wait_queue))
m—>holder = 0;
else {
m—>holder = dequeue (m—>wait_queue);
enqueue (RunQueue, m—>holder);

}
}

ﬁ} On a multiprocessor, it may not work (since it has a race condition)
= threads 1 and 2 can both think they’ve got the lock

1J€E§}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Blocking Lock Failure Scenario (2)

1 void blocking_lock (mutex_t *m) ({
- if (m—->holder != 0) {
enqueue (m—>wait__queue, CurrentThread);
thread_switch () ;
} else
m—>holder = CurrentThread;

}

void blocking_unlock (mutex_t *m) {
o if (queue_empty (m—>wait_queue))

m—->holder = O0;
else {
m—>holder = dequeue (m—>wait_queue);

enqueue (RunQueue, m—>holder);

}
}

ﬁ} On a multiprocessor, it may not work (since it has a race condition)
= thread 2 holds the mutex and wait queue is empty and
thread 1 tries to lock the mutex at the same time

thread 2 is releasing the mutex (AR

= thread 1 may wait forever
Copyright © William C. Cheng

Operating Systems - CSCI 402

Blocking Lock Failure Scenario (2)

1 void blocking_lock (mutex_t *m) ({

- if (m—->holder != 0) {
enqueue (m—>wait_queue,
thread_switch () ;

} else
m—>holder = CurrentThread;

CurrentThread) ;

}

o void blocking_unlock (mutex_t *m) {
o if (queue_empty (m—>wait_queue))
m—>holder = 0;

else {
m—>holder = dequeue (m—>wait_queue);

enqueue (RunQueue, m—>holder);

}
}

ﬁ} Maybe we can fix both scenarios by making these two functions
mutually exclusive (with respect to mutex m)
—= maybe we can using a spin lock!

Copyright © William C. Cheng

Operating Systems - CSCI 402
Working Blocking Locks (?)

void blocking_lock (mutex_t *m) ({
e spin_lock (m—>spinlock); // okay to spin here
if (m—>holder '= 0) {
enqueue (m—>wait__queue, CurrentThread);
thread_switch() ;

} else {
m—>holder = CurrentThread;
}
e spin_unlock (m—>spinlock);

}

void blocking_unlock (mutex_t *m) {
. spin_lock (m—>spinlock); // okay to spin here
if (queue_empty (m—>wait_queue)) {
m—>holder = O0;
} else {
m—>holder = dequeue (m—>wait_queue);
enqueue (RunQueue, m—>holder);
}
- spin_unlock (m—>spinlock) ;

}

) Will deadlock because of thread_switch ()
Copyright © William C. Cheng

Operating Systems - CSCI 402
Working Blocking Locks (?)

void blocking_lock (mutex_t *m) ({
P spin_lock (m—>spinlock);

if (m—>holder '= 0) {
enqueue (m—>wait__queue, CurrentThread);
. spin_unlock (m—>spinlock) ;
thread_switch () ;
} else {
m—>holder = CurrentThread;
e spin_unlock (m—>spinlock);

void blocking_unlock (mutex_t *m) {
- spin_lock (m—>spinlock) ;
if (queue_empty (m—>wait_queue)) {

m—->holder = 0;
} else {
m—>holder = dequeue (m—>wait_queue);

enqueue (RunQueue, m—->holder);

}
. spin_unlock (m—>spinlock) ;
}
ﬁ> Has a different problem (race condition!)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Working Blocking Locks (?)

void blocking_lock (mutex_t *m) ({
spin_lock (m—>spinlock) ;
if (m—>holder '= 0) {

enqueue (m—>wait__queue, CurrentThread);

1 spin_unlock (m—>spinlock) ;
= thread_switch();

} else {
m—>holder = CurrentThread;

spin_unlock (m—>spinlock) ;

void blocking_unlock (mutex_t *m) {
spin_lock (m—>spinlock) ;

if (queue_empty (m—>wait_queue)) ({

m—>holder = 0;

o } else {
= m—>holder = dequeue (m—>wait_queue);
= enqueue (RunQueue, m->holder);

spin_unlock (m—>spinlock) ;

}

) Thread 1 may be running in both processors!

Copyright © William C. Cheng

Operating Systems - CSCI 402

Working Blocking Locks (?)

void blocking_lock (mutex_t *m) ({
spin_lock (m—>spinlock) ;
if (m—>holder '= 0) {
enqueue (m—>wait__queue, CurrentThread);
spin_unlock (m—>spinlock);
thread_switch () ;

} else {
m—>holder = CurrentThread;

spin_unlock (m—>spinlock) ;

void blocking_unlock (mutex_t *m) {

spin_lock (m—>spinlock) ;

if (queue_empty (m—>wait_queue)) {
m—>holder = 0;

else {
m—>holder = dequeue (m—>wait_queue);
enqueue (RunQueue, m—->holder);

}

spin_unlock (m—>spinlock) ;

}
|:> Can you do spin_unlock () inside thread_switch () ?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Futexes

_) Futex: Linux’s fast user-space mutex (for 1 x 1 model)
— safe, efficient kernel conditional queueing in Linux
Q most of the time when you try to lock a mutex, it’s
unlocked; so just go ahead and lock it (no system call)
Q if it’s locked (by another thread), then a system call is
required for this thread to obtain the lock
= contained in it is an unsigned integer state called value and
a queue of waiting threads

ﬁ> Two system calls are provided to support futexes

futex_wait (futex_t *futex, int wval) {
if (futex—-—>val == wval)
// sleep on the futex queue inside kernel

}

futex_wake (futex_t *futex) {
// wake up one thread from wait queue if
// there is any

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Ancillary Functions

) Add 1 to *val, return its original value

unsigned int atomic_inc (unsigned int *wval) ({
// performed atomically
return((*val)++); // textbook is wrong

}

= e.g., X86 has "lock-prefixed instructions" so you can lock any
consecutive machine instructions together and make them
atomic

ﬁ} Subtract 1 to *val, return its original value

unsigned int atomic_dec (unsigned int *wval) ({
// performed atomically
return((*val)—--); // textbook is wrong

}

ﬁ> Just like cas (), both functions return the previous lock value

Copyright © William C. Cheng

Operating Systems - CSCI 402

Attempt 1

I:> futex->val
= 0 means unlocked; otherwise, locked

void lock (futex_t *futex) {
unsigned int c;
while ((c = atomic_inc (&futex—->val)) != 0)
futex_wait (futex, c+1l1);
}

void unlock (futex_t *futex) ({
futex->val = 0;
futex_wake (futex) ;

}

) Problem with unlock ()
= slow because futex_wake () is a system call

) Problem with lock ()
= threads run in lock steps in a multiprocessor environment! (i\
0 —

% = futex—>val may wrap-around v

Copyright © William C. Cheng

Operating Systems - CSCI 402

Attempt 2

_) futex->val can only take on values of 0, 1, and 2
= 0 means unlocked
= 1 means locked but no waiting thread
—= 2 means locked with the possibility of waiting threads

void lock (futex_t *futex) { textbook
unsigned int c; is wrong
if ((c = CAS(&futex—-—>val, 0, 1) != 0)
do { //
if (¢ == 2 || (cas(s&futex->val, 1, 2) != 0))
futex _wait (futex, 2);
} while ((c = CAS (&futex->wval, 0, 2)) !'= 0));

}

void unlock (futex_t *futex) {
if (atomic_dec (&futex—->val) != 1) {
futex->val = 0;
futex_wake (futex);
}
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Attempt 2
_) Complications
void lock (futex_t *futex) { textbook
unsigned int C, is wrong
if ((c = CAS (&futex—->wval, 0, 1) != 0) //
do {
if (¢ == 2 || (cas(s&futex->val, 1, 2) != 0))
futex _wait (futex, 2);
} while ((c = CAS (&futex->wval, 0, 2)) !'= 0));

}

void unlock (futex_t *futex)
if (atomic_dec (&futex—-—>val) != 1) {
futex->val = 0;
futex_wake (futex) ;

}

= the implementation of futex_wait () and futex_wake () must

be atomic to avoid race conditions
. H \ 0 ¥
Q https://www.akkadia.org/drepper/futex.pdf 30 U

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Synchronization Summary

> Spin locks
= used if the duration of waiting is expected to be small

Q as in the case at the beginning of blocking_lock ()

) Sleep (or blocking) locks
= used if the duration of waiting is expected to be long

) Futexes

—= optimized version of blocking locks

ﬁ> In your kernel assignmen #1, you need to implement kernel threads
= very different from user threads
Q keep in mind that the weenix kernel is non-preemptive
Q the kernel is very powerful (and therefore, must be bug free,
and therefore, your code must be bug free)
= in kernel assignmen #3, you need to implement user
threads/processes (well, MTP=0, still one thread per process)

Copyright © William C. Cheng

