
Ch 5: Processor

Management

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processor Management

lock/mutex implementation on multiprocessors

Threads Implementation

Interrupts

Scheduling

Linux/Windows Scheduler

5.1 Threads

Implementations

Strategies

A Simple Thread Implementation

Multiple Processors

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads Implementation

we will discuss various strategies for supporting threads

The ultimate goal of the OS is to support user-level applications

in the kernel?

Where are operations on threads implemented?

or in user-level library?

one-level or 1 × 1 model (threads are implemented in the kernel)

Approaches

two-level model (threads are implemented in user library)

variable-weight processes

N × 1

M × N

scheduler activations model

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One-Level Model (1 × 1)

User

Kernel

Processors

all aspects of the thread implementation are in the kernel

i.e., all thread routines (e.g., pthread_mutex_lock) called

by user code are all system calls

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One-Level Model (1 × 1)

each user thread is mapped one-to-one to a kernel thread

The simplest and most direct approach is the one-level model

it’s a system call, so it traps into the kernel

If a thread calls pthread_create()

associate it with the process control block

the kernel creates a thread control block

the kernel creates a kernel and a user stack for this thread

why does it have to be done in the kernel?

What about pthread_mutex_lock()

it’s not necessary to protect the threads from each other!

you definitely don’t need the kernel to protect threads

from each other

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One-Level Model (1 × 1)

if pthread_mutex_lock finds the mutex available, it should

return quickly (and lock the mutex)

Problem: system calls are expensive

if this can be done in user code, it can be 20 times faster

(for the case where the mutex is available)

in Win32 threads, an equivalent of a mutex is represented

in a user-level data structure

if such an object is not locked, it returns quickly

if such an object is locked, it makes a system call and

blocks in the kernel

Does it happen a lot that pthread_mutex_lock finds the mutex

available?

think about your warmup2

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Variable-Weight Processes

Variant of one-level model

Portions of parent process selectively copied into or shared

with child process

Children created using clone() system call

Files:
file-descriptor table

Virtual Memory

FS:
root, cwd, umask

Signal
Info

Parent Child

Other
Thread

Other
Thread

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Threads (pre 2.6)

Initial
Thread

Other
Thread

Manager
Thread

Pipe

new kernel-supported synchronization construct: futex (fast

user-space mutex)

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

NPTL in Linux 2.6

full POSIX-threads semantics on improved variable-weight

processes

getpid() returns process ID of first thread in group

Native POSIX-Threads Library

threads of a "process" form a thread group

any thread in group can wait for any other to terminate

signals to process delivered by kernel to any thread in

group

used to implement mutexes, semaphores, and condition

variables

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model

what an user-level application perceives as a thread is

implemented within user-level library code

In the two-level model, a user-level library plays a major role

single kernel thread (per user process)

Two versions

multiple kernel threads (per user process)

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model - One Kernel Thread (N × 1)

User

Kernel

Processors

threads are implemented entirely in the user level

This is one of the earliest ways of implementing threads

thread control block, mutex in user space

thread stack allocated by user library code

mostly done on uniprocessors

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model - One Kernel Thread (N × 1)

Within a process, user threads are multiplexed not on the

processor, but on a kernel-supported thread

a stack and a thread control block is allocated

User thread creation

relative straightforward

Synchronization implementation

thread is put on a queue of runnable threads

wait for its turn to become the running thread

if a thread must block, it simply queues itself on a wait queue

and calls context-switch routine to pass control to the

first thread on the runnable queue

e.g., mutex (one queue per mutex)

the OS multiplexes kernel threads (or equivalently, processes)

on the processor

kernel does not know about the existance of user threads

there are really no "kernel threads" in these systems

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model - One Kernel Thread (N × 1)

fast, because no system calls for thread-related APIs

Major advantage

what if a thread makes a system call (for a non-thread-related

API)?

Major disadvantage

it gets blocked in the kernel

no other user thread in the process can run

also, there is no true parallelism within a process even

when more CPUs are available

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping ...

ssize_t read(int fd, void *buf, size_t count)
{
 ssize_t ret;
 while (1) {
 if ((ret = real_read(fd, buf, count)) == -1) {
 if (errno == EWOULDBLOCK) {
 sem_wait(&FileSemaphore[fd]);
 continue;
 }
 }
 break;
 }
 return(ret);
}

real_read() either returns immediately with data in buf

Solution is to have a non-blocking read() called real_read()

or returns immediately with an error code in errno

EWOULDBLOCK means that a real read() would block, i.e.,

data is not ready to be read

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping ...

ssize_t read(int fd, void *buf, size_t count)
{
 ssize_t ret;
 while (1) {
 if ((ret = real_read(fd, buf, count)) == -1) {
 if (errno == EWOULDBLOCK) {
 sem_wait(&FileSemaphore[fd]);
 continue;
 }
 }
 break;
 }
 return(ret);
}

perhaps a signal handler will invoke sem_post() when data is

ready to be read

One semaphore for each open file

only works for some I/O objects - not a general solution

Major drawback

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model: Multiple Kernel Threads (M × N)

User

Kernel

Processors

no system calls for thread-related APIs

Implementation is similar to the two-level model with a single

kernel thread

This is called the M-to-N model

if we don’t have enough kernel threads per user process,

we end up having the same problem with the N-to-1 model

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock

User

Kernel

first user thread writes to a full pipe and get blocked in the

kernel

Ex: two threads are communicating using a pipe (this is

essentially a kernel implementation of the producer-consmer

problem)

first thread just happened to use the last kernel thread

2nd thread wants to read the pipe to unblock the first

thread, but cannot because no kernel thread left

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock

User

Kernel

an obvious solution

Solaris solution: automatically create a new kernel thread

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Problems With Two-level Model

if there are N kernel threads and if N user threads are blocked

in I/O

no other user threads can make progress

Two-level model does not solve the I/O blocking problem

user-level thread schedulers are not aware of the

kernel-level thread scheduler

it may know the number of kernel threads

Another problem: Priority Inversion

how can the user-level scheduler talk to the kernel-level

scheduler?

it’s possible to have a higher priority user thread scheduled

on a lower priority kernel thread and vice versa

people have tried this, but it’s complicated

Solaris solution basically goes back to one-level model

Will address these problems a little later with Scheduler

Activations Model

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

5.1 Threads

Implementations

Strategies

A Simple Thread Implementation

Multiple Processors

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Threads Implementation

Threads implementation considerations

data structures

thread switching

synchronization

how to implmement mutexes?

spin locks

sleep/blocking locks

futexes

please keep in mind that a mutex can be implemented in the

kernel and/or in the user space

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Threads Implementation

Memory

mutex

INT INT

3

1

4

2

another thread running on the same processor may preempt

this thread and accesses the same data structure

an interrupt handler running on the same processor that

accesses the same data structure

Asynchronous activies

that may require

concurrency control

another thread running on another processor might access

the same data structure

an interrupt handler running on another processor might

access the same data structure

3)

1)

4)

2)

The challenge with implementing mutexes is that you have to

ensure that they perform correctly under different kinds of

concurrency

User or

Kernel

Memory

mutex

INT INT

3

1

3

2

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Threads Implementation

This implementation is the basis for user-level threads package

Straight-threads implementation

everything happens in thread contexts

one processor

no interrupt

"thread" can mean kernel thread or user thread

mutex does not need to be a kernel data structure

therefore, no preemption

this is like your kernel 1 with DRIVERS=0 in Config.mk

this is the real reason why

kernel threads feels

different from user threads

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Basic Representation

Thread
object

Stack

We will depict a thread like this (to be more compact)

although we know that a thread control block is separated

from a thread’s stack

Mutex Queue 1

CurrentThread

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Collection of Threads

Thread
object

Stack

Thread
object

Stack

Thread
object

Stack

Thread
object

Stack

RunQueue

Thread
object

Stack

Thread
object

Stack

Thread
object

Stack

your kernel assignment looks like this

Each thread must be in one of these data structures

at any time, you should know where your threads are

Mutex Queue 2

I/O Queue 1

I/O Queue 2

Other Queues ?

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Context Pointer

Context

stack frame

Recall from Ch 3

Thread
object

Stack

SP

if this thread is not currently running, "stack frame"

corresponds to switch()

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Straight-threads - Thread Switch

void thread_switch() {
 thread_t NextThread, OldCurrent;

 NextThread = dequeue(RunQueue);
 OldCurrent = CurrentThread;
 CurrentThread = NextThread;
 swapcontext(&OldCurrent->context,
 &NextThread->context);
 // We’re now in the new thread’s context
}

swapcontext(old, new) saves the caller’s context into the

old context and restores from the new context

since RunQueue may be empty, this code is incomplete

before you get here, the current thread is queued onto a

queue somewhere else already (e.g., a mutex queue)

switch() in Ch 3 has a target thread argument

Need a thread_switch() function to yield the processor

in weenix, this function is called context_switch()

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Straight-threads - Synchronization

void mutex_lock(mutex_t *m) {
 if (m->locked) {
 enqueue(m->queue, CurrentThread);
 thread_switch();
 } else
 m->locked = 1;
}

void mutex_unlock(mutex_t *m) {
 if (queue_empty(m->queue))
 m->locked = 0;
 else
 enqueue(runqueue, dequeue(m->queue));
}

According to the textbook

mutex_unlock() does not seem to work becuase when it

returns, the mutex can still be locked and the new mutex holder

does not seem to be holding the mutex

after further analysis, it actually does work!

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Straight-threads - Synchronization

void mutex_lock(mutex_t *m) {
 if (m->locked) {
 enqueue(m->queue, CurrentThread);
 thread_switch();
 } else
 m->locked = 1;
}

void mutex_unlock(mutex_t *m) {
 if (queue_empty(m->queue))
 m->locked = 0;
 else
 enqueue(runqueue, dequeue(m->queue));
}

Why is this mutex implementation atomic?

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Straight-threads - Synchronization

void mutex_lock(mutex_t *m) {
 if (m->locked) {
 enqueue(m->queue, CurrentThread);
 thread_switch();
 } else
 m->locked = 1;
}

void mutex_unlock(mutex_t *m) {
 if (queue_empty(m->queue))
 m->locked = 0;
 else
 enqueue(runqueue, dequeue(m->queue));
}

single processor and no interrupts

Why is this mutex implementation atomic?

no way to preempt a thread’s execution

a thread holds on to the processor as long as it wants,

until it relinquishes processor voluntarily

