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Management
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Processor Management

lock/mutex implementation on multiprocessors

Threads Implementation

Interrupts

Scheduling

Linux/Windows Scheduler



5.1  Threads

Implementations

Strategies

A Simple Thread Implementation

Multiple Processors
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Threads Implementation

we will discuss various strategies for supporting threads

The ultimate goal of the OS is to support user-level applications

in the kernel?

Where are operations on threads implemented?

or in user-level library?

one-level or 1 × 1 model (threads are implemented in the kernel)

Approaches

two-level model (threads are implemented in user library)

variable-weight processes

N × 1

M × N

scheduler activations model
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One-Level Model (1 × 1)

User

Kernel

Processors



all aspects of the thread implementation are in the kernel

i.e., all thread routines (e.g., pthread_mutex_lock) called 

by user code are all system calls
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One-Level Model (1 × 1)

each user thread is mapped one-to-one to a kernel thread

The simplest and most direct approach is the one-level model

it’s a system call, so it traps into the kernel

If a thread calls pthread_create()

associate it with the process control block

the kernel creates a thread control block

the kernel creates a kernel and a user stack for this thread

why does it have to be done in the kernel?

What about pthread_mutex_lock()

it’s not necessary to protect the threads from each other!

you definitely don’t need the kernel to protect threads 

from each other
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One-Level Model (1 × 1)

if pthread_mutex_lock finds the mutex available, it should 

return quickly (and lock the mutex)

Problem: system calls are expensive

if this can be done in user code, it can be 20 times faster 

(for the case where the mutex is available)

in Win32 threads, an equivalent of a mutex is represented 

in a user-level data structure

if such an object is not locked, it returns quickly

if such an object is locked, it makes a system call and 

blocks in the kernel

Does it happen a lot that pthread_mutex_lock finds the mutex 

available?

think about your warmup2
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Variable-Weight Processes

Variant of one-level model

Portions of parent process selectively copied into or shared 

with child process

Children created using clone() system call

Files:
file-descriptor table

Virtual Memory

FS:
root, cwd, umask

Signal
Info

Parent Child



Other
Thread

Other
Thread
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Linux Threads (pre 2.6)

Initial
Thread

Other
Thread

Manager
Thread

Pipe



new kernel-supported synchronization construct: futex (fast 

user-space mutex)
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NPTL in Linux 2.6

full POSIX-threads semantics on improved variable-weight 

processes

getpid() returns process ID of first thread in group

Native POSIX-Threads Library

threads of a "process" form a thread group

any thread in group can wait for any other to terminate

signals to process delivered by kernel to any thread in 

group

used to implement mutexes, semaphores, and condition 

variables
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Two-Level Model

what an user-level application perceives as a thread is 

implemented within user-level library code

In the two-level model, a user-level library plays a major role

single kernel thread (per user process)

Two versions

multiple kernel threads (per user process)
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Two-Level Model - One Kernel Thread (N × 1)

User

Kernel

Processors

threads are implemented entirely in the user level

This is one of the earliest ways of implementing threads

thread control block, mutex in user space

thread stack allocated by user library code

mostly done on uniprocessors
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Two-Level Model - One Kernel Thread (N × 1)

Within a process, user threads are multiplexed not on the 

processor, but on a kernel-supported thread

a stack and a thread control block is allocated

User thread creation

relative straightforward

Synchronization implementation

thread is put on a queue of runnable threads

wait for its turn to become the running thread

if a thread must block, it simply queues itself on a wait queue

and calls context-switch routine to pass control to the 

first thread on the runnable queue

e.g., mutex (one queue per mutex)

the OS multiplexes kernel threads (or equivalently, processes)

on the processor

kernel does not know about the existance of user threads

there are really no "kernel threads" in these systems
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Two-Level Model - One Kernel Thread (N × 1)

fast, because no system calls for thread-related APIs

Major advantage

what if a thread makes a system call (for a non-thread-related 

API)?

Major disadvantage

it gets blocked in the kernel

no other user thread in the process can run

also, there is no true parallelism within a process even 

when more CPUs are available



0123

44

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Coping ...

ssize_t read(int fd, void *buf, size_t count) 
{
  ssize_t ret;
  while (1) {
    if ((ret = real_read(fd, buf, count)) == -1) {
      if (errno == EWOULDBLOCK) {
        sem_wait(&FileSemaphore[fd]);
        continue;
      }
    }
    break;
  }
  return(ret);
}

real_read() either returns immediately with data in buf

Solution is to have a non-blocking read() called real_read()

or returns immediately with an error code in errno

EWOULDBLOCK means that a real read() would block, i.e., 

data is not ready to be read
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Coping ...

ssize_t read(int fd, void *buf, size_t count) 
{
  ssize_t ret;
  while (1) {
    if ((ret = real_read(fd, buf, count)) == -1) {
      if (errno == EWOULDBLOCK) {
        sem_wait(&FileSemaphore[fd]);
        continue;
      }
    }
    break;
  }
  return(ret);
}

perhaps a signal handler will invoke sem_post() when data is 

ready to be read

One semaphore for each open file

only works for some I/O objects - not a general solution

Major drawback
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Two-Level Model: Multiple Kernel Threads (M × N)

User

Kernel

Processors

no system calls for thread-related APIs

Implementation is similar to the two-level model with a single 

kernel thread

This is called the M-to-N model

if we don’t have enough kernel threads per user process,

we end up having the same problem with the N-to-1 model
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Deadlock

User

Kernel

first user thread writes to a full pipe and get blocked in the 

kernel

Ex: two threads are communicating using a pipe (this is 

essentially a kernel implementation of the producer-consmer 

problem)

first thread just happened to use the last kernel thread

2nd thread wants to read the pipe to unblock the first 

thread, but cannot because no kernel thread left
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Deadlock

User

Kernel

an obvious solution

Solaris solution: automatically create a new kernel thread
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Problems With Two-level Model

if there are N kernel threads and if N user threads are blocked 

in I/O

no other user threads can make progress

Two-level model does not solve the I/O blocking problem

user-level thread schedulers are not aware of the 

kernel-level thread scheduler

it may know the number of kernel threads

Another problem: Priority Inversion

how can the user-level scheduler talk to the kernel-level 

scheduler?

it’s possible to have a higher priority user thread scheduled 

on a lower priority kernel thread and vice versa

people have tried this, but it’s complicated

Solaris solution basically goes back to one-level model

Will address these problems a little later with Scheduler 

Activations Model
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5.1  Threads

Implementations

Strategies

A Simple Thread Implementation

Multiple Processors
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A Simple Threads Implementation

Threads implementation considerations

data structures

thread switching

synchronization

how to implmement mutexes?

spin locks

sleep/blocking locks

futexes

please keep in mind that a mutex can be implemented in the 

kernel and/or in the user space
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A Simple Threads Implementation

Memory

mutex

INT INT

3

1

4

2

another thread running on the same processor may preempt 

this thread and accesses the same data structure

an interrupt handler running on the same processor that 

accesses the same data structure

Asynchronous activies 

that may require 

concurrency control

another thread running on another processor might access 

the same data structure

an interrupt handler running on another processor might 

access the same data structure

3)

1)

4)

2)

The challenge with implementing mutexes is that you have to 

ensure that they perform correctly under different kinds of 

concurrency



User or

Kernel

Memory

mutex

INT INT

3

1

3

2
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A Simple Threads Implementation

This implementation is the basis for user-level threads package

Straight-threads implementation

everything happens in thread contexts

one processor

no interrupt

"thread" can mean kernel thread or user thread

mutex does not need to be a kernel data structure

therefore, no preemption

this is like your kernel 1 with DRIVERS=0 in Config.mk

this is the real reason why 

kernel threads feels 

different from user threads
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Basic Representation

Thread
object

Stack

We will depict a thread like this (to be more compact)

although we know that a thread control block is separated 

from a thread’s stack



Mutex Queue 1

CurrentThread
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A Collection of Threads

Thread
object

Stack

Thread
object

Stack

Thread
object

Stack

Thread
object

Stack

RunQueue

Thread
object

Stack

Thread
object

Stack

Thread
object

Stack

your kernel assignment looks like this

Each thread must be in one of these data structures

at any time, you should know where your threads are

Mutex Queue 2

I/O Queue 1

I/O Queue 2

Other Queues ?
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Context Pointer

Context

stack frame

Recall from Ch 3

Thread
object

Stack

SP

if this thread is not currently running, "stack frame" 

corresponds to switch()
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Straight-threads - Thread Switch

void thread_switch( ) {
  thread_t NextThread, OldCurrent;

  NextThread = dequeue(RunQueue);
  OldCurrent = CurrentThread;
  CurrentThread = NextThread;
  swapcontext(&OldCurrent->context,
              &NextThread->context);
  // We’re now in the new thread’s context
}

swapcontext(old, new) saves the caller’s context into the 

old context and restores from the new context

since RunQueue may be empty, this code is incomplete

before you get here, the current thread is queued onto a 

queue somewhere else already (e.g., a mutex queue)

switch() in Ch 3 has a target thread argument

Need a thread_switch() function to yield the processor

in weenix, this function is called context_switch()
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Straight-threads - Synchronization

void mutex_lock(mutex_t *m) {
  if (m->locked) {
    enqueue(m->queue, CurrentThread);
    thread_switch();
  } else
    m->locked = 1;
}

void mutex_unlock(mutex_t *m) {
  if (queue_empty(m->queue))
    m->locked = 0;
  else
    enqueue(runqueue, dequeue(m->queue));
}

According to the textbook

mutex_unlock() does not seem to work becuase when it 

returns, the mutex can still be locked and the new mutex holder 

does not seem to be holding the mutex

after further analysis, it actually does work!
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Straight-threads - Synchronization

void mutex_lock(mutex_t *m) {
  if (m->locked) {
    enqueue(m->queue, CurrentThread);
    thread_switch();
  } else
    m->locked = 1;
}

void mutex_unlock(mutex_t *m) {
  if (queue_empty(m->queue))
    m->locked = 0;
  else
    enqueue(runqueue, dequeue(m->queue));
}

Why is this mutex implementation atomic?
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Straight-threads - Synchronization

void mutex_lock(mutex_t *m) {
  if (m->locked) {
    enqueue(m->queue, CurrentThread);
    thread_switch();
  } else
    m->locked = 1;
}

void mutex_unlock(mutex_t *m) {
  if (queue_empty(m->queue))
    m->locked = 0;
  else
    enqueue(runqueue, dequeue(m->queue));
}

single processor and no interrupts

Why is this mutex implementation atomic?

no way to preempt a thread’s execution

a thread holds on to the processor as long as it wants,

until it relinquishes processor voluntarily


