Operating Systems - CSCI 402

Ch 5: Processor
Management

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Processor Management

) Threads Implementation
= lock/mutex implementation on multiprocessors

) Interrupts
ﬁ} Scheduling
) Linux/Windows Scheduler

Copyright © William C. Cheng

Operating Systems - CSCI 402

5.1 Threads
Implementations

_) Strategies
_) ASimple Thread Implementation

—) Multiple Processors

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads Implementation

ﬁ} The ultimate goal of the OS is to support user-level applications
= we Wwill discuss various strategies for supporting threads

ﬁ} Where are operations on threads implemented?
= in the kernel?
= Oor in user-level library?

_) Approaches
= ohe-level or 1 x 1 model (threads are implemented in the kernel)

Q variable-weight processes

= two-level model (threads are implemented in user library)
Q Nx1
Q MxN

= scheduler activations model

Copyright © William C. Cheng

Operating Systems - CSCI 402

One-Level Model (1 x 1)

User

>))) Kernel
PV

Processors

Copyright © William C. Cheng

Operating Systems - CSCI 402

One-Level Model (1 x 1)

) The simplest and most direct approach is the one-level model
= all aspects of the thread implementation are in the kernel
Q l.e., all thread routines (e.g., pthread_mutex_1lock) called
by user code are all system calls
— each user thread is mapped one-to-one to a kernel thread

I:> If a thread calls pthread_create ()
= it’s a system call, so it traps into the kernel
= the kernel creates a thread control block
Q associate it with the process control block
= the kernel creates a kernel and a user stack for this thread

I:> What about pthread_mutex_1lock ()
= why does it have to be done in the kernel?
= [t’s not necessary to protect the threads from each other!
Q you definitely don’t need the kernel to protect threads
from each other

Copyright © William C. Cheng

Operating Systems - CSCI 402

One-Level Model (1 x 1)

) Problem: system calls are expensive
= if pthread_mutex_1lock finds the mutex available, it should

return quickly (and lock the mutex)
Q If this can be done in user code, it can be 20 times faster

(for the case where the mutex is available)
Q in Win32 threads, an equivalent of a mutex is represented

in a user-level data structure
& if such an object is not locked, it returns quickly
& if such an object is locked, it makes a system call and

blocks in the kernel

) Does it happen a lot that pthread_mutex_lock finds the mutex

available?
= think about your warmup?2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Variable-Weight Processes

ﬁ> Variant of one-level model

ﬁ> Portions of parent process selectively copied into or shared
with child process

) Children created using clone () system call

Signal
Info

Files:
file-descriptor table

AN

\ /

Parent Child

FS:

root, cwd, umask

/)

Virtual Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linux Threads (pre 2.6)

Initial
Thread
Manager
O) Thread
Other
Thread

mread

Copyright © William C. Cheng

Operating Systems - CSCI 402

NPTL in Linux 2.6

) Native POSIX-Threads Library
= full POSIX-threads semantics on improved variable-weight
processes
= threads of a "process’ form a thread group
Q getpid () returns process ID of first thread in group
Q any thread in group can wait for any other to terminate
Q signals to process delivered by kernel to any thread in
group
= nhew kernel-supported synchronization construct: futex (fast
user-space mutex)
Q used to implement mutexes, semaphores, and condition
variables

Copyright © William C. Cheng

Operating Systems - CSCI 402

Two-Level Model

ﬁ} In the two-level model, a user-level library plays a major role
— what an user-level application perceives as a thread is
implemented within user-level library code

) Two versions
= single kernel thread (per user process)
—= multiple kernel threads (per user process)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Two-Level Model - One Kernel Thread (N x 1)

DD DD
> Kernel

W

ﬁ> This is one of the earliest ways of implementing threads
= threads are implemented entirely in the user level
Q thread control block, mutex in user space
Q thread stack allocated by user library code

I
—= mostly done on uniprocessors 3 l,y
Copyright © William C. Cheng

Processors

Operating Systems - CSCI 402

Two-Level Model - One Kernel Thread (N x 1)

ﬁ} Within a process, user threads are multiplexed not on the
processor, but on a kernel-supported thread
= the OS multiplexes kernel threads (or equivalently, processes)
on the processor
— kernel does not know about the existance of user threads
Q there are really no "kernel threads" in these systems

ﬁ} User thread creation
— a stack and a thread control block is allocated
= thread is put on a queue of runnable threads
Q wait for its turn to become the running thread

ﬁ} Synchronization implementation
= relative straightforward
= e.g., mutex (one queue per mutex)
Q if a thread must block, it simply queues itself on a wait queue
and calls context-switch routine to pass control to the |
&

first thread on the runnable queue
Copyright © William C. Cheng

42

Operating Systems - CSCI 402

Two-Level Model - One Kernel Thread (N x 1)

_) Major advantage
= fast, because no system calls for thread-related APls

—) Major disadvantage
= what if a thread makes a system call (for a non-thread-related
API)?
Q it gets blocked in the kernel
Q no other user thread in the process can run
— also, there is no true parallelism within a process even
when more CPUs are available

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping ...

ssize_t read(int f£d, wvoid *buf, size_t count)

{

ssize_t ret;
while (1) {
if ((ret = real_read(fd, buf, count)) == -1) {
if (errno == EWOULDBLOCK) {
sem_wait (&FileSemaphore[£fd]);
continue;

}
}

break;

}

return (ret) ;

}

I:> Solution is to have a non-blocking read () called real_read()
= real_read() either returns immediately with data in buf
= or returns immediately with an error code in errno
Q EWOULDBLOCK means that a real read () would block, i.e.,
data is not ready to be read AR
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping ...

ssize_t read(int f£d, wvoid *buf, size_t count)

{

ssize_t ret;
while (1) {
if ((ret = real_read(fd, buf, count)) == -1) {
if (errno == EWOULDBLOCK) {
sem_wait (&FileSemaphore[£fd]);
continue;

}
}

break;

}

return (ret) ;

}

) One semaphore for each open file
= perhaps a signal handler will invoke sem_post () when data is
ready to be read

) Major drawback |
= ohly works for some I/O objects - not a general solution 453 |.’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Two-Level Model: Multiple Kernel Threads (M x N)

DD DD
DD D e

@ @ Processors

ﬁ> This is called the M-to-N model

ﬁ> Implementation is similar to the two-level model with a single
kernel thread
= nho system calls for thread-related APIs
= |f we don’t have enough kernel threads per user process, |
we end up having the same problem with the N-to-1 model 463 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock

ﬁ> Ex: two threads are communicating using a pipe (this is
essentially a kernel implementation of the producer-consmer

problem)
= first user thread writes to a full pipe and get blocked in the

kernel
Q first thread just happened to use the last kernel thread

Q 2nd thread wants to read the pipe to unblock the first
By
% thread, but cannot because no kernel thread left v

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock

- - User

G> Solaris solution: automatically create a new kernel thread
= an obvious solution

Copyright © William C. Cheng

Operating Systems - CSCI 402

Problems With Two-level Model

ﬁ} Two-level model does not solve the 1/0 blocking problem
= if there are N kernel threads and if N user threads are blocked
in /O
Q no other user threads can make progress
Q Solaris solution basically goes back to one-level model

) Another problem: Priority Inversion

— user-level thread schedulers are not aware of the
kernel-level thread scheduler
Q it may know the number of kernel threads

= how can the user-level scheduler talk to the kernel-level
scheduler?
Q people have tried this, but it’'s complicated

= [t’s possible to have a higher priority user thread scheduled
on a lower priority kernel thread and vice versa

ﬁ} Will address these problems a little later with Scheduler |
Activations Model @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

5.1 Threads
Implementations

_) Strategies
_) A Simple Thread Implementation

—) Multiple Processors

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Threads Implementation

ﬁ} Threads implementation considerations
= data structures
= thread switching
= synchronization
Q how to impimement mutexes?
<& spin locks
& sleep/blocking locks
& futexes
Q please keep in mind that a mutex can be implemented in the
kernel and/or in the user space

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Threads Implementation
ﬁ} The challenge with implementing mutexes is that you have to
ensure that they perform correctly under different kinds of
concurrency @
D@ bINT
mutex
that may require Memory
concurrency control
1) another thread running on the same processor may preempt
this thread and accesses the same data structure
2) another thread running on another processor might access
the same data structure
3) an interrupt handler running on the same processor that
accesses the same data structure

4) an interrupt handler running on another processor might (\
@ —

access the same data structure N

) Asynchronous activies

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Threads Implementation

ﬁ} This implementation is the basis for user-level threads package
= "thread" can mean kernel thread or user thread
= mutex does not need to be a kernel data structure

ﬁ> Straight-threads implementation
= everything happens in thread contexts
Q no interrupt
Q therefore, no preemption
= ohe processor
= this is like your kernel 1 with DRIVERS=0 In Config.mk

User or @
Kernel TINT
4)
this is the real reason why —
kernel threads feels
different from user threads

L

Copyright © William C. Cheng

Operating Systems - CSCI 402

Basic Representation

Stack

Thread
object

> We will depict a thread like this (to be more compact)
= although we know that a thread control block is separated
from a thread’s stack (D

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Collection of Threads

CurrentThread
RunQueue
Mutex Queue 1
Mutex Queue 2
+ 1/0 Queue 1
Stack + + 1/0 Queue 2
Stack
Thread o S Other Queues ?
object +
TI?)r_ea? + e o o
objec Thread
Stack i
+ object Stack
Ttlioread \» +
object Thread
Stack i
object Stack
Thread
object Thread
object

ﬁ} Each thread must be in one of these data structures
= your kernel assignment looks like this

Q at any time, you should know where your threads are 7NN

y y y ;@

Copyright © William C. Cheng

Operating Systems - CSCI 402

Context Pointer

_) Recall from Ch 3

?

stack frame)
- Stack
SP . Thread
Context object

= |f this thread is not currently running, "stack frame"
corresponds to switch ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Straight-threads - Thread Switch

) Need a thread_switch () function to yield the processor

void thread_switch() {
thread_t NextThread, OldCurrent;

NextThread = dequeue (RunQueue) ;

OldCurrent = CurrentThread;

CurrentThread = NextThread;

swapcontext (&0ldCurrent—->context,
&NextThread—->context) ;

// We’re now in the new thread’s context

}
switch () in Ch 3 has a target thread argument
swapcontext (old, new) saves the caller’s context into the
old context and restores from the new context
Q In weenix, this function is called context_switch ()
since RunQueue may be empty, this code is incomplete
before you get here, the current thread is queued onto a
queue somewhere else already (e.g., a mutex queue) ' @’_

[

[

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

Straight-threads - Synchronization
) According to the textbook

void mutex_lock (mutex_t *m) ({
if (m—>locked) {
enqueue (m—>queue, CurrentThread);
thread_switch () ;
} else
m—>locked = 1;

}

void mutex_unlock (mutex_t *m) ({
if (queue_empty (m—>queue))
m—>locked = O;
else
enqueue (runqueue, dequeue (m—>queue)) ;

}

= mutex_unlock () does not seem to work becuase when it
returns, the mutex can still be locked and the new mutex holder

does not seem to be holding the mutex
s,)
— after further analysis, it actually does work! VG

Copyright © William C. Cheng

Straight-threads - Synchronization

void mutex_lock (mutex_t *m) ({
if (m—>locked) {
enqueue (m—>queue, CurrentThread);
thread_switch();
} else
m—>locked = 1;

}

void mutex_unlock (mutex_t *m) ({
if (queue_empty (m—>queue))
m—>locked = O;
else
enqueue (runqueue, dequeue (m—>queue));

}

> Why is this mutex implementation atomic?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Straight-threads - Synchronization

void mutex_lock (mutex_t *m) ({
if (m—>locked) {
enqueue (m—>queue, CurrentThread);
thread_switch();
} else
m—>locked = 1;

}

void mutex_unlock (mutex_t *m) ({
if (queue_empty (m—>queue))
m—>locked = O;
else
enqueue (runqueue, dequeue (m—>queue));

}

ﬁ> Why is this mutex implementation atomic?
= single processor and no interrupts
= ho way to preempt a thread’s execution
Q a thread holds on to the processor as long as it wants, |
until it relinquishes processor voluntarily o0 @

Copyright © William C. Cheng

