
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

4.1 A Simple System

(Monolithic Kernel)

A Framework for Devices

Low-level Kernel (will come back to talk about this after Ch 7)

Processes & Threads

Storage Management (will come back to talk about this after Ch 5)

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Computer Terminal

VT100

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A "tty"

independent name space (i.e., named independently from

other things in the system)

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Devices

device independence

Challenges in supporting devices

device discovery

two choices

Device naming

devices are named as files

every device is identified by a device "number", which is

actually a pair of numbers

a major device number - identifies the device driver

Device driver:

a special file does not contain data

a minor device number - device index for all devices

managed by the same device driver

usually in the /dev directory

Special entries were created in the file system to refer to devices

e.g., /dev/disk1, /dev/disk2 each marked as a special file

it refers to devices by their major and minor device

numbers

if you do "ls -l", you can see the device numbers

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

statically allocated array in the kernel called cdevsw

(character device switch)

Data structure in the early Unix systems

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Finding Devices

unix etc home pro dev

disk1 disk2 ...

device number:
major = 6
minor = 1

cdevsw

0

1

2

3

4

entries in cdevsw contains

addresses of the device

driver entry points

a device driver maintains

its own data structure

read entry point

write entry point

mmap

...

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Drivers in Early Unix Systems

The kernel was statically configured to contain device-specific

information such as:

interrupt-vector locations

locations of device-control registeres on whatever bus the

device was attached to

Static approach was simple, but cannot be easily extended

a kernel must be custom configured for each installation

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Probing

First step to improve the old way

allow the devices to to be found and automatically

configured when the system booted

(still require that a kernel contain all necessary device

drivers)

Each device driver includes a probe routine

invoked at boot time

probe the relevant buses for devices and configure them

including identifying and recording interrupt-vector and

device-control-register locations

This allowed one kernel image to be built that could be useful

for a number of similar but not identical installations

boot time is kind of long

impractical as the number of supported devices gets big

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Probing

What’s the right thing to do?

Step 1: discover the device without the benefit of having the

relevant device driver in the kernel

Step 2: find the needed device drivers and dynamically link

them into the kernel

but how do you achieve this?

Solution: use meta-drivers

a meta-drive handles a particular kind of bus

e.g., USB (Universal Serial Bus)

a USB meta-driver is installed into the kernel

any device that goes onto a USB (Universal Serial Bus)

must know how to interact with the USB meta-driver via the

USB protocol

once a connected device is identified, system software would

select the appropriate device driver and load into the kernel

what about applications? how can they reference

dynamically discovered devices?

In some Linux systems, entries are added into /dev as the kernel

discovers them

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Discovering Devices

OS would notice

what kind of device is it?

So, you plug in a new device to your computer on a particular bus

where is the driver?

find a device driver

assign a name, but how is it chosen?

downside of this approach is that device naming

conventions not universally accepted

multiple similar devices, but how does application choose?

lookup the names from a database of names known as devfs

what’s an application to do?

some current Linux systems use udev

user-level application assigns names based on rules

provided by an administrator

Windows has the notion of interface classes

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Discovering Devices

e.g., touchpad on a laptop and USB mouse

What about the case where different devices acted similarly?

how should the choice be presented to applications?

a device can register itself as members of one or more such

classes

an application can enumerate all currently connected

members of such a class and choose among them (or use

them all)

4.1 A Simple System

(Monolithic Kernel)

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

Low-level Kernel (will come back to talk about this after Ch 7)

Processes & Threads

Storage Management (will come back to talk about this after Ch 5)

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes and Threads

a holder for an address space

A process is:

a collection of references to open files and other "execution

context"

a collection of other information shared by a set of threads

As discussed in Ch 1, processes related APIs include

fork(), exec(), wait(), exit()

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes and Threads

stack pointer

other registers

state

stack pointer

other registers

state

thread control blocks

stack pointer

other registers

state

stacks

address space
description

open file
descriptors

list of threads

current state

process control block

Note: all these are relevant to your Kernel Assignment 1

although we are only doing one thread per process

Run Zombie

Pretty simple

a process starts in the run state

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Life Cycle

Sub proc.
0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Relationships (1)

Init

cmd

Login 2Login 1 Login 3

cmd cmd

Sub proc.

cmd cmd

Process hierarchy

run "pstree" on Linux

If a process dies, you must reparent all its child processes

Sub proc.
0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Relationships (2)

Init

cmd

Login 2Login 1 Login 3

cmd cmd

Sub proc.

cmd cmd

Sub proc.
0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Relationships (3)

Init

cmd

Login 2Login 1 Login 3

cmd cmd

Sub proc.

cmd cmd

If a process dies, you must reparent all its child processes

new parent is the INIT process

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Threads

fork

fork

Or

expensive to fork a process

Solaris uses the 2nd approach

1 2

thread 1 called fork() and thread 2 has a mutex locked

Problem with 1st approach

POSIX solution is to provide a way to unlock all mutex

before fork()

who will unlock the mutex?

Terminated

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Running

Waiting

a thread starts in the runnable state

Runnable

scheduler

thread

itself

thread

itself

other

sleeps in the run queue (or "ready queue")

threads sleep in the run queue to wait to use the CPU

Terminated

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

the scheduler switches a thread’s state from runnable to running

scheduler

thread

itself

thread

itself

other

the scheduler decides who to run next inside the CPU

Terminated

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

a thread goes from running to waiting when a blocking call is

made by the thread itself

scheduler

thread

itself

thread

itself

other

the scheduler is not involved here

Terminated

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

the scheduler switches a thread’s state from running to runnable

when the thread used up its execution quantum

a thread can also "yield" the CPU (see examples in

faber_thread_test() in kernel 1)

scheduler

thread

itself

thread

itself

other

Terminated

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

a thread gets unblocked by the action of another thread or by an

interrupt handler

scheduler

thread

itself

thread

itself

other

the scheduler is not involved here

Terminated

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

in order for a thread to enter the terminated state, it has to be in

the running state just before that

what if something like pthread_cancel() is invoked when

the thread is not in the running state?

scheduler

thread

itself

thread

itself

other

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Does pthread_exit() delete the thread (completely) that calls it?

no, the thread goes into a zombie state (i.e., "terminated")

What’s left in the thread after it calls pthread_exit()?

its thread control block

its stack

how can a thread delete its own stack? no way!

needs to keep thread ID and return code around

which stack are we talking about anyway?

queue these threads on a list and have other threads

free them when it’s convenient (e.g., when the

scheduler schedule a thread to run)

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

If a thread is detached (our simple OS does not support this)

can do this is one of two ways

1) use a special reaper thread

2)

basically doing pthread_join()

Who is deleting the thread control block and freeing up

the thread’s stack space?

it can be taken care of in the pthread_join() code

the thread that calls pthread_join() does the clean up

If a thread is not detached

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Kernel 1 Process & Thread Life Cycles

Part of the kernel 1 assignment is to implement the life cycles of

processes and threads

process/thread creation/termination

process/thread cancellation

process waiting (and no thread joining since MTP=0)

since we are only doing one thread per process (MTP=0),

when a thread dies, the process must die as well

etc.

Unlike warmup2, in kernel assignments, first procedures of almost

all kernel threads have been written for you already!

the thread code there make function calls and some of these

functions are not-yet-implemented

your job is to implement those functions so that these kernel

threads can run perfectly

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Kernel 1 Process & Thread Life Cycles

Hint on how to do this is by reading kernel code

read the code in "kernel/proc/faber_test.c"

you need to understand what every line of code is doing there

you need to pass every test there (see grading guidelines)

you must not change anything there

if you need to do something similar in another module, just

copy the code from it

make sure the printout is correct (you may want to discuss

it in the class Google Group)

if it calls a function that you are suppose to implement, it’s

telling you what it’s expecting from that function!

feel free to discuss things like that in the class Google

Group

you can copy code that’s given to you as course material

and you don’t have to cite your source

