Operating Systems - CSCI 402

4.1 A Simple System
(Monolithic Kernel)

ﬁ> A Framework for Devices

ﬁ> Low-level Kernel (will come back to talk about this after Ch 7)

_) Processes & Threads

G> Storage Management (will come back to talk about this after Ch 5)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Computer Terminal

—) VT100

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copyright © William C. Cheng

Operating Systems - CSCI 402

Devices

) Challenges in supporting devices
= device independence
= device discovery

ﬁ> Device naming
= two choices
Q independent name space (i.e., named independently from
other things In the system)
Q devices are named as files

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Framework for Devices

ﬁ} Device driver:
= every device is identified by a device "number"”, which is
actually a pair of numbers
Q a major device number - identifies the device driver
Q a minor device humber - device index for all devices
managed by the same device driver

ﬁ} Special entries were created in the file system to refer to devices
= usually in the /dev directory
Q e.g., /dev/diskl, /dev/disk2 each marked as a special file
& a special file does not contain data
<& it refers to devices by their major and minor device
numbers
& ifyoudo "1s -1", you can see the device numbers

_ Data structure in the early Unix systems
= statically allocated array in the kernel called cdevsw

|
(character device switch) 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Finding Devices

unix | etc [home| pro | dev

/

dis!(1 disk2

y 0

" device number: 1
major = 6 2
3

4

~N

minor = 1

r

read entry point :
: write entry point :

L4
1
]
1
1

Sa
~
-
-~

> <
= entries In cdevsw contains mmap :
addresses of the device e 5
driver entry points
Q a device driver maintains cdevsw |
its own data structure 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Device Drivers in Early Unix Systems

ﬁ} The kernel was statically configured to contain device-specific
information such as:
= Interrupt-vector locations
= locations of device-control registeres on whatever bus the
device was attached to

ﬁ} Static approach was simple, but cannot be easily extended
— a kernel must be custom configured for each installation

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Device Probing

) First step to improve the old way
= allow the devices to to be found and automatically
configured when the system booted
= (still require that a kernel contain all necessary device
drivers)

_, Each device driver includes a probe routine
= Invoked at boot time
= probe the relevant buses for devices and configure them
Q including identifying and recording interrupt-vector and
device-control-register locations

ﬁ} This allowed one kernel image to be built that could be useful
for a number of similar but not identical installations
= boot time is kind of long
= Impractical as the number of supported devices gets big

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Device Probing

> What's the right thing to do?
Step 1: discover the device without the benefit of having the
relevant device driver in the kernel
Step 2: find the needed device drivers and dynamically link
them into the kernel
= but how do you achieve this?

ﬁ} Solution: use meta-drivers
—= a meta-drive handles a particular kind of bus
= e.g., USB (Universal Serial Bus)
Q a USB meta-driver is installed into the kernel
Q any device that goes onto a USB (Universal Serial Bus)
must know how to interact with the USB meta-driver via the
USB protocol
Q once a connected device is identified, system software would
select the appropriate device driver and load into the kernel

Q what about applications? how can they reference (A
PP y 9 @

dynamically discovered devices?
Copyright © William C. Cheng

Operating Systems - CSCI 402

Discovering Devices

ﬁ} So, you plug in a new device to your computer on a particular bus
= OS would notice
= find a device driver
Q what kind of device is it?
Q where is the driver?
= assigh a name, but how is it chosen?
= multiple similar devices, but how does application choose?

ﬁ> In some Linux systems, entries are added into /dev as the kernel

discovers them

= lookup the nhames from a database of names known as devfs
Q downside of this approach is that device naming

conventions not universally accepted

Q what’s an application to do?

= some current Linux systems use udev
Q user-level application assigns hames based on rules

rovided by an administrator INNY
X P Y 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Discovering Devices

ﬁ} What about the case where different devices acted similarly?
= e.(g., touchpad on a laptop and USB mouse
= how should the choice be presented to applications?

> Windows has the notion of interface classes
— a device can register itself as members of one or more such
classes
= an application can enumerate all currently connected
members of such a class and choose among them (or use
them all)

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

4.1 A Simple System
(Monolithic Kernel)

ﬁ> A Framework for Devices

ﬁ> Low-level Kernel (will come back to talk about this after Ch 7)

_) Processes & Threads

G> Storage Management (will come back to talk about this after Ch 5)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Processes and Threads

) Aprocess is:
= a holder for an address space
= a collection of other information shared by a set of threads
= a collection of references to open files and other "execution

context"”

ﬁ} As discussed in Ch 1, processes related APIs include
= fork (), exec(),wait (), exit ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Processes and Threads

address space stack pointer [L
description other registers [H
open file state I
descriptors H
list of threads thread control blocks I
current state T
process control block stacks
ﬁ} Note: all these are relevant to your Kernel Assignment 1 |
= although we are only doing one thread per process 1434

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Life Cycle

_) Pretty simple
= a process starts in the run state

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Relationships (1)

_) Process hierarchy
= run "pstree" on Linux

[Login 1 J [Login 2} [Login 3}

% i

[Sub proc.] [Sub proc.J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Relationships (2)

ﬁ} If a process dies, you must reparent all its child processes

Logln 1 Logln 2

<

Sub proc Sub proc

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Relationships (3)

ﬁ} If a process dies, you must reparent all its child processes
= new parent is the INIT process

[Sub proc.] [Sub proc.J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Fork and Threads

DD e

Or

D oo D

) Solaris uses the 2nd approach
— expensive to fork a process

) Problem with 1st approach
= thread 1 called fork () and thread 2 has a mutex locked
Q who will unlock the mutex?
= POSIX solution is to provide a way to unlock all mutex / @’_

before fork ()
Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

Runnable

Running

thread

itself
thread
itself

= a thread starts in the runnable state
Q sleeps in the run queue (or "ready queue")
& threads sleep in the run queue to wait to use the CPU

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

Runnable

Running

thread

itself
thread
itself

—= the scheduler switches a thread’s state from runnable to running
Q the scheduler decides who to run next inside the CPU

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

thread
itself

thread
itself

= a thread goes from running to waiting when a blocking call is
made by the thread itself
Q the scheduler is not involved here

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

thread
itself

thread
itself

—= the scheduler switches a thread’s state from running to runnable
when the thread used up its execution quantum
Q athread can also "yield" the CPU (see examples in
faber_thread_test () in kernel 1)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

Running

thread
itself
itself

= a thread gets unblocked by the action of another thread or by an
interrupt handler
Q the scheduler is not involved here

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

thread
itself

itself

= jn order for a thread to enter the terminated state, it has to be in

the running state just before that
Q what if something like pthread_cancel () is invoked when

the thread is not in the running state?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

) Does pthread_exit () delete the thread (completely) that calls it?
= ho, the thread goes into a zombie state (i.e., "terminated’)

_> What's left in the thread after it calls pthread_exit () ?
= |ts thread control block
Q needs to keep thread ID and return code around
= its stack
Q how can a thread delete its own stack? no way!
<& which stack are we talking about anyway?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Life Cycle

ﬁ} Who is deleting the thread control block and freeing up
the thread’s stack space?

) lf athread is not detached
= it can be taken care of in the pthread_join () code
Q the thread that calls pthread_join () does the clean up

ﬁ> If a thread is detached (our simple OS does not support this)
= can do this is one of two ways
1) use a special reaper thread
& basically doing pthread_join ()
2) queue these threads on a list and have other threads
free them when it’s convenient (e.g., when the
scheduler schedule a thread to run)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel 1 Process & Thread Life Cycles

ﬁ} Part of the kernel 1 assighment is to implement the life cycles of
processes and threads
= process/thread creation/termination
Q since we are only doing one thread per process (MTP=0),

when a thread dies, the process must die as well

= process/thread cancellation

= process waiting (and no thread joining since MTP=0)

= etc.

ﬁ> Unlike warmup2, in kernel assignments, first procedures of almost
all kernel threads have been written for you already!
= the thread code there make function calls and some of these
functions are not-yet-implemented
Q vyour job is to implement those functions so that these kernel
threads can run perfectly

o

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel 1 Process & Thread Life Cycles

> Hint on how to do this is by reading kernel code
= read the code in "kernel/proc/faber_test.c"
Q if it calls a function that you are suppose to implement, it’s
telling you what it’s expecting from that function!
& feel free to discuss things like that in the class Google
Group
Q you need to understand what every line of code is doing there
Q you need to pass every test there (see grading guidelines)
& you must not change anything there
<& make sure the printout is correct (you may want to discuss
it in the class Google Group)
Q if you need to do something similar in another module, just
copy the code from it
<& you can copy code that’s given to you as course material
and you don’t have to cite your source

)

Copyright © William C. Cheng

