Operating Systems - CSCI 402

OS Components

() ()
App App | °°°
_ _J _ _J
Applications
OS
Processor Memory
Management Management
[/0 Management]

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple System: To Be Discussed
ﬁ} What is the functionality of the components?

_, What are the key data structures?

ﬁ> What mechanisms are there to support the applications?
) How is the system broken up into modules?

_, To what extent is the system extensible?

_, What parts run in the OS kernel in privileged mode? What parts
run as library code in user applications? What parts run as
separate applications?

ﬁ} In which execution contexts do the various activities take place?
= e.g., thread context vs. interrupt context

Copyright © William C. Cheng

OS Components

Scheduling Processes
and
Interrupt threads
management

Processor Management

Virtual
memory

Real
memory

Memory Management

Human interface Network
device protocols

File system

Logical /O management

Physical device drivers

I/0 Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

OS Components

Scheduling

Interrupt
management

Processes
and
threads

Processor Management

Virtual
memory

Real
memory

Memory Management

Operating Systems - CSCI 402

r

supports multithreaded

device

Human interface Network

protocols

processes
= each process has its
own address space

= for weenix, keep MTP=0

Logical /O managemeni

\

Physical device drivers

I/0 Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

OS Components

Scheduling Virtual
Processes memory
and
Interrupt threads Real
management memory
Processor Management Memory Management
()
_| supports virtual memory
Human interface Network
device protocols

Logical /O managemeni

\ J

Physical device drivers

I/0 Management gy
=/

Copyright © William C. Cheng

OS Components

Operating Systems - CSCI 402

Scheduling Virtual
Processes memory
and
Interrupt threads Real
management memory
Processor Management Memory Management
()
_| theads executing is
Human interface Network LB G CTIEIE
device rotocols processe
P || = by a simple time-sliced

scheduler (preemptive)

Logical /0 managemen{ = for weenix, FCFs,
non-preemptive

\

Physical device drivers

/0 Management

Copyright © William C. Cheng

OS Components

| .
% 2 Virtual
has a file system Processes memory
= layered on disks and
threads Real
memory
hent Memory Management
. J
Human interface Network File svstem
device protocols y

Logical /O management

Physical device drivers

I/0 Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

OS Components

Operating Systems - CSCI 402

I A W A B '] I
Schedulin i
g Processes user interacts over a
and terminal
Interrupt threads = text interface (typically 24
management 80-character rows)
= every character typed on
the keyboard is sent to
Processor Management Me| ihe processor
_
Human interface Network File svstem
device protocols y

Logical /O management

Physical device drivers

/0 Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

OS Components

I A W A B '] I
Schedulin g 3
g Processes communication over
and Ethernet using TCP/IP
Interrupt threads = none for weenix
management

Processor Management Me

_ J

Human interface Network File svstem
device protocols y

Logical /O management

Physical device drivers

/0 Management IN\Y
: &

Copyright © William C. Cheng

Operating Systems - CSCI 402

Some Important OS Concepts

ﬁ} From an application program’s point of view, our system has:
= processes with threads
= a file system
= terminals (with keyboards)
= a hetwork connection

) Need more details on these... Need to look at:
— how can they be provided
—= how applications use them
= how this affects the design of the OS

Copyright © William C. Cheng

Operating Systems - CSCI 402

Processes And File Systems

) The purpose of a process
= holds an address space
= holds a group of threads that execute within that address space
= holds a collection of references to open files and other
"execution context"

_) Address space:
— set of addresses that threads of the process can usefully
reference
= more precisely, it’s the content of these addressable locations
Q text, data, bss, dynamic, stack segments/regions and what’s
in them
& a memory segment/region contains usable contiguous
memory addresses

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address Space Initialization

) Design issue:
= how should the OS initialize these address space regions?

ﬁ} Unix does it in two steps

— make a copy of the address space using fork ()

= then copy contents from the file system to the process address
space (as part of the exec operation)

= quite wasteful (both in space and time) for the text region since
it’s read-only data
Q should share the text region

= what about data regions? they can potentially be written into
Q can also share a portion of a data region if that portion is

never modified

Q copy data structures are much faster than copy data

Copyright © William C. Cheng

Operating Systems - CSCI 402

Remember This?

_) Virtual Memory

Text Page Table

main 4096 Access | Physical Addr

subr 4132

printf 4156 - -

write 16156 R

startup 16172 ™~
- R | N\

ata R

aX 16384 1 — \

printfargs 16388 /R//VV /

StandardFiles 16396 {
BSS

X 17420 Physical

Physical
Page
Physical
ask buddy systemto _ Page
allocate these pages Physical
Page

COpyI‘ight © William C. Cheng —

Operating Systems - CSCI 402

Processes Can Share Memory Pages
ﬁ> Inside fork (), can simply copy parent’s page table to child

Child Page Table

Access | Physical Addr
R o
TN
R P ~—_
R |/~
rRW |/ [

= power of indirection

COpyI‘ight © William C. Cheng —

Physical
Page

Parent Page Table

Access | Physical Addr
R ~
I
R/ ,/. \

AW)

Physical
Page

y

Physical
Page

Physical
Page

Operating Systems - CSCI 402

exec ()

ﬁ} Inside exec (), need to wipe out the address space (and page
table) and create a new address space (and page table)

Child Page Table
Access | Physical Addr

prog

—
\

— text
data

= should you copytext and data segments of the new program from
disk into memory now?
Q can be quite wasteful if you quit your new program quickly
(and only use a small amount of the data you just copied form

disk) .

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Map

= memory map
Q part hardware, part OS
Q each program thinks

it has its own full
address space 4

39

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Map

ﬁ} For the text region, why bother copying the executable file into the
address space in the first place?
= cah just map the file into the address space (Ch 7)
Q mapping is an important concept in the OS
& file mapping is not the same thing as address translation
& some virtual memory pages map to files, and some map to
physical memory
Q mapping let the OS tie the regions of the address space to
the file system
QO address space and files are divided into pieces, called pages
Q If several processes are executing the same program, then
at most one copy of that program’s text page is in memory
at once
= fext regions of all processes running this program are setup,
using hardware address translation facilities, to share these
pages
Q this type of mapping is known as shared mapping f

Copyright © William C. Cheng

Memory Map

) The kernel uses a memory map to keep track of the mapping
from virtual pages to file pages

Child Page Table

Access

Physical Addr

- -
-
-
-

~ =
-
.....

~

RLL4
”"e

"
Lol
~
-
~
V4
”
”
’
4

Operating Systems - CSCI 402

= the kernel also uses memory map to keep track of the mapping
from virtual pages to physical pages

Q also use it to maintain the page table data structure
Copyright © William C. Cheng

Operating Systems - CSCI 402

Processes Can Share Memory Pages

Child Page Table
Access | Physical Addr
R ~_
R]
R |/ »
rw |/ [

= can we really
share data
segment pages?

Parent Page Table

Access | Physical Addr
R ~
I
R/ ,/. \

AW)

COpyI‘ight © William C. Cheng —

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Operating Systems - CSCI 402

Address Space Initialization

_) Text regions uses shared mapping

ﬁ> Data regions of all processes running this program initially refer
to pages of memory containing the initial data region
= this type of mapping is known as private mapping
Q when does each process really need a private copy of such a

page?
& when data is modified by a process, it gets a new and

private copy of the initial page

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copy-On-Write

ﬁ} Copy-on-write (COW):
= a process gets a private copy of the page after a thread in the
process performs a write to that page for the first time
Q the basic idea is that only those pages of memory that are
modified are copied

ﬁ} Use private mapping and copy-on-write for data and bss regions

ﬁ> The dynamic/heap and stack regions use a special form of private
mapping
= their pages are initialized, with zeros (in Linux); copy-on-write
Q these are known as anonymous pages

ﬁ> If we can implement copy-on-write at the right time, then it's
perfectly okay for processes to share address spaces
= details in Ch 7

Copyright © William C. Cheng

Operating Systems - CSCI 402

Shared Files

ﬁ} If a bunch of processes share a file

= we can also map the file into the address space of each process
= in this case, the mapping is shared
= when one process modifies a page, no private copy is made

Q Instead, the original page itself is modified

Q everyone gets the changes

Q and changes are written back to the file

& more onissuesin Ch6

) Can also share a file read-only
= writing through such a map will cause segmentation fauit

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Maps Summary

) File mapping
—= shared mapping
Q R/W: may change shared data on disk
Q R/O: read-only
= private mapping
Q R/W: copy-on-write (will not change data on disk)
Q R/O: read-only

) Anonymous mapping
—= shared mapping (may be just shared with child processes)

Q R/W: may change shared data in memory
Q R/O: read-only
= private mapping
Q R/W: copy-on-write
Q R/O: read-only

ﬁ} Can also use all of the above in an application |
= mmap () system call 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Block I/0O vs. Sequential I/O

ﬁ} Mapping files into address space is one way to perform I/O on files
= block/page is the basic unit
= some would refer to this as block I/O

G> Some devices cannot be mapped into the address space
= e.g., receiving characters typed into the keyboard, sending
a message via a network connection
— need a more traditional approach using explicit system calls
such as read () and write ()
= this is referred to as sequential I/0

ﬁ> It also makes sense to be able to read a file like reading from
the keyboard
— similarly, a program that produces lines of text as output
should be able to use the same code to write output to a file
or write it out to a network connection
= makes life easier! (and make code more robust)

Copyright © William C. Cheng

Operating Systems - CSCI 402

System Call API

) Backwards compatibility is an important issue
= try not to change it much (to make developers happy)

() ()
App App | °°°
& J _ J
Applications
System Call API
0S
Processor Memory
Management Management
/0 Management]
[3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Portability

ﬁ} It is desirable to have a portable operating system
= portable across various hardware platforms

ﬁ} For a monolithic OS, it is achieved through the use of a
Hardware Abstraction Layer (HAL)

= a portable interface to machine configuration and
processor-specific operations within the kernel

Applications

—[System Call API]—

OS

—(HAL API o

HAL

Hardware @!,}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Abstraction Layer (HAL)

) Portability across machine configuration
= e.g., different manufacturers for x86 machines will require
different code to configure interrupts, hardware timers, etc.

) Portability across processor families
= e.g., may need additional code for context switching, system
calls, interrupting handler, virtual memmory management, etc.

ﬁ> With a well-defined Hardware Abstraction Layer, most of the OS is
machine and processor independent
= porting an OS to a new computer is done by
Q writing new HAL routines
Q relink with the kernel

Copyright © William C. Cheng

