
0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor
Management

Applications

OS

Memory
Management

I/O Management

App App

What is the functionality of the components?

What are the key data structures?

How is the system broken up into modules?

To what extent is the system extensible?

What parts run in the OS kernel in privileged mode? What parts

run as library code in user applications? What parts run as

separate applications?

In which execution contexts do the various activities take place?

e.g., thread context vs. interrupt context

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple System: To Be Discussed

What mechanisms are there to support the applications?

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

Processes
and

threads

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

Processes
and

threads

supports multithreaded

processes

each process has its

own address space

for weenix, keep MTP=0

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

supports virtual memory

Processes
and

threads

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

by a simple time-sliced

scheduler (preemptive)

theads executing is

multiplexed on a single

processor

for weenix, FCFS,

non-preemptive

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

Logical I/O management

Physical device drivers

layered on disks

has a file system

File system

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

text interface (typically 24

80-character rows)

user interacts over a

terminal

every character typed on

the keyboard is sent to

the processor

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

communication over

Ethernet using TCP/IP

none for weenix

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Some Important OS Concepts

processes with threads

From an application program’s point of view, our system has:

a file system

terminals (with keyboards)

a network connection

Need more details on these... Need to look at:

how applications use them

how this affects the design of the OS

how can they be provided

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes And File Systems

The purpose of a process

holds an address space

holds a group of threads that execute within that address space

holds a collection of references to open files and other

"execution context"

Address space:

set of addresses that threads of the process can usefully

reference

more precisely, it’s the content of these addressable locations

text, data, bss, dynamic, stack segments/regions and what’s

in them

a memory segment/region contains usable contiguous

memory addresses

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address Space Initialization

Design issue:

how should the OS initialize these address space regions?

Unix does it in two steps

make a copy of the address space using fork()

can also share a portion of a data region if that portion is

never modified

what about data regions? they can potentially be written into

should share the text region

quite wasteful (both in space and time) for the text region since

it’s read-only data

then copy contents from the file system to the process address

space (as part of the exec operation)

copy data structures are much faster than copy data

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Remember This?

Virtual Memory

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Text
 main 4096
 subr 4132
 printf 4156
 write 16156
 startup 16172

Data
 aX 16384
 printfargs 16388
 StandardFiles 16396

BSS
 X 17420
 errno 17680

Page Table

0 - -

Physical

Page

Physical

Page

Physical

Page

Physical

Page

ask buddy system to

allocate these pages

#

1

2

3

4

0

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes Can Share Memory Pages

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Parent Page Table

0 - -Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Child Page Table

0 - -

Physical

Page

Physical

Page

Physical

Page

Physical

Page

Inside fork(), can simply copy parent’s page table to child

#

1

2

3

4

0#

1

2

3

4

0

power of indirection

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

exec()

Start Access Physical Addr

4096

8192

12288

16384

Child Page Table

0 - -

Inside exec(), need to wipe out the address space (and page

table) and create a new address space (and page table)

- -

- -

- -

- -

prog

text

data

bss

#

1

2

3

4

0

should you copytext and data segments of the new program from

disk into memory now?

can be quite wasteful if you quit your new program quickly

(and only use a small amount of the data you just copied form

disk)

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Map

Program 1

Program 2

Program 3

Disk Disk

Memory

memory map

part hardware, part OS

each program thinks

it has its own full

address space

For the text region, why bother copying the executable file into the

address space in the first place?

can just map the file into the address space (Ch 7)

mapping let the OS tie the regions of the address space to

the file system

address space and files are divided into pieces, called pages

if several processes are executing the same program, then

at most one copy of that program’s text page is in memory

at once

text regions of all processes running this program are setup,

using hardware address translation facilities, to share these

pages
0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Map

mapping is an important concept in the OS

this type of mapping is known as shared mapping

file mapping is not the same thing as address translation

some virtual memory pages map to files, and some map to

physical memory

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Map

Start Access Physical Addr

4096

8192

12288

16384

Child Page Table

0 - -

The kernel uses a memory map to keep track of the mapping

from virtual pages to file pages

- -

- -

- -

- -

prog

text

data

bss

 OS

the kernel also uses memory map to keep track of the mapping

from virtual pages to physical pages

#

1

2

3

4

0

also use it to maintain the page table data structure

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes Can Share Memory Pages

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Parent Page Table

0 - -Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Child Page Table

0 - -

can we really

share data

segment pages?

Physical

Page

Physical

Page

Physical

Page

Physical

Page

#

1

2

3

4

0#

1

2

3

4

0

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address Space Initialization

Data regions of all processes running this program initially refer

to pages of memory containing the initial data region

this type of mapping is known as private mapping

when does each process really need a private copy of such a

page?

when data is modified by a process, it gets a new and

private copy of the initial page

Text regions uses shared mapping

their pages are initialized, with zeros (in Linux); copy-on-write

The dynamic/heap and stack regions use a special form of private

mapping

these are known as anonymous pages

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-On-Write

Copy-on-write (COW):

a process gets a private copy of the page after a thread in the

process performs a write to that page for the first time

the basic idea is that only those pages of memory that are

modified are copied

If we can implement copy-on-write at the right time, then it’s

perfectly okay for processes to share address spaces

details in Ch 7

Use private mapping and copy-on-write for data and bss regions

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Files

we can also map the file into the address space of each process

If a bunch of processes share a file

in this case, the mapping is shared

when one process modifies a page, no private copy is made

instead, the original page itself is modified

everyone gets the changes

and changes are written back to the file

more on issues in Ch 6

Can also share a file read-only

writing through such a map will cause segmentation fault

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Maps Summary

shared mapping

File mapping

R/W: may change shared data on disk

private mapping

R/W: copy-on-write (will not change data on disk)

Anonymous mapping

R/O: read-only

mmap() system call

Can also use all of the above in an application

shared mapping (may be just shared with child processes)

private mapping

R/W: may change shared data in memory

R/O: read-only

R/O: read-only

R/W: copy-on-write

R/O: read-only

some would refer to this as block I/O

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Block I/O vs. Sequential I/O

Mapping files into address space is one way to perform I/O on files

block/page is the basic unit

need a more traditional approach using explicit system calls

such as read() and write()

Some devices cannot be mapped into the address space

e.g., receiving characters typed into the keyboard, sending

a message via a network connection

this is referred to as sequential I/O

It also makes sense to be able to read a file like reading from

the keyboard

similarly, a program that produces lines of text as output

should be able to use the same code to write output to a file

or write it out to a network connection

makes life easier! (and make code more robust)

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Call API

Processor
Management

Applications

OS

Memory
Management

I/O Management

Backwards compatibility is an important issue

System Call API

try not to change it much (to make developers happy)

App App

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Portability

It is desirable to have a portable operating system

portable across various hardware platforms

For a monolithic OS, it is achieved through the use of a

Hardware Abstraction Layer (HAL)

a portable interface to machine configuration and

processor-specific operations within the kernel

System Call API

HAL API

Applications

OS

HAL

Hardware

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Abstraction Layer (HAL)

Portability across machine configuration

e.g., different manufacturers for x86 machines will require

different code to configure interrupts, hardware timers, etc.

Portability across processor families

e.g., may need additional code for context switching, system

calls, interrupting handler, virtual memmory management, etc.

With a well-defined Hardware Abstraction Layer, most of the OS is

machine and processor independent

porting an OS to a new computer is done by

writing new HAL routines

relink with the kernel

