
0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.4 Linking & Loading

Static Linking & Loading

Shared Libraries

ebp

saved registers

local variables

args

eip

esp

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Remember This?

main:
 pushl %ebp
 movl %esp, %ebp
 pushl %esi
 pushl %edi
 subl $8, %esp
 ...
 pushl $1
 movl -12(%ebp), %eax
 pushl %eax
 call sub
 addl $8, %esp
 movl %eax, -16(%ebp)
 ...
 addl $8, %esp
 movl $0, %eax
 popl %edi
 popl %esi
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

push args

pop args;

get result

int main() {
 int i;
 int a;
 ...
 i = sub(a, 1);
 ...
 return(0);
}set return

value and

restore frame

local variables (none)

eip

ebp

saved registers (none)

args

esp

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

set return

value and

restore frame

stack frame

of main()

Does location matter?

ebp

local variables (none)

eip

saved registers (none)

args

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

esp

set return

value and

restore frame

stack frame

of main()

Does location matter?

ebp

local variables (none)

eip

saved registers (none)

args

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

ebp,

esp

set return

value and

restore frame

stack frame

of main()

Does location matter?

ebp

local variables (none)

eip

saved registers (none)

args

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

ebp,

esp

set return

value and

restore frame

stack frame

of main()

Does location matter?

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

ebp,

esp

set return

value and

restore frame

stack frame

of main()

Does location matter?

ebp

local variables (none)

eip

saved registers (none)

args

ebp

local variables (none)

eip

saved registers (none)

args

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

set return

value and

restore frame

esp

stack frame

of main()

Does location matter?

ebp

local variables (none)

eip

saved registers (none)

args

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Something Simpler

int main(int argc,
 char *[]) {
 return(argc);
}

main:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl %ebp, %esp
 popl %ebp
 ret

set up

stack frame

set return

value and

restore frame

esp

stack frame

of main()

Does location matter?

if everything can be accessed relative to the frame pointer,

then you don’t need to know the actual address of an object

just use relative-addresses to access variables

the code is also location-independent

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Location Matters ...

int X = 6;
int *aX = &X;

int main() {
 void subr(int);
 int y = X;
 subr(y);
 return(0);
}

Why does it matter here?

need to put the address of X into aX

what is the address of X?

remember, both X and aX are in the data segment

who would put the actual value into aX?

when do you know?

also need to put the address of subr into main()

void subr(int i) {
 printf("i = %d\n", i);
}

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

modify internal references in memory depending on where

module is expected to be loaded

Relocation

modules requiring relocation are said to be relocatable

the act of modifying such a module to resolve these

references is called relocation

the program that performs relocation is called a linker

one of the exec system calls loads a program into memory

everything is laid out carefully in memory

compiler figure out how many bytes each object is

functions, global variables, and more

Done in two steps

linker figures out where each object is and lays out the entire

address space

textbook

is wrong

assign them temporary locations

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linker

1)

Two main functions of a linker

a "relocating loader" may perform additional relocation

A loader loads a program into memory

2)

relocation

symbol resolution

but that’s dynamic linking

find unresolved symbols and figure out how to resolve them

"unfolds" a program from disk into memory and "transfer control"

to it (i.e., "executes" it)

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Slight Revision

extern int X;
int *aX = &X;

int main() {
 void subr(int);
 int y = *aX;
 subr(y);
 return(0);
}

#include <stdio.h>
int X;

void subr(int i) {
 printf("i = %d\n", i);
}

main.c

subr.c

% gcc -o prog main.c subr.c

main.c is compiled into main.o

subr.c is compiled into subr.o

ld is then invoked to combine them into prog

ld knows where to find printf()

prog can be loaded into memory through one of the

exec system calls

relocatable modules

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Slight Revision

extern int X;
int *aX = &X;

int main() {
 void subr(int);
 int y = *aX;
 subr(y);
 return(0);
}

#include <stdio.h>
int X;

void subr(int i) {
 printf("i = %d\n", i);
}

main.c

subr.c

% gcc -o prog main.c subr.c

how does ld decides what needs to be done?

main.c contains undefined references to X and subr()

instructions for doing this are provided in main.o

later on, when the actual locations for these are determined,

ld will modify them when main.o is copied into prog

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Slight Revision

extern int X;
int *aX = &X;

int main() {
 void subr(int);
 int y = *aX;
 subr(y);
 return(0);
}

#include <stdio.h>
int X;

void subr(int i) {
 printf("i = %d\n", i);
}

main.c

subr.c

% gcc -o prog main.c subr.c

main.o must contains a list of external symbols, along with

their types, and instructions for updating this code

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Can Also Use A Header File

#include "subr.c";
int *aX = &X;

int main() {
 int y = *aX;
 subr(y);
 return(0);
}

extern int X;
void subr(int);

main.c

subr.h

#include <stdio.h>
int X;

void subr(int i) {
 printf("i = %d\n", i);
}

subr.c

declaration/definition of data structures

A header file typically contains

declaration of exported symbols

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s
Offset Op Arg

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

What follows goes into the

data segment

Offset Op Arg

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

What follows goes into the

text segment

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

offset got restarted because

segments are relocatable

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

.global directive means that

the symbol mentioned is

defined here and is exported

i.e., can be referenced by

other modules

aX and main are global

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

aX is 4 bytes long and put

the value of X here

X here is an address

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

X will remain unresolved

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

these 3 places require

relocation

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

what’s stored at offset 20

is not the absolute

address of subr, but a

relative address

this call is a PC-relative call

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

this is just how x86 works

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

this one is 8 bytes long

this is how you create a

string constant

and local to this module

(since it’s not global)

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

can "live" somewhere else

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

this one is 8 bytes long

this is how you create a

string constant

can "live" somewhere else

and local to this module

(since it’s not global)

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

it is used here

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

4 bytes is required in the

bss segment for this global

variable

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

.comm directive also

means that the symbol

mentioned is defined

here and is exported

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

subr is a global symbol

exported from here

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

relocation is required for

printf and printfarg

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Object Files

global symbols

An object file describes what’s in the data, bss, and text segments

in separate sections

which locations within the section must be modified

these instructions indicate

Along with each section is a list of:

undefined symbols

instructions for relocation

which symbol’s value is used to modify the location

a symbol’s value is the address that is ultimately determined

for it

typically, this address is added to the location being modified

nm - list symbols from object files

To inspect an object file on Unix

objdump - display information from object files

Data:
 Size: 8
 Contents: "i = %d\n"

bss:
 Size: 4
 Global: X, offset 0

Text:
 Size: 24
 Global: subr, offset 0
 Undefined: printf
 Relocation:
 offset 7, size 4, value: addr of printfarg
 offset 12, size 4, value: PC-relative addr of
 printf
 Contents: [machine instructions]

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.o

No tool can generate exactly the above printout

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.s

0: .data ; what follows is initialized data
0: printfarg:
0: .string "i = %d\n"
8:
0: .comm X,4 ; 4 bytes in BSS is required
 ; for global X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl subr
0: subr:
0: pushl %ebp ; save the frame pointer
1: movl %esp, %ebp ; point to current frame
3: pushl 8(%ebp) ; push i onto stack
6: pushl $printfarg ; push address of string
 ; onto stack
11: call printf
16: addl $8, %esp ; pop arguments from stack
19: movl %ebp, %esp ; restore stack pointer
21: popl %ebp ; pop frame pointer
23: ret

Offset Op Arg

relocation is required for:

printf at offset 12

printfarg at offset 7

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

Data:
 Size: 8
 Contents: "i = %d\n"

bss:
 Size: 4
 Global: X, offset 0

Text:
 Size: 24
 Global: subr, offset 0
 Undefined: printf
 Relocation:
 offset 7, size 4, value: addr of printfarg
 offset 12, size 4, value: PC-relative addr of
 printf
 Contents: [machine instructions]

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.o

relocation is required for:

printf at offset 12

printfarg at offset 7

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

Data:
 Size: 8
 Contents: "i = %d\n"

bss:
 Size: 4
 Global: X, offset 0

Text:
 Size: 24
 Global: subr, offset 0
 Undefined: printf
 Relocation:
 offset 7, size 4, value: addr of printfarg
 offset 12, size 4, value: PC-relative addr of
 printf
 Contents: [machine instructions]

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.o

X and subr are exported

needed in main.o

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.s

0: .data ; what follows is initialized data
0: .globl aX ; aX is global: it may be used
 ; by others
0: aX:
0: .long X
4:
0: .text ; offset restarts; what follows is
 ; text (read-only code)
0: .globl main
0: main:
0: pushl %ebp ; save the frame pointer
1: movl %esp,%ebp ; point to current frame
3: subl $4,%esp ; make space for y on stack
6: movl aX,%eax ; put contents of X into eax
11: movl (%eax),%eax ; put *X into %eax
13: movl %eax,-4(%ebp) ; store *aX into y
16: pushl -4(%ebp) ; push y onto stack
19: call subr
24: addl $4,%esp ; remove y from stack
27: movl $0,%eax ; set return value to 0
31: movl %ebp, %esp ; restore stack pointer
33: popl %ebp ; pop frame pointer
35: ret

Offset Op Arg

these 2 places remained

unresolved

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

extern int X;

int *aX = &X;

int main() {

 void subr(int);

 int y = *aX;

 subr(y);

 return(0);

}

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

main.o

Data:
 Size: 4
 Global: aX, offset 0
 Undefined: X
 Relocation: offset 0, size 4, value: addr of X
 Contents: 0x00000000

bss:
 Size: 0

Text:
 Size: 36
 Global: main, offset 0
 Undefined: subr
 Relocation:
 offset 7, size 4, value: addr of aX
 offset 20, size 4, value: PC-relative
 addr of subr
 Contents: [machine instructions]

these 2 places remained

unresolved

they are noted in main.o

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

subr.o

Data:
 Size: 8
 Contents: "i = %d\n"

bss:
 Size: 4
 Global: X, offset 0

Text:
 Size: 24
 Global: subr, offset 0
 Undefined: printf
 Relocation:
 offset 7, size 4, value: addr of printfarg
 offset 12, size 4, value: PC-relative addr of
 printf
 Contents: [machine instructions]

printf remained unresolved

#include <stdio.h>

int X;

void subr(int i) {

 printf("i = %d\n", i);

}

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

printf.o

Data:
 Size: 1024
 Global: StandardFiles
 Contents: ...

bss:
 Size: 256

Text:
 Size: 12000
 Global: printf, offset 100
 ...
 Undefined: write
 Relocation:
 offset 211, value: addr of StandardFiles
 offset 723, value: PC-relative addr of write
 Contents: [machine instructions]

assume that printf.o looks

like this

write is unresolved

and write.o looks like this

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

write.o

Data:
 Size: 0

bss:
 Size: 4
 Global: errno, offset 0

Text:
 Size: 16
 Contents: [machine
 instructions]

every C program contains a

startup routine that is called

first

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

startup function

Data:
 Size: 0

bss:
 Size: 0

Text:
 Size: 36
 Undefined: main
 Relocation:
 offset 21, value: main
 Contents: [machine
 instructions]

it calls main()

if main() returns, it calls

exit()

our example is incomplete

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

prog

Text
 main 4096
 subr 4132
 printf 4156
 write 16156
 startup 16172

Data
 aX 16384
 printfargs 16388
 StandardFiles 16396

BSS
 X 17420
 errno 17424

this is how ld might set things up

main does not start at location 0

first "page" is typically made inaccessible so that

references to null pointers will fail (get SIGSEG)

ld lays out the address space

ld allocates memory in pages (typically 4KB each)

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

prog

Text
 main 4096
 subr 4132
 printf 4156
 write 16156
 startup 16172

Data
 aX 16384
 printfargs 16388
 StandardFiles 16396

BSS
 X 17420
 errno 17424

due to the use of "pages", the data segment needs to start

at a page boundary (i.e., multiple of page size)

this way, the text segment can be made read-only while

the data and bss segments made read-write

here we assume 4KB pages (therefore, pages start at

4096, 8192, 12288, 16384, etc.)

R/O

R/W

printfarg can be modified

by the application

is that okay?

where else would you

put it?

who decides?

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Protection & Virtual Memory Basics

that’s 4GB of memory

A process has, say, a 32-bit address space

our prog process, when it starts, only needs about 16KB for

text+data+bss (plus more for stack)

allocating 4GB of physical memory will be a huge waste

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Protection & Virtual Memory Basics

that’s 4GB of memory

A process has, say, a 32-bit address space

Solution: indirection

OS allocates pages of physical memory using the Buddy System

a page corresponds to physical memory that can be located

(or "mapped") anywhere in virtual memory

"address translation" done in hardware

use page table to map virtual to physical addresses

a page table is a kernel data structure, used by the CPU

our prog process, when it starts, only needs about 16KB for

text+data+bss (plus more for stack)

allocating 4GB of physical memory will be a huge waste

some advantages:

page protection

only allocate needed physical memory pages

a page is 4KB in many systems

a lot more to come in Ch 7

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Protection & Virtual Memory Basics

Text
 main 4096
 subr 4132
 printf 4156
 write 16156
 startup 16172

Data
 aX 16384
 printfargs 16388
 StandardFiles 16396

BSS
 X 17420
 errno 17424

Page Table

Physical

Page

0 - -

Physical

Page

Physical

Page

Physical

Page

ask buddy system to

allocate these pages

#

1

2

3

4

0

