
struct fblock

size

link

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementing First Fit: Data Structures

sorted according to block addresses

no need to manage allocated blocks

use a doubly-linked list

insertion and deletion are fast, i.e., O(1), once you know

where to insert or delete

struct fblock

size

link

struct fblock

size

link

struct fblock

size

link

Free list: a linked list of free blocks

This is known as coalescing

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Liberation of Storage

free(A)A

(free)

(free)

(free)

in order to make coalescing possible, you need to know that

size of the blocks above and below the block being freed

you also need to know if they are allocated or free

in order to make coalescing possible, you need to know that

size of the blocks above and below the block being freed

you also need to know if they are allocated or free

This is known as coalescing

size

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Boundary Tags

size

Allocated Block

size

size

Free Block

blink

flink

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Detailed Examples

Free block

In-use block

Free list

in-use = 0 size

prev = 0 next = 0

(Garbage, don’t care)

in-use = 0 sizestart

start+8

start+size-8

start+16

in-use = 0 size

prev = 0 next = 0

(Garbage, don’t care)

in-use = 0 size

head tail

Free List

in-use = 1 size

Return to User! Hands off!

in-use = 1 sizestart

start+8

start+size-8

size

size

the Free List contains one free

block and it looks like this:

Ex: Heap starts at 0xfedcba98

and size of the heap is

0x0000eca8 (60,584) bytes

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

malloc() Example

in-use = 0 0x0000eca8

in-use = 0 0x0000eca8

prev = 0 next = 0

0xfedcba98

0xfedcbaa0

(Garbage, don’t care)

0xfedda738

0xfedcbaa8

head tail

Free List

split the block into two

Ex: Request block size is 100

busy block size is 116

remaining free block size is 60584-116 =60468=0xec34

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

malloc() Example

in-use = 0 0x0000eca8

in-use = 0 0x0000eca8

prev = 0 next = 0

0xfedcba98

0xfedcbaa0

(Garbage, don’t care)

0xfedda738

0xfedcbaa8

head tail

Free List

the Free List contains one free

block and it looks like this:

Ex: Heap starts at 0xfedcba98

and size of the heap is

0x0000eca8 (60,584) bytes

split the block into two

Ex: Request block size is 100

busy block size is 116

remaining free block size is 60584-116 =60468=0xec34

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

malloc() Example

in-use = 1 0x00000074

Return to user! Hands off!

in-use = 1 0x00000074

0xfedcba98

return 0xfedcbaa0

0xfedcbb04

...

in-use = 0 0x0000ec34

prev = 0 next = 0

(Garbage, don’t care)

in-use = 0 0x0000ec34

0xfedcbb0c

0xfedcbb14

0xfedda738

0xfedcbb1c

...

head tail

Free List

the Free List contains one free

block and it looks like this:

Ex: Heap starts at 0xfedcba98

and size of the heap is

0x0000eca8 (60,584) bytes

in the memory layout, the first K blocks are used

block, followed by one free block

After K blocks of memory have been allocated (and

assume that none of them have been deallocated)

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

head

Free List

tail

 UB1

 UB2

 ...

 UBK

 FB1

K Used

Blocks

Memory blocks can be freed in any order

when a memory block is freed, we need to

check if the blocks before it and after it are also free

If neither of them are free, we just need to insert the

newly freed block into the Free List (at the right place)

Otherwise, we can merge/coalesce the block in question

with neighboring free block(s)

need to search the Free List to find insertion point

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

searching through a linear list is "slow", O(n)

in the memory layout, the first K blocks are used

block, followed by one free block

After K blocks of memory have been allocated (and

assume that none of them have been deallocated)

K Used

Blocks

head

Free List

tail

 UB1

 UB2

 ...

 UBK

 FB1

Y-8+Z tells you if the next

block is free or not

where Z is what’s in Y-4

Ex: free(Y)

Y-16 tells you if

the previous block is free or not

Coalescing:

need to make sure that

everything is consistent

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

in-use=? size

?

in-use=? size

Y-16

in-use=1 size=Z

Return to user! Hands off!

in-use=1 size=ZY-8

Y

in-use=? size

?

in-use=? size

Y-8+Z

Y-8-(*(Y-12))

i.e., Y-16 is 0 and Y-8+Z is 1

where Z is what’s in Y-4

and W is what’s in Y-12

Ex: free(Y) and previous block

is free and next block is busy

furthermore, Y-8-W is on the

Free List

coalesce this block and the

previous block

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

in-use=0 size=W

(Garbage, don’t care)

in-use=0 size=WY-16

in-use=1 size=Z

Return to user! Hands off!

in-use=1 size=Z

Y-8

Y

in-use=1 size

Hands off!

in-use=1 size

Y-8+Z

Y-8-W

prev next

Y-16+Z

i.e., Y-16 is 0 and Y-8+Z is 1

where Z is what’s in Y-4

and W is what’s in Y-12

Ex: free(Y) and previous block

is free and next block is busy

furthermore, Y-8-W is on the

Free List

coalesce this block and the

previous block

easy!

just change Y-12+Z and

Y-4-W to W+Z and Y-16+Z to 0

don’t even need to change

prev and next!

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

Hands off!

in-use=1 size

in-use=1 size

Y-8+Z

(Garbage, don’t care)

in-use=0 size=W+ZY-8-W

prev next

in-use=0 size=W+Z

Y

Y-16+Z

Return to user! Hands off!

Ex: free(Y) and previous block

is busy and next block is free

furthermore, Y-8+Z is on the

Free List

coalesce this block and the

next block

i.e., Y-16 is 1 and Y-8+Z is 0

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

in-use=1 size=ZY-8

Hands off!

Y

(Garbage, don’t care)

in-use=1 size=WY-8-W

in-use=1 size=WY-16

in-use=1 size=Z

in-use=0 size=XY-8+Z

prev next

in-use=0 size=XY-16+Z+X

where Z is what’s in Y-4

and X is what’s in Y-4+Z

i.e., Y-16 is 1 and Y-8+Z is 0

where Z is what’s in Y-4

and X is what’s in Y-4+Z

Ex: free(Y) and previous block

is busy and next block is free

just change Y-4 and Y-12+Z+X

to Z+X and Y-8 to 0

move prev and next

pointers

furthermore, Y-8+Z is on the

Free List

coalesce this block and the

next block

adjust next field in previoius block in Free List

may need to update where Free List points
0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

Hands off!

in-use=1 size=WY-8-W

in-use=0 size=Z+XY-16+Z+X

Y prev next

in-use=0 size=Z+XY-8

in-use=1 size=WY-16

(Garbage, don’t care)

adjust prev field in next block in Free List

Ex: free(Y) and previous block

is free and next block is also free

coalesce all 3 blocks

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

Y-8-W next

in-use=1 size=Z

Return to user! Hands off!

in-use=1 size=ZY-8

Y

(Garbage, don’t care)

in-use=0 size=X

in-use=0 size=XY-8+Z

in-use=0 size=W

in-use=0 size=W

Y-16

(Garbage, don’t care)

Y-8-W

prev Y-8+Z

i.e., Y-16 is 0 and Y-8+Z is 0

where Z is what’s in Y-4,

X is what’s in Y-4+Z, and

W is what’s in Y-12

blocks starting at Y-8-W and

Y-8+Z are both on the Free List

and next to and point at each other

Y+Z

Y-W

i.e., Y-16 is 0 and Y-8+Z is 0

where Z is what’s in Y-4,

X is what’s in Y-4+Z, and

W is what’s in Y-12

blocks starting at Y-8-W and

Y-8+Z are both on the Free List

and next to and point at each other

Ex: free(Y) and previous block

is free and next block is also free

coalesce all 3 blocks

just change Y-4-W and

Y-12+Z+X to W+Z+X

copy next from Y+Z+4 to Y-W+4

adjust prev field in the new next block in Free List to

point to Y-8-W

may need to update where Free List points
0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

free() Example

in-use=0 size=W+Z+XY-16+Z+X

(Garbage, don’t care)

Y-16

Y-8

Y

in-use=0 size=W+Z+XY-8-W

prev nextY-W

Memory allocator must run fast

just like our warmup 1 assignment

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

First-fit & Best-fit Algorithms

it does not check if the free list is in a consistent state

user/application code can corrupt the memory allocation chain

easily

One bad bit in any memory allocator data structure can break the

memory allocator code

the result can lead to segmentation faults

unfortunately, the corruption can stay hidden for a long time

and eventually lead to a segmentation fault

memory corruption bugs are very difficult to debug

if you write into a boundary tag, your program may die later in

malloc() or free()

what would happen if you call free()twice on the same

address?

Let n be the number of free blocks on the free list

in the worst case, malloc() is O(n)

in the worst case, free(ptr) is O(n)

occurs when the blocks around the block containing ptr are

both in-use

Such performance in unacceptable in the kernel

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

First-fit Algorithm

it is desirable that the kernel’s worst-case performance has a

bound

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.3 Dynamic

Storage Allocation

Best-fit & First-fit Algorithms

Buddy System

Slab Allocation

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Buddy Lists

32K

16K

16K

8K

8K

4K

4K

blocks get evenly divided into two blocks that are buddies

with each other

can only merge with your buddy if your buddy is also free

Ex: malloc(4000)

internal fragmentation

Ex: malloc(4000)

return a 4K block

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Buddy Systems

restrict block size to be a power of 2

1)

Faster memory allocation system (at the cost of more

fragmentation, internal fragmentation)

BUDDYk(x) =x+2
 k

 if x mod 2
 k+1

=0

all blocks of size 2
 k

 start at location x where x mod 2
 k

=0

2) given a block starting at location x such that x mod 2
 k

=0

BUDDYk(x) =x-2
 k

 if x mod 2
 k+1

=2
 k

Ex: BUDDY2(1010100) =1010000

3) only buddies can be merged

4) try to coalesce buddies when storage is deallocated

k different available block lists, one for each block size

When request a block of size 2
 k

 and none is available:

1) split smallest block 2
 j
 > 2

 k
 into a pair of blocks of size 2

 j-1

2) place block on appropriate free list and try again

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Buddy Systems

1)

Data Structure

doubly-linked list (not circular) FREE list indexed by k

links stored in actual blocks

2) each block contains

FREE[k] points to first available block of size 2
 k

in-use bit

size

NEXT and PREV links for FREE list

Can get greater variety in block sizes using Fibonacci sequence of

block sizes so bj = bj-1+bj-2

ratio of successive block sizes is 2/3 instead of 1/2

lots of details

read weenix source code for its "page allocator"

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

High-level Example of Buddy Algorithm

Ex: 16 "pages" (minimum allocation is 1 page)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

allocate a block of size 2

2) allocate a block of size 4

0

k

0

1

2

3

4

free[k]

Ω

Ω

Ω

Ω

0

2

4

8

k

0

1

2

3

4

free[k]

Ω

Ω

Ω

Ω

Ω

0

2

4

8

k

0

1

2

3

4

free[k]

Ω

Ω

Ω

Ω

Ω

Ω

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

High-level Example of Buddy Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3) allocate a block of size 2

4) allocate a block of size 2

0

k

0

1

2

3

4

free[k]

Ω

Ω

Ω

Ω

0

2

4

8

k

0

1

2

3

4

free[k]

Ω

Ω

Ω

Ω

Ω

Ω

Ω

0

2

4

8

k

0

1

2

3

4

free[k]

Ω

Ω

Ω

Ω

Ω

Ω

10

12

Ex: 16 "pages" (minimum allocation is 1 page)

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.3 Dynamic

Storage Allocation

Best-fit & First-fit Algorithms

Buddy System

Slab Allocation

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Slab Allocation

allocation involves

finding an appropriate-sized storage

Objects are allocated and freed frequently

initialize it

pointers need to point at the right places

may even need to initialize synchronization data

structures

deallocation involves

tearing down the data structures

freeing the storage

lots of "overhead"

you cannot predict what an application will ask for

Difficulties with dynamic storage allocation

but it’s not true for the kernel

e.g., can allocate a slab of process control blocks at a time

return one of them from a slab

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Slab Allocation

see weenix kernel code!

sets up a separate cache for each type of object to be managed

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Slab Allocation

Slab Allocation

contiguous sets of pages called slabs, allocated to hold objects

we will cover "pages" later, won’t get into too much detail now

this is where you pay for initialization, but it’s done in a batch

Whenever a slab is allocated, a constructor is called to initialize all

the objects it hold

objects are considered "preallocated" since they have all

been initialized already

As objects are being allocated, they are taken from the set of

existing slabs in the cache

As objects are being freed, they are simply marked as free

don’t have to free up storage

when appropriate can free up an entire slab

