Operating Systems - CSCI 402

Implementing First Fit: Data Structures

size size size size
link T link —T—> link —> link —>

struct fblock

struct fblock

struct fblock

struct fblock

) Free list: a linked list of free blocks
= sorted according to block addresses
Q no need to manage allocated blocks
= use a doubly-linked list
Q Insertion and deletion are fast, i.e., O(7), once you know (@;\

where to insert or delete 1 /.,2;

Copyright © William C. Cheng

Liberation of Storage

(free)

(free)

free(A) —

) This is known as coalescing
= In order to make coalescing possible, you need to know that
size of the blocks above and below the block being freed

Q you also need to know if they are allocated or free

Copyright © William C. Cheng

Operating Systems - CSCI 402

(free)

Operating Systems - CSCI 402

Boundary Tags
size size
blink
flink
size size
Allocated Block Free Block

) This is known as coalescing
= In order to make coalescing possible, you need to know that
size of the blocks above and below the block being freed
Q you also need to know if they are allocated or free

Copyright © William C. Cheng

Operating Systems - CSCI 402

Detailed Examples
) Free block _) Free list

start Free List

start+8 head ® tail ®

start+16

> size

(Garbage, don't care)

start+size-8 | in—use

|:> In-use block (Garbage, don't care)

start | in—use

start+8

Return to User! Hands off!

start+size-8

Copyright © William C. Cheng

Operating Systems - CSCI 402

malloc () Example

) Ex: Heap starts at 0xfedcba98
and size of the heap is
0x0000eca8 (60,584) bytes
= the Free List contains one free v»/

block and it looks like this:

Free List

head ® tail ®

Oxfedcba98 | in—use 0x0000ecas8

Oxfedcbaal next =0

Oxfedcbaal8

(Garbage, don't care)

Oxfedda738 | in-use = 0 | 0x0000ecas

Copyright © William C. Cheng

Operating Systems - CSCI 402

malloc () Example

) Ex: Heap starts at 0xfedcba98
and size of the heap is
0x0000eca8 (60,584) bytes
= the Free List contains one free

block and it looks like this:

_) Ex: Request block size is 100
= split the block into two
= busy block size is 116

Free List
head ® tail ®

W

Oxfedcba98 | in—-use = 0 | 0x0000eca8

Oxfedcbaal next =0

Oxfedcbaal8

(Garbage, don't care)

Oxfedda738 | in-use = 0 | 0x0000ecas

= remaining free block size is 60584-116 =60468=0xec34

Copyright © William C. Cheng

malloc () Example

) Ex: Heap starts at 0xfedcba98
and size of the heap is
0x0000eca8 (60,584) bytes

Free List

Operating Systems - CSCI 402

head

tail ®

= the Free List contains one free
block and it looks like this:

return

_) Ex: Request block size is 100
= split the block into two
= busy block size is 116

= remaining free block size is 60584-116 =60468=0xec34

Copyright © William C. Cheng

Oxfedcba98
Oxfedcbaal

Oxfedcbb04
|

OxfedcbbOc
Oxfedcbbl4
Oxfedcbblc

Oxfedda738

in-use

1| 0x00000074

Return to user! Hands off!

in-use

in-use

0x00000074
0x0000ec34

prev

next = 0

(Garbage, don’t care)

in-use

0 | 0x0000ec34

Operating Systems - CSCI 402

free () Example

Free List
) After K blocks of memory have been allocated (and head e
assume that none of them have been deallocated) tail o
= in the memory layout, the first K blocks are used (| us,
block, followed by one free block
UB,
K Used
Blocks

Copyright © William C. Cheng

Operating Systems - CSCI 402

free () Example

Free List
) After K blocks of memory have been allocated (and head @
assume that none of them have been deallocated) tall o
= In the memory layout, the first K blocks are used | us,
block, followed by one free block UB
K Used 2
_> Memory blocks can be freed in any order Blocks]
= when a memory block is freed, we need to
check if the blocks before it and after it are also free UBk |/
ﬁ} If neither of them are free, we just need to insert the FB,
newly freed block into the Free List (at the right place)

—= heed to search the Free List to find insertion point
= searching through a linear list is "slow", O(n)

ﬁ} Otherwise, we can merge/coalesce the block in question
with neighboring free block(s)

Copyright © William C. Cheng

Operating Systems - CSCI 402

free () Example

|:> EX: free (Y)
—= Y-16 tells you if
the previous block is free or not
— Y-8+2Z tells you if the next
block is free or not
QO where z is what’s In Y-4

ﬁ} Coalescing:
= heed to make sure that in-use=1 size=2
everything is consistent

Y-8-(*(¥Y-12))

Y-16 in-use="?

in-use=1 size=2Z

Return to user! Hands off!

Copyright © William C. Cheng

free () Example

_) Ex: f£ree (¥) and previous block

is free and next block is busy

= j.e.,,¥Y-16is0and y-8+zis 1
Q where z is what’s in Y-4

and wis what’s in Y-12

= furthermore, Y-8-w is on the
Free List

= coalesce this block and the
previous block

Copyright © William C. Cheng

Y-8-W

Y-16

Y-8

Y-16+2Z

Y-8+7Z

in-use=0 s

Operating Systems - CSCI 402

ize=W

prev next

(Garbage, don't

care)

in-use=0 s

in—-use=1 s

ize=W

ize=Z

Return to user! Hands off!

in-use=1 s

in-use=1

ize=Z

size

Hands off!

in-use=1

free () Example
_) Ex: f£ree (¥) and previous block

Y-8-W in-use=0

Operating Systems - CSCI 402

size=W+2Z

is free and next block is busy

prev

next

= [.e., Y-16is 0 and Y-8+Zis 1
Q where z is what’s in Y-4
and wis what’s in y-12

(Garbage, don’t care)

= furthermore, Y-8-w is on the
Free List

—= coalesce this block and the

] Y-16+2Z size=W+Z
prEVlOUS bIOCK Y-8+2 in-use=1 size
Q easy!

Q just change Y-12+z and Hands off!

Y-4-Wtow+z and Y-16+zt0 0
Q don’t even need to change
prev and next!

Copyright © William C. Cheng

Operating Systems - CSCI 402

free () Example

_) Ex: f£ree (¥) and previous block
is busy and next block is free
= l.e.,,Y-16is1and Y-8+Zis 0O Hands off!
Q where z is what’s in Y-4
and X is what’s in Y-4+2
= furthermore, Y-8+2Z is on the
Free List Return to user! Hands off!
= coalesce this block and the
next block

Y-8-W

Y-16 in-use=1 size=W

in-use=1 size=2Z

in-use=1 size=2Z

in-use=0 size=X

prev next

(Garbage, don’t care)

Y-16+Z+X in-use=0 size=X

Copyright © William C. Cheng

free () Example

_) Ex: f£ree (¥) and previous block
is busy and next block is free
= l.e.,,Y-16is1and Y-8+Zis 0O
Q where z is what’s in Y-4

Y-8-W

and x is what’s in Y-4+2 Y;:
= furthermore, Y-8+2Z is on the v
Free List
= coalesce this block and the
next block

Q Jjust change Y-4 and Y-12+2Z+X
to z+xand y-8to 0

Q move prev and next
pointers

Y-16+Z+X

O O

Operating Systems - CSCI 402

Hands off!

in-use=1

size=W

size=Z+X

next

(Garbage, don't care)

in-use=0

adjust next field in previoius block in Free List
adjust prev field in next block in Free List

Q may need to update where Free List points

Copyright © William C. Cheng

size=Z+X

free () Example

_) Ex: f£ree (¥) and previous block
is free and next block is also free
= |.e.,,¥Y-16is 0and Y-8+2is 0
Q where z is what’s in Y-4,
X is what’s in Y-4+2, and
Wis what’s in Y-12
= blocks starting at y-8-w and
Y-8+2Z are both on the Free List
and next to and point at each other
= coalesce all 3 blocks

Copyright © William C. Cheng

Y-8-W

Y-W

Y-16

Y+2Z

Operating Systems - CSCI 402

in-use=0 size=W

prev Y-8+2Z

(Garbage, don’t care)

in-use=0 size=W

in-use=1 size=2Z

Return to user! Hands off!

in-use=1 size=2Z

in-use=0 size=X

Y-8—-W next

(Garbage, don't care)

in-use=0 size=X

Operating Systems - CSCI 402

free () Example
_) Ex: f£ree (¥) and previous block

Y-8-W in-use=0 size=W+Z+X

is free and next block is also free

Y-W prev next

= |.e.,,¥Y-16is 0and Y-8+2is 0
Q where z is what’s in Y-4,
X is what’s in Y-4+2, and
Wis what’s in Y-12
= blocks starting at y-8-w and
Y-8+2Z are both on the Free List (Garbage, don't care)
and next to and point at each other
— coalesce all 3 blocks
Q Just change Y-4-w and

Y-16

Y-8

Y-12+Z+X 10 W+2Z+X Y-16+Z+X | size=w+z+x
Q copy next from Y+z+4 {0 Y-W+4
Q adjust prev field in the new next block in Free List to
point to Y-8-w
Q may need to update where Free List points

Copyright © William C. Cheng

Operating Systems - CSCI 402

First-fit & Best-fit Algorithms

_) Memory allocator must run fast
= it does not check if the free list is in a consistent state

Q Just like our warmup 1 assighment

G> One bad bit in any memory allocator data structure can break the
memory allocator code
= if you write into a boundary tag, your program may die later in
malloc () Or free ()
= what would happen if you call £ree () twice on the same

address?
= usetr/application code can corrupt the memory allocation chain
easily
Q the result can lead to segmentation faults
Q unfortunately, the corruption can stay hidden for a long time
and eventually lead to a segmentation fault
< memory corruption bugs are very difficult to debug

Copyright © William C. Cheng

Operating Systems - CSCI 402

First-fit Algorithm

_) Let nbe the number of free blocks on the free list
= in the worst case, malloc () is O(n)
= In the worst case, free (ptr) is O(n)
Q occurs when the blocks around the block containing ptr are
both in-use

ﬁ} Such performance in unacceptable in the kernel
— it is desirable that the kernel’s worst-case performance has a
bound

Copyright © William C. Cheng

Operating Systems - CSCI 402

3.3 Dynamic
Storage Allocation

) BestHfit & First-fit Algorithms
_) Buddy System
) Slab Allocation

Copyright © William C. Cheng

Operating Systems - CSCI 402

Buddy Lists

Ex: malloc(4000)

32K |

= blocks get evenly divided into two blocks that are buddies

with each other
Q can only merge with your buddy if your buddy is also free
= jnternal fragmentation
Q Ex: malloc(4000) |
Q return a 4K block @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Buddy Systems

ﬁ} Faster memory allocation system (at the cost of more
fragmentation, internal fragmentation)
= restrict block size to be a power of 2
1) all blocks of size 2" start at location x where x mod 2*=0
2) given a block starting at location x such that x mod 2k_0

& BUDDY(X) =x+2%if X moa 2°*7=0
& BUDDY(X) =x-2 ¥ if X moa 2%*7=2%
& EX: BUDDY,(1010100) =1010000
3) only buddies can be merged
4) try to coalesce buddies when storage is deallocated
Q k different available block lists, one for each block size
Q When request a block of size 2% and none is available: _
1) split smallest block 2/ 2%into a pair of blocks of size 2l
2) place block on appropriate £ree list and try again

Copyright © William C. Cheng

Operating Systems - CSCI 402

Buddy Systems

) Data Structure

1) doubly-linked list (not circular) FREE list indexed by k
<& links stored in actual blocks
& FREE[K] points to first available block of size 2"

2) each block contains
& in-use bit
@ size
<& NEXT and PREV links for FREE list

= |lots of details
Q read weenix source code for its "page allocator”

G> Can get greater variety in block sizes using Fibonacci sequence of
block sizes so b; = b; 4+b;.,
= ratio of successive block sizes is 2/3 instead of 1/2

Copyright © William C. Cheng

Operating Systems - CSCI 402

High-level Example of Buddy Algorithm

= EXx: 16 "pages’ (minimum allocation is 1 page) k free[k]
0@
01 2 3 45 6 7 8 9 10 11 12 13 14 15 110
2 [O
3[Q
4|0
k free[k]
. 0[Q
1) allocate a block of size 2 1 ¥ 2
01 2 3 45 6 7 8 9 10 11 12 13 14 15 > st 4
3% 8
4 8 O
k freelk]
2) allocate a block of size 4 010
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 ;}{2
3
4

Copyright © William C. Cheng

Operating Systems - CSCI 402

High-level Example of Buddy Algorithm

= EXx: 16 "pages’ (minimum allocation is 1 page) free[k]

k
0 Q
1|1 XX Q
2 KA Q
3| X 8
4 [B Q
k
0
1
2
3
4

3) allocate a block of size 2
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

free[K]
Q

¥ 210
" OA 12
R & Q
B 0

4) allocate a block of size 2
01 2 3 45 6 7 8 9 1 11 12 13 14 15

Copyright © William C. Cheng

Operating Systems - CSCI 402

3.3 Dynamic
Storage Allocation

) BestHfit & First-fit Algorithms
_, Buddy System
) Slab Allocation

Copyright © William C. Cheng

Operating Systems - CSCI 402

Slab Allocation

) Objects are allocated and freed frequently
— allocation involves
Q finding an appropriate-sized storage
Q initialize it
& pointers need to point at the right places
< may even need to initialize synchronization data
structures
— deallocation involves
Q tearing down the data structures
Q freeing the storage
= |ots of "overhead"

_ Difficulties with dynamic storage allocation
= you cannot predict what an application will ask for
= but it’s not true for the kernel
Q e.g., can allocate a slab of process control blocks at a time
<& return one of them from a slab / @!,}_

Copyright © William C. Cheng

Slab Allocation

Operating Systems - CSCI 402

—= See weenix kernel code!

Copyright © William C. Cheng

Operating Systems - CSCI 402

Slab Allocation

_) Slab Allocation
= sets up a separate cache for each type of object to be managed
= contiguous sets of pages called sl/abs, allocated to hold objects
Q we will cover "pages” later, won’t get into too much detail now

ﬁ> Whenever a s/lab is allocated, a constructor is called to initialize all
the objects it hold

= this is where you pay for initialization, but it’s done in a batch

ﬁ} As objects are being allocated, they are taken from the set of
existing slabs in the cache
= Objects are considered "preallocated” since they have all
been initialized already

ﬁ} As objects are being freed, they are simply marked as free
= don’t have to free up storage
—= when appropriate can free up an entire slab

Copyright © William C. Cheng

