
I/O controllers "process" the bus request

Disk

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

all controllers listen on the bus to determine if a request

is for itself or not

and respond to relatively few addresses

memory is not really a "device"

Bus

if no one responds, you get a "bus error"

Memory

Disk

Bus

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

perform I/O operations by reading or writing data in the

controller registers one byte or word at a time over the bus

PIO (programmed I/O)

two categories of devices

Memory

Disk

Bus

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

perform I/O operations by reading or writing data in the

controller registers one byte or word at a time over the bus

PIO (programmed I/O)

two categories of devices

 I/O read

Memory

Disk

Bus

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

perform I/O operations by reading or writing data in the

controller registers one byte or word at a time over the bus

PIO (programmed I/O)

two categories of devices

write

Memory

Disk

Bus

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

perform I/O operations by reading or writing data in the

controller registers one byte or word at a time over the bus

PIO (programmed I/O)

two categories of devices

read

Memory

Disk

Bus

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

perform I/O operations by reading or writing data in the

controller registers one byte or word at a time over the bus

PIO (programmed I/O)

two categories of devices

I/O write

Memory

Disk

Bus

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

PIO (programmed I/O)

two categories of devices

DMA (direct memory access)

the controller performs the I/O itself

the processor writes to the controller to tell it where to

transfer the results to

the controller takes over and transfers data between

itself and primary memory

Memory

Disk

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

PIO (programmed I/O)

two categories of devices

DMA (direct memory access)

the controller performs the I/O itself

the processor writes to the controller to tell it where to

transfer the results to

the controller takes over and transfers data between

itself and primary memory

I/O write (to setup memory/device locations)

Memory

Disk

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

PIO (programmed I/O)

two categories of devices

DMA (direct memory access)

the controller performs the I/O itself

the processor writes to the controller to tell it where to

transfer the results to

the controller takes over and transfers data between

itself and primary memory

direct memory data transfer

Memory

Disk

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

PIO (programmed I/O)

two categories of devices

DMA (direct memory access)

the controller performs the I/O itself

the processor writes to the controller to tell it where to

transfer the results to

the controller takes over and transfers data between

itself and primary memory

interrupt (I’m done)

Memory

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

PIO Registers

GoR GoW IER IEW Control register (1 byte)

RdyR RdyW Status register (1 byte)

Read register (1 byte)

Write register (1 byte)

Legend: GoR

GoW

IER

IEW

RdyR

RdyW

Go read (start a read operation)

Go write (start a write operation)

Enable read-completion interrupts

Enable write-completion interrupts

Ready to read

Ready to write

This is the abstraction of a PIO device

a "register" is just a memory-mapped I/O address on the bus

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Programmed I/O

E.g.: Terminal controller

write a byte into the write register

Procedure (write)

set the GoW bit (and optionally the IEW bit if you’d like to be

notified via an interrupt) in the control register

poll and wait for RdyW bit (in status register) to be set (if

interrupts have been enabled, an interrupt occurs when this

happens)

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

DMA Registers

Control register (1 byte)

Status register (1 byte)

Memory address

register (4 bytes)

Device address

register (4 bytes)

Legend: Go

Op Code

IE

Rdy

Start an operation

Operation code (identifies the operation)

Enable interrupts

Controller is ready

Go IE

Rdy

Op Code

This is the abstraction of a DMA device

a "register" is just a memory-mapped I/O address on the bus

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Direct Memory Access

E.g.: Disk controller

set the disk address in the device address register (only

relevant for a seek request)

Procedure

set the buffer address in the memory address register

set the op code (SEEK, READ or WRITE), the Go bit and, if

desired, the IE bit in the control register

wait for interrupt or for Rdy bit to be set

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Drivers

not the kernel developers

Who knows how to use memory-mapped I/O to talk to devices?

device manufacturers do

it’s desirable if kernel is device-independent

but how?

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Drivers

not the kernel developers

Who knows how to use memory-mapped I/O to talk to devices?

device manufacturers do

it’s desirable if kernel is device-independent

but how?

Device manufacturers package their knowledge into device drivers

Keyboard

Disk 2

Disk 1

OS

Disk Driver

NIC Driver

Keyboard Driver

NIC
memory

mapped

I/O

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Drivers

Device Driver

read

write

interrupt

Common

Data

code in device drivers knows how to talk to devices (the rest of

the OS really doesn’t know the details)

Device drivers provide a standard interface to the rest of the OS

OS can treat I/O in a device-indepdendent manner by calling

functions in the standard interface

"interface" = array of function pointers

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

C++ Interface = Array of Function Pointers

class disk {
 public:
 virtual status_t read(request_t) = 0;
 virtual status_t write(request_t) = 0;
 virtual status_t interrupt() = 0;
};

C++ polymorphism achieved using virtual base class or interface

each type of disk driver is a subclass of the disk class and has

its own implementation of these functions

this gets compiled into an array of function pointers (which

is what C++ code gets compiled into)

each disk driver looks like a generic disk to the OS

in reality, there are no object classes and no polymorphism

the CPU doesn’t even know about data structures

the CPU only knows about memory addresses and

how to execute machine instructions

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

C Impmlementation of C++ Polymorphism

to read from any disk, call the first function indirectly

struct disk {
 void **disk_ops;
 ...
}

(void *)wd123_disk_ops[] = {
 read_handler_t wd123_read;
 write_handler_t wd123_write;
 intr_handler_t wd123_intr;
 ...
}

(void *)sg76_disk_ops[] = {
 read_handler_t sg76_read;
 write_handler_t sg76_write;
 intr_handler_t sg76_intr;
 ...
}

struct disk *d = ...;
d->disk_ops = wd123_disk_ops; /* known as "binding" */
/* or d->disk_ops = sg76_disk_ops; */

(*((read_handler_t)d->disk_ops[0]))(...);

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

... in C++

class disk {
 public:
 virtual status_t read(request_t) = 0;
 virtual status_t write(request_t) = 0;
 virtual status_t interrupt() = 0;
};

This is a synchronous interface

a user thread would call read/write() system call

these functions are called in the kernel which starts the device

the device driver’s interrupt method is called in the interrupt

context

if I/O is completed, the thread is unblocked and return

from the read/write() system call

Even in Sixth-Edition Unix, the internal driver interface is often

asynchronous

start_read/start_write() returns a handle identifying the

operation that has started

a thread can call the wait() method to synchronously wait for

I/O completion

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Bit More Realistic

class disk {
 public:
 virtual handle_t start_read(request_t) = 0;
 virtual handle_t start_write(request_t) = 0;
 virtual status_t wait(handle_t) = 0;
 virtual status_t interrupt() = 0;
};

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

I/O Processors: Channels

Memory

Channel Controller

Channel Controller

Channel Controller

when I/O costs dominate computation costs

use I/O processors (a.k.a. channels) to handle much of the

I/O work

important in large data-processing applications

can even download program into a channel processor

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.3 Dynamic

Storage Allocation

Best-fit & First-fit Algorithms

Buddy System

Slab Allocation

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Dynamic Storage Allocation

Where in the kernel do you need to do memory allocation?

stack space

malloc()

fork()

various OS data structures

etc.

process control block

thread control block

mutex (it’s a queue)

Memory allocator

computer science people like to personify things

a "memory allocator" is simply a collection of functions

just like we say that a variable "lives" in an address space

it’s not a thread

it’s not a process

application will not touch anything owned by the memory

allocator (memory allocator can do anything with them)

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Dynamic Storage Allocation

Goal: allow dynamic creation and destruction of data structures

efficient use of storage

Concerns:

first-fit vs. best-fit allocation

Example:

efficient use of processor time

use "memory allocator" to manage a large block of memory (i.e.,

a collection of contiguous memory addresses)

contract with application:

application will only touch "allocated memory blocks"

(memory allocator promises not to touch these)

very bad things can happen if contract is violated

assuming that there are no bugs in a memory allocator

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

First Fit Best FitAllocate 1000 bytes:

Allocate 1100 bytes:

Allocate 250 bytes:

300

1200

First Fit Best Fit

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

Allocate 1000 bytes:

Allocate 1100 bytes:

Allocate 250 bytes:

1300 bytes free (first)

1200 bytes free (last)

300

1200

First Fit Best Fit

300

100

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

Allocate 1000 bytes:

Allocate 1100 bytes:

Allocate 250 bytes:

1300 bytes free (first)

1200 bytes free (last)

300

1200

First Fit Best Fit

300

100

50

100 0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

Allocate 1000 bytes:

Allocate 1100 bytes:

Allocate 250 bytes:

1300 bytes free (first)

1200 bytes free (last)

300

1200

First Fit

1300

200

Best Fit

300

100

50

100 0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

Allocate 1000 bytes:

Allocate 1100 bytes:

Allocate 250 bytes:

1300 bytes free (first)

1200 bytes free (last)

300

1200

First Fit

1300

200

Best Fit

300

100

200

200

50

100 0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

Allocate 1000 bytes:

Allocate 1100 bytes:

Allocate 250 bytes:

1300 bytes free (first)

1200 bytes free (last)

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation Example

300

1200

First Fit

1300

200

Best FitAllocate 1000 bytes:

300

100

200

200

Allocate 1100 bytes:

50

100

200

200

Allocate 250 bytes:

 Stuck!

1300 bytes free (first)

1200 bytes free (last)

this is the general problem of fragmentation

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fragmentation

studies have shown that first-fit works better

First-fit vs. best-fit allocation

internal fragmentation: unusable memory is contained

within an allocated region (e.g., buddy system)

best-fit tends to leave behind a large number of regions of

memory that are too small to be useful

external fragmentation: unusable memory is separated

into small blocks and is interspersed by allocated memory

(e.g., best-fit)

best-fit tends to create smallest left-over blocks!

