Simple 1/O Architecture

Operating Systems - CSCI 402

Bus

Memory

= memory-mapped I/O

is for itself or not

Controller

Controller

Controller

] (o=

Q all controllers listen on the bus to determine if a request

Q 1/0 controllers "process" the bus request
<& and respond to relatively few addresses

% if no one responds, you get a "bus error"
Q memory is not really a "device"

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simple 1/O Architecture

Bus

Controller Controller Controller

] (o=

Memory

= memory-mapped I/O
= two categories of devices
Q PIO (programmed 1/O)

& perform I/O operations by reading or writing data in the
controller registers one byte or word at a time over the bus

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simple 1/O Architecture

I/O read Bus
Y Controller Controller Controller
Memory

= memory-mapped I/O
= two categories of devices
Q PIO (programmed 1/O)

& perform I/O operations by reading or writing data in the
controller registers one byte or word at a time over the bus

] (o=

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simple 1/O Architecture

Bus

Controller Controller Controller

] (o=

= memory-mapped I/O
= two categories of devices
Q PIO (programmed 1/O)
& perform I/O operations by reading or writing data in the
controller registers one byte or word at a time over the bus

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simple 1/O Architecture

Bus

Controller Controller Controller

] (o=

= memory-mapped I/O
= two categories of devices
Q PIO (programmed 1/O)
& perform I/O operations by reading or writing data in the
controller registers one byte or word at a time over the bus

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simple 1/O Architecture

/0 write Bus
Yy
Controller Controller Controller
Memory

= memory-mapped I/O
= two categories of devices
Q PIO (programmed 1/O)

& perform I/O operations by reading or writing data in the
controller registers one byte or word at a time over the bus

Copyright © William C. Cheng

Simple 1/O Architecture

Operating Systems - CSCI 402

Bus

Memory

W

= memory-mapped I/O

Controller

Controller

Controller

= two categories of devices
Q PIO (programmed 1/O)

QO DMA (direct memory access)

] (o=

<& the controller performs the /0O itself

& the processor writes to the controller to tell it where to

transfer the results to

<& the controller takes over and transfers data between
itself and primary memory 3

Copyright © William C. Cheng

31

Simple 1/O Architecture

Operating Systems - CSCI 402

I/0 write (to setup memory/device locations)

y

Controller

Memory

Controller

Controller

= memory-mapped I/O
= two categories of devices

Q PIO (programmed 1/O)
QO DMA (direct memory access)

] (o=

<& the controller performs the /0O itself

& the processor writes to the controller to tell it where to

transfer the results to

<& the controller takes over and transfers data between
itself and primary memory 3

Copyright © William C. Cheng

32

Simple 1/O Architecture

Operating Systems - CSCI 402

direct memory data transfer

Memory

W

= memory-mapped I/O

y

Controller

Controller

Controller

= two categories of devices
Q PIO (programmed 1/O)

QO DMA (direct memory access)

] (o=

<& the controller performs the /0O itself

& the processor writes to the controller to tell it where to

transfer the results to

<& the controller takes over and transfers data between
itself and primary memory 3

Copyright © William C. Cheng

33

Simple 1/O Architecture

Operating Systems - CSCI 402

interrupt (’'m done)

V Controller

Controller

Controller

i Memory

= memory-mapped I/O
= two categories of devices
Q PIO (programmed 1/O)
QO DMA (direct memory access)

] (o=

<& the controller performs the /0O itself

& the processor writes to the controller to tell it where to

transfer the results to

itself and primary memory
Copyright © William C. Cheng

<& the controller takes over and transfers data between (\
3(2(140), 5=
v,

34

Operating Systems - CSCI 402

PIO Registers

) This is the abstraction of a PIO device
= a "register" is just a memory-mapped I/O address on the bus

IEW Control register (1 byte)

Status register (1 byte)

Read register (1 byte)

Write register (1 byte)

GoR | GoW | IER

RdyR | RdyW

Legend: GoR Go read (start a read operation)
GoW Go write (start a write operation)
IER Enable read-completion interrupts
IEW Enable write-completion interrupts
RdyR Ready to read
RdyW Ready to write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Programmed |I/O
_, E.g.: Terminal controller

ﬁ> Procedure (write)
= write a byte into the write register
= set the GoW bit (and optionally the IEW bit if you’d like to be
notified via an interrupt) in the control register
= poll and wait for RdyW bit (in status register) to be set (if
interrupts have been enabled, an interrupt occurs when this
happens)

Copyright © William C. Cheng

Operating Systems - CSCI 402

DMA Registers

) This is the abstraction of a DMA device
= a "register" is just a memory-mapped I/O address on the bus

Go | IE Op Code Control register (1 byte)

Rdy Status register (1 byte)
Memory address
-ttt t 1.t —’_’—‘ register (4 bytes)

Device address
|I |I |I II II II || || —’_’—‘register(4bytes)

Legend: Go Start an operation
Op Code Operation code (identifies the operation)
IE Enable interrupts
Rdy Controller is ready

Copyright © William C. Cheng

Operating Systems - CSCI 402

Direct Memory Access
_) E.g.: Disk controller

_, Procedure
= set the disk address in the device address register (only

relevant for a seek request)

= set the buffer address in the memory address register

= set the op code (SEEK, READ or WRITE), the Go bit and, if
desired, the IE bit in the control register

= wait for interrupt or for Rdy bit to be set

Copyright © William C. Cheng

Operating Systems - CSCI 402

Device Drivers

ﬁ} Who knows how to use memory-mapped /O to talk to devices?
= not the kernel developers

= device manufacturers do
= it’s desirable if kernel is device-independent

Q but how?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Device Drivers

ﬁ> Who knows how to use memory-mapped /O to talk to devices?
= not the kernel developers

= device manufacturers do
= it’s desirable if kernel is device-independent

Q but how?

ﬁ> Device manufacturers package their knowledge into device drivers

Disk Driver
® memory
: mapped :
I/0 e
Keyboard Driver <~\>-
Keyboard NN
0S y B @,

Copyright © William C. Cheng

Operating Systems - CSCI 402

Device Drivers

. il ol o read
T~a L) Common
==
\\ write Data
"~ -™ interrupt

Device Driver

ﬁ> Device drivers provide a standard interface to the rest of the OS
= code in device drivers knows how to talk to devices (the rest of

the OS really doesn’t know the details)
= OS can treat I/O in a device-indepdendent manner by calling

functions in the standard interface

Q "interface" = array of function pointers 3
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

C++ Interface = Array of Function Pointers

class disk {

public:
virtual status_t read(request_t) = O;
virtual status_t write(request_t) = 0O;
virtual status_t interrupt() = O;

};

ﬁ} C++ polymorphism achieved using virtual base class or interface
= each type of disk driver is a subclass of the disk class and has
its own implementation of these functions
Q each disk driver looks like a generic disk to the OS
= this gets compiled into an array of function pointers (which
is what C++ code gets compiled into)
Q in reality, there are no object classes and no polymorphism
& the CPU doesn’t even know about data structures
<& the CPU only knows about memory addresses and
how to execute machine instructions ' @!,}_

Copyright © William C. Cheng

Operating Systems - CSCI 402

C Impmlementation of C++ Polymorphism

struct disk { (void *)wdl23_disk_ops[] = {
void **disk_ops; read_handler_t wdl23_read;
.« .. write_handler_t wdl23_write;
} intr_handler_t wdl23_intr;

}

(void *)sg76_disk_ops[] = {
read_handler_t sg76_read;
write_handler_t sg76_write;
intr_handler_t sg76_intr;

}

struct disk *d = .-
d->disk_ops = wdl23_disk_ops; /* known as "binding" */
/* or d->disk_ops = sg76_disk_ops; */

= to read from any disk, call the first function indirectly

(* ((read_handler_t)d->disk_ops[0])) (...); (AR
R D,

Copyright © William C. Cheng

.. iIN C++
class disk {
public:
virtual status_t read(request_t) = O;
virtual status_t write(request_t) = 0O;
virtual status_t interrupt() = O;

};

_, This is a synchronous interface
= a user thread would call read/write () system call

Operating Systems - CSCI 402

= these functions are called in the kernel which starts the device
= the device driver’s interrupt method is called in the interrupt

context
Q if /O is completed, the thread is unblocked and return
from the read/write () system call

Copyright © William C. Cheng

A Bit More Realistic

class disk {
public:
virtual
virtual
virtual
virtual

handle_t
handle_t
status_t
status_t

};

ﬁ} Even in Sixth-Edition Unix, the internal driver interface is often

asynchronous

— start_read/start_write () returns a handle identifying the

start_read(request_t) = 0O;
start_write (request_t) = O;
wait (handle_t) = 0O;
interrupt() = O;

operation that has started

= a thread can call the wait () method to synchronously wait for

I/O completion

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

1/O Processors: Channels

Channel [<+—*{ Controller

@4—» Memory Channel [<+—{ Controller

Channel [<+—*{ Controller

= when |I/O costs dominate computation costs
Q use /O processors (a.k.a. channels) to handle much of the
I/0 work
Q important in large data-processing applications
= cah even download program into a channel processor (AN
£y

Copyright © William C. Cheng

Operating Systems - CSCI 402

3.3 Dynamic
Storage Allocation

_) Best-fit & First-fit Algorithms
_, Buddy System
) Slab Allocation

Copyright © William C. Cheng

Operating Systems - CSCI 402

Dynamic Storage Allocation

ﬁ} Where in the kernel do you need to do memory allocation?
— stack space
= malloc ()
= fork ()
= various OS data structures
Q process control block
Q thread control block
Q mutex (it’s a queue)
= etc.

> Memory allocator
= computer science people like to personify things
Q just like we say that a variable "lives” in an address space
= a "memory allocator” is simply a collection of functions
Q it’s not a thread
Q Iit’s not a process

Copyright © William C. Cheng

Operating Systems - CSCI 402

Dynamic Storage Allocation

ﬁ} Goal: allow dynamic creation and destruction of data structures
= use "memory allocator” to manage a large block of memory (i.e.,
a collection of contiguous memory addresses)
Q contract with application:
<& application will not touch anything owned by the memory
allocator (memory allocator can do anything with them)
<& application will only touch "allocated memory blocks"™
(memory allocator promises not to touch these)
Q very bad things can happen if contract is violated
<& assuming that there are no bugs in a memory allocator

ﬁ> Concerns:
= efficient use of storage
= efficient use of processor time

_, Example:
= first-fit vs. best-fit allocation

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit

Allocate 1100 bytes:

Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit

300
1200

Allocate 1100 bytes:

Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit

300
1200

Allocate 1100 bytes:

300

100

Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit

300
1200

Allocate 1100 bytes:

300

100

Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit

1300

300
1200

200

Allocate 1100 bytes:

300

100

Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit
300 1300
1200 200
Allocate 1100 bytes:
300 200
100 200
Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation Example

1300 bytes free (first)

1200 bytes free (last)

Allocate 1000 bytes: First Fit Best Fit
300 1300
1200 200
Allocate 1100 bytes:
300 200
100 200
Allocate 250 bytes:

Copyright © William C. Cheng

Operating Systems - CSCI 402

Fragmentation

_) First-fit vs. best-fit allocation
— studies have shown that first-fit works better
= best-fit tends to leave behind a large nhumber of regions of
memory that are too small to be useful
Q best-fit tends to create smallest left-over blocks!
= this is the general problem of fragmentation
Q internal fragmentation: unusable memory is contained
within an allocated region (e.g., buddy system)
Q external fragmentation: unusable memory is separated
into small blocks and is interspersed by allocated memory
(e.g., best-fit)

Copyright © William C. Cheng

