Operating Systems - CSCI 402

System Calls

_) Atrapis atype of "software interrupt"
= Interrupt handler will invoke trap handler

}

prog() { write() { prog () frame
v.n.:':l:.te (fd, buffer, size); trap (write_code);
T S User Stack
} }
User
Kernel

intr_handler (intr_code) {

if (intr_code == SYSCALL)
syscall_handler();

}

syscall_handler (trap_code) {

Kernel Stack

if (trap_code == write_code)
write_handler();

}
Copyright © William C. Cheng

Operating Systems - CSCI 402

System Calls

ﬁ} More details on the "trap’” machine instruction

1) Trap into the kernel with all interrupt disabled and processor
mode set to privileged mode

2) The Hardware Abstraction Layer (HAL) save IP and SP in
"temporary locations” in kernel space (e.g., the interrupt stack)
— additional registers may be saved
= HAL is hardware-dependent (outside the scope of this class)

3) HAL sets the SP to point to the kernel stack designated
for the corresponding user thread (information from PCB)

4) HAL sets IP to interrupt handler (written in C)
= copy user IP and SP from "temporary location"” and push

them onto kernel stack, then re-enable interrupt

5) On return from the trap handler, disable interrupt and
executes a special "return” instruction to return to user process
= iret Oh X86

Similar sequence happens when you get hardware interrupt (A5
) q pp you g Pt (B

Copyright © William C. Cheng

Operating Systems - CSCI 402

System Calls

T

User
stack
frames T
Current thread’s Current thread’s
user stack kernel stack

User | Kernel
()

Copyright © William C. Cheng

Operating Systems - CSCI 402

System Calls

T T

User Kernel user
o peck o
frames T frames <J
Current thread’s Current thread’s Current thread’s
user stack kernel stack kernel stack
User | Kernel
A

Copyright © William C. Cheng

Operating Systems - CSCI 402

System Calls

ﬁ} More details on the "trap’” machine instruction
1) Trap into the kernel with all interrupt disabled and processor
mode set to privileged mode
2) The Hardware Abstraction Layer (HAL) save IP and SP in
"temporary locations” in kernel space (e.g., the interrupt stack)
— additional registers may be saved
= HAL is hardware-dependent (outside the scope of this class)
3) HAL sets the SP to point to the kernel stack designated
for the corresponding user process (information from PCB)
4) HAL sets IP to interrupt handler (written in C)
= copy user IP and SP from "temporary location"” and push
them onto kernel stack, then re-enable interrupt
(5) On return from the trap handler, disable interrupt and
executes a special "return” instruction to return to user process
L = iret oOh X86

interrupt context
A

interrupt context
A

ﬁ> Similar sequence happens when you get hardware interrupt | @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Context Switch

ﬁ} The big idea here is that in order to perform a context switch,
you must save your context, build new context, then switch to it
= therefore, you must know what constitutes the context
= then you save all of it

Q what’s the minimum amount of context to save?
Q context can be stored in several places
& stack
& thread control block (e.g., in a system call, the TCB
contains pointers to both the corresponding user
stack frame and the kernel stack frame)
& etc.
= when switching back, you must restore the context

ﬁ} In general, it’s difficult to make a "clean” context switch
= when you switch from context A to context B
Q there may be time you are in the context of both A and B
Q there may be time you are in neither contexts HATNN
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

3.1 Context Switching

ﬁ} Procedures
ﬁ} Threads & Coroutines
_) Systems Calls

_) Interrupts

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupts

> Do not confuse interrupts with signals (even though the

terminologies related to them are similar)
— signals are generated by the kernel

Q they are delivered to the user process

Q signal + software interrupt
= [nterrupts are generated by the hardware

Q they are delivered to the kernel

& they are delivered to HAL and then the kernel

ﬁ> When an interrupt occurs, the processor puts aside the current
context and switch to an interrupt context
= the current context can be a thread (user or kernel) context or
another interrupt context
Q need to be able to mask/block individual interrupts (similar to
signal masking/blocking)
& separate from enabling/disabling interrupt

= when the interrupt handler finishes, the processor SN\

%enerally resumes the context that was interrupted
Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupting A User Thread

ﬁ} If interrupt occurs when a user thread is executing in the CPU
1) Disable interrupt and set processor mode to privileged mode
2) The Hardware Abstraction Layer (HAL) save IP and SP in
"temporary locations"” in kernel space (e.g., the interrupt stack)
= additional registers may be saved
= HAL is hardware-dependent (outside the scope of this class)
3) HAL sets the SP to point to the kernel stack designated
for the corresponding user thread (information from PCB)
= umm... which kernel stack?
4) HAL sets IP to interrupt handler (written partly in C)
= copy user IP and SP from "temporary location" and push
them onto kernel stack, then re-enable interrupt (with some
interrupts blocked/masked)
= stay In interrupt context
5) On return from the interrupt handler, disable interrupt and

executes a special "return” instruction to return to user proc (i\
=/

= jret on x86 ;
Copyright © William C. Cheng

9

Operating Systems - CSCI 402

Interrupting A User Thread

ﬁ} If interrupt occurs when a user thread is executing in the CPU
1) Disable interrupt and set processor mode to privileged mode
2) The Hardware Abstraction Layer (HAL) save IP and SP in
"temporary locations"” in kernel space (e.g., the interrupt stack)
= additional registers may be saved

ain = HAL is hardware-dependent (outside the scope of this class)
eTeNSe 3) HAL sets the SP to point to the kernel stack designated
scall for the corresponding user thread (information from PCB)

—> = umm... which kernel stack?
4) HAL sets IP to interrupt handler (written partly in C)
= copy user IP and SP from "temporary location" and push
them onto kernel stack, then re-enable interrupt (with some
—> interrupts blocked/masked)
— = stay in interrupt context
5) On return from the interrupt handler, disable interrupt and

executes a special "return” instruction to return to user proc (i\
=/

= jret on x86 ;
Copyright © William C. Cheng

10

Operating Systems - CSCI 402

Interrupts

ﬁ} Interrupt service routine is executed in an interrupt context
= nho thread context here

ﬁ} Interrupt service routine is written in C (mixed with assembly code)
= to execute C code, you need a stack
= which stack should it use?
= there are several possibilities
1) allocate a new stack each time an interrupt occurs
& too slow
2) have one stack shared by all interrupt handlers
& not often done
3) interrupt handler could borrow the kernel stack from the
thread it is interrupting
¢ most common

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupting User Thread

-
= similar to system call
O except that you stay
in interrupt context with
some interrupts masked

T T

User Interrupt | user
stack handler’s | thread
frames T frames <J
Current thread’s Current thread’s Current thread’s
user stack kernel stack kernel stack
User | Kernel
A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupting Kernel Thread

T T

User Kernel
stack stack
frames frames
Current thread’s Current thread’s
user stack kernel stack
User | Kernel
A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupting Kernel Thread

3 Interrupt | kernel

handler’s | thread

T T frames :j"te"t

User Kernel Kernel uhser |
stack stack stack threa

frames frames frames :j"text

Current thread’s Current thread’s Current thread’s
user stack kernel stack kernel stack

User | Kernel ,

(5,

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupting Another Interrupt Service Routine

Interrupt L> ?

handler 1’s
T frames
User Kernel
stack stack
frames frames

Current thread’s Current thread’s
user stack kernel stack
User | Kernel
A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupting Another Interrupt Service Routine

Interrupt | interrupt
handler 2’s gg:ﬂ:i{‘
T frames <J
Interrupt _"> Interrupt | kernel
handler 1’s handler 1’s ggﬁ&i :
T frames frames <J
User Kernel Kernel user
stack stack stack g(‘)rr?ﬁ& :
frames frames frames <J

Current thread’s
kernel stack

Current thread’s
kernel stack

Current thread’s
user stack

User | Kernel
A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupts

ﬁ} For approaches (2) and (3), there is no way to suspend one
interrupt handler and resume the execution of another
= since there is only one stack for all the interrupt handlers

Q the global variable CurrentThread does not change!

= therefore, the handler of the most recent interrupt must

run to completion

Q when it’s done, the stack frame is removed, and the
next-most-recent interrupt now must run to completion

= this is a big deal!

Q once you have interrupt handlers running, a normal thread
(no matter how important it is) cannot run until al/l interrupt
handlers complete
<& this is why an interrupt service routine should do as little

as possible (and figure out a way to do the rest later)

Q if we have approach (1), then we won’t have this problem

& but it’s so slow that it’s unacceptable @\
173

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupts

ﬁ} What if an interrupt service routine takes too long to run?
= interrupt handler places a description of the work that must
be done on a queue of some sort, then arranges for it to be
done in some other context at a later time
Q still need to do something in the interrupt handler
1) unblock a kernel thread that’s sleeping in the
corresponding I/0 queue
2) start the next I/O opertion on the same device
= this approach is used in many systems, including Windows
and Linux
Q will discuss further in Ch 5

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Mask

> The CPU can have interrupt disabled
= if any interrupt occurs while interrupt is disabled, the interrupt
indication remains pending
= once interrupt is enabled, a pending interrupt is delivered and
the CPU is interrupted to execute a corresponding interrupt
service routine
= disable/enable all interrupts

> When interrupt is enabled, individual interrupt can be masked, i.e.,
temporarily blocked
= similar to signal masking/blocking in user space programs
Q although you cannot "disable™ all signals in user space
= if an interrupt occurs while it is masked, the interrupt indication
remains pending
= once that interrupt is unmasked/unblocked, the interrupt is
delivered and the CPU is interrupted to execute a corresponding

interrupt service routine (ISR)
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Mask

ﬁ} How interrupts are masked/blocked is architecture-dependent
= common approaches
1) hardware register implements a bit vector / mask
& if a particular bit is set, the corresponding interrupt
class is enable (or disabled)
& the kernel masks interrupts by setting bits in the
register
& when an interrupt does occur, the corresponding
mask bit is set in the register (block other interrupts
of the same class)
& cleared when the handler returns
2) hierarchical interrupt levels (more common)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupt Mask

ﬁ} How interrupts are masked/blocked is architecture-dependent

= common approaches
1) hardware register implements a bit vector / mask
2) hierarchical interrupt levels (more common)

<

<
<

<

<

the processor masks interrupts by setting an

Interrupt Priority Level (IPL) in a hardware register

all interrupts with the current or lower levels are masked
the kernel masks a class of interrupts by setting

the IPL to a particular value

when an interrupt does occur, the current IPL is set

to that of the level the interrupt belongs

restores to previous value on handler return

= even if (1) is Iimplement in the hardware, abstraction (in HAL) can
be built to make it look as if (2) is implemented
Q easier for kernel programmers to work with interrupts

Q for this class, we assume that (2) is used

Copyright © William C. Cheng

Operating Systems - CSCI 402

3.2 Input/Output
Architectures

Copyright © William C. Cheng

Operating Systems - CSCI 402

Input/Output

) Architectural concerns
= memory-mapped I/O
Q programmed 1/O (PI1O)
Q direct memory access (DMA)
= |/O processors (channels)

_) Software concerns
= device drivers
= concurrency of I/O and computation

Copyright © William C. Cheng

Operating Systems - CSCI 402

What Does A Computer Look Like?

) LSI-11

= processor for PDP-11

) Boards are connected over
a "bus”
= ohn the "backplane"
= various standards for
PDP-11
Q Unibus, Q-Bus, etc.

connect to backplane bus

Copyright © William C. Cheng

Simple 1/O Architecture

Operating Systems - CSCI 402

Bus

Memory

= memory-mapped I/O

is for itself or not

Controller

Controller

Controller

] (o=

Q all controllers listen on the bus to determine if a request

Q 1/0 controllers "process" the bus request
<& and respond to relatively few addresses

% if no one responds, you get a "bus error"
Q memory is not really a "device"

Copyright © William C. Cheng

