
write() {

 ...

 trap(write_code);

 ...

}

User Stack

prog() frame

intr_handler(intr_code) {

 ...

 if (intr_code == SYSCALL)

 syscall_handler();

 ...

}

syscall_handler(trap_code) {

 ...

 if (trap_code == write_code)

 write_handler();

 ...

}

Kernel Stack

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

User

Kernel

A trap is a type of "software interrupt"

prog() {

 ...

 write(fd, buffer, size);

 ...

}

interrupt handler will invoke trap handler

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

Trap into the kernel with all interrupt disabled and processor

mode set to privileged mode

1)

The Hardware Abstraction Layer (HAL) save IP and SP in

"temporary locations" in kernel space (e.g., the interrupt stack)

2)

HAL sets the SP to point to the kernel stack designated

for the corresponding user thread (information from PCB)

3)

4) HAL sets IP to interrupt handler (written in C)

5)

More details on the "trap" machine instruction

On return from the trap handler, disable interrupt and

executes a special "return" instruction to return to user process

additional registers may be saved

iret on x86

Similar sequence happens when you get hardware interrupt

copy user IP and SP from "temporary location" and push

them onto kernel stack, then re-enable interrupt

HAL is hardware-dependent (outside the scope of this class)

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

?

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

Current thread’s
kernel stack

Kernel
stack

frames

user
thread
context

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

Trap into the kernel with all interrupt disabled and processor

mode set to privileged mode

1)

The Hardware Abstraction Layer (HAL) save IP and SP in

"temporary locations" in kernel space (e.g., the interrupt stack)

2)

HAL sets the SP to point to the kernel stack designated

for the corresponding user process (information from PCB)

3)

4) HAL sets IP to interrupt handler (written in C)

5)

More details on the "trap" machine instruction

On return from the trap handler, disable interrupt and

executes a special "return" instruction to return to user process

additional registers may be saved

iret on x86

Similar sequence happens when you get hardware interrupt

copy user IP and SP from "temporary location" and push

them onto kernel stack, then re-enable interrupt

HAL is hardware-dependent (outside the scope of this class)

in
te

rr
u

p
t

c
o

n
te

x
t

in
te

rr
u

p
t

c
o

n
te

x
t

there may be time you are in the context of both A and B

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Context Switch

therefore, you must know what constitutes the context

context can be stored in several places

The big idea here is that in order to perform a context switch,

you must save your context, build new context, then switch to it

then you save all of it

when switching back, you must restore the context

what’s the minimum amount of context to save?

stack

thread control block (e.g., in a system call, the TCB

contains pointers to both the corresponding user

stack frame and the kernel stack frame)

etc.

when you switch from context A to context B

In general, it’s difficult to make a "clean" context switch

there may be time you are in neither contexts

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.1 Context Switching

Procedures

Threads & Coroutines

Systems Calls

Interrupts

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

the current context can be a thread (user or kernel) context or

another interrupt context

When an interrupt occurs, the processor puts aside the current

context and switch to an interrupt context

Do not confuse interrupts with signals (even though the

terminologies related to them are similar)

signals are generated by the kernel

they are delivered to the user process

signal ≠ software interrupt

interrupts are generated by the hardware

they are delivered to the kernel

they are delivered to HAL and then the kernel

need to be able to mask/block individual interrupts (similar to

signal masking/blocking)

separate from enabling/disabling interrupt

when the interrupt handler finishes, the processor

generally resumes the context that was interrupted

Disable interrupt and set processor mode to privileged mode1)

The Hardware Abstraction Layer (HAL) save IP and SP in

"temporary locations" in kernel space (e.g., the interrupt stack)

2)

HAL sets the SP to point to the kernel stack designated

for the corresponding user thread (information from PCB)

3)

4) HAL sets IP to interrupt handler (written partly in C)

5)

If interrupt occurs when a user thread is executing in the CPU

On return from the interrupt handler, disable interrupt and

executes a special "return" instruction to return to user process

additional registers may be saved

iret on x86

copy user IP and SP from "temporary location" and push

them onto kernel stack, then re-enable interrupt (with some

interrupts blocked/masked)

HAL is hardware-dependent (outside the scope of this class)

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting A User Thread

umm... which kernel stack?

stay in interrupt context

Disable interrupt and set processor mode to privileged mode1)

The Hardware Abstraction Layer (HAL) save IP and SP in

"temporary locations" in kernel space (e.g., the interrupt stack)

2)

HAL sets the SP to point to the kernel stack designated

for the corresponding user thread (information from PCB)

3)

4) HAL sets IP to interrupt handler (written partly in C)

5)

If interrupt occurs when a user thread is executing in the CPU

On return from the interrupt handler, disable interrupt and

executes a special "return" instruction to return to user process

additional registers may be saved

iret on x86

copy user IP and SP from "temporary location" and push

them onto kernel stack, then re-enable interrupt (with some

interrupts blocked/masked)

HAL is hardware-dependent (outside the scope of this class)

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting A User Thread

umm... which kernel stack?

stay in interrupt context

main

difference

with

syscall

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

which stack should it use?

Interrupt service routine is written in C (mixed with assembly code)

there are several possibilities

1) allocate a new stack each time an interrupt occurs

2) have one stack shared by all interrupt handlers

3) interrupt handler could borrow the kernel stack from the

thread it is interrupting

too slow

not often done

most common

Interrupt service routine is executed in an interrupt context

no thread context here

to execute C code, you need a stack

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting User Thread

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

Current thread’s
kernel stack

Interrupt
handler’s

frames

user
thread
context

similar to system call

except that you stay

in interrupt context with

some interrupts masked

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting Kernel Thread

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

Kernel
stack

frames

?

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting Kernel Thread

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

Current thread’s
kernel stack

Interrupt
handler’s

frames

Kernel
stack

frames

Kernel
stack

frames

kernel
thread
context

user
thread
context

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting Another Interrupt Service Routine

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

Kernel
stack

frames

Interrupt
handler 1’s

frames

?

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupting Another Interrupt Service Routine

Current thread’s
user stack

User
stack

frames

Current thread’s
kernel stack

KernelUser

Current thread’s
kernel stack

Kernel
stack

frames

Kernel
stack

frames

Interrupt
handler 1’s

frames

Interrupt
handler 1’s

frames

Interrupt
handler 2’s

frames

interrupt
handler 1
context

kernel
thread
context

user
thread
context

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

since there is only one stack for all the interrupt handlers

For approaches (2) and (3), there is no way to suspend one

interrupt handler and resume the execution of another

therefore, the handler of the most recent interrupt must

run to completion

when it’s done, the stack frame is removed, and the

next-most-recent interrupt now must run to completion

this is a big deal!

once you have interrupt handlers running, a normal thread

(no matter how important it is) cannot run until all interrupt

handlers complete

if we have approach (1), then we won’t have this problem

this is why an interrupt service routine should do as little

as possible (and figure out a way to do the rest later)

the global variable CurrentThread does not change!

but it’s so slow that it’s unacceptable

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

interrupt handler places a description of the work that must

be done on a queue of some sort, then arranges for it to be

done in some other context at a later time

What if an interrupt service routine takes too long to run?

this approach is used in many systems, including Windows

and Linux

will discuss further in Ch 5

still need to do something in the interrupt handler

1)

2)

unblock a kernel thread that’s sleeping in the

corresponding I/O queue

start the next I/O opertion on the same device

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Mask

if any interrupt occurs while interrupt is disabled, the interrupt

indication remains pending

The CPU can have interrupt disabled

once interrupt is enabled, a pending interrupt is delivered and

the CPU is interrupted to execute a corresponding interrupt

service routine

if an interrupt occurs while it is masked, the interrupt indication

remains pending

When interrupt is enabled, individual interrupt can be masked, i.e.,

temporarily blocked

once that interrupt is unmasked/unblocked, the interrupt is

delivered and the CPU is interrupted to execute a corresponding

interrupt service routine (ISR)

disable/enable all interrupts

similar to signal masking/blocking in user space programs

although you cannot "disable" all signals in user space

2) hierarchical interrupt levels (more common)

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Mask

common approaches

How interrupts are masked/blocked is architecture-dependent

1) hardware register implements a bit vector / mask

if a particular bit is set, the corresponding interrupt

class is enable (or disabled)

the kernel masks interrupts by setting bits in the

register

when an interrupt does occur, the corresponding

mask bit is set in the register (block other interrupts

of the same class)

cleared when the handler returns

2) hierarchical interrupt levels (more common)

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupt Mask

common approaches

How interrupts are masked/blocked is architecture-dependent

1) hardware register implements a bit vector / mask

the processor masks interrupts by setting an

Interrupt Priority Level (IPL) in a hardware register

all interrupts with the current or lower levels are masked

the kernel masks a class of interrupts by setting

the IPL to a particular value

when an interrupt does occur, the current IPL is set

to that of the level the interrupt belongs

restores to previous value on handler return

even if (1) is implement in the hardware, abstraction (in HAL) can

be built to make it look as if (2) is implemented

easier for kernel programmers to work with interrupts

for this class, we assume that (2) is used

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.2 Input/Output

Architectures

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Input/Output

memory-mapped I/O

Architectural concerns

I/O processors (channels)

device drivers

Software concerns

concurrency of I/O and computation

programmed I/O (PIO)

direct memory access (DMA)

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

What Does A Computer Look Like?

processor for PDP-11

LSI-11

http://hampage.hu/pdp-11/lsi11.html
connect to backplane bus

on the "backplane"

Boards are connected over

a "bus"

various standards for

PDP-11

Unibus, Q-Bus, etc.

Disk

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple I/O Architecture

Controller ControllerController

memory-mapped I/O

all controllers listen on the bus to determine if a request

is for itself or not

and respond to relatively few addresses

I/O controllers "process" the bus request

memory is not really a "device"

Bus

if no one responds, you get a "bus error"

Memory

