
More On Kernel 1

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Kernel Code

We will go over some kernel code now (we will not put all the code in

"faber_test.c" and "sunghan_test.c" on these slides)

we will not cover all the test code

if you have a specific test you want the instructor to talk about

next Friday, please send him an e-mail before 5pm on Thursday

you need to learn how to read all these code and use them to

figure out what you need to do

IMPORTANT: at any line in faber_thread_test(), ask yourself

where are all the threads/processes?1)

if a thread is not in the run queue, who is going to unblock it

and when/how (by calling what function)?

2)

i.e., in which queue is a thread sleeping

we will probably cover a small number of test cases

exactly how and where will a particular process/thread die?3)

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

dbg(DBG_TEST, "waitpid any test\n");
start_proc(&pt, "waitpid any test", waitpid_test, 23);
wait_for_any();

first subtest

/*
 * Create a process and a thread with the given name
 * and calling teh given function. Arg1 is passed to
 * the function (arg2 is always NULL). The thread
 * is immediately placed on the run queue. A
 * proc_thread_t is returned, giving the caller a
 * pointer to the new process and thread to
 * coordinate tests. NB, the proc_thread_t is
 * returned by value, so there are no stack problems.
 */
static void start_proc(proc_thread_t *ppt, char *name,
 kthread_func_t f, int arg1) {
 ...
}

static void start_proc(proc_thread_t *ppt, char *name,
 kthread_func_t f, int arg1) {
 proc_thread_t pt;

 pt.p = proc_create(name);
 pt.t = kthread_create(pt.p, f, arg1, NULL);
 KASSERT(pt.p && pt.t &&
 "Cannot create thread or process");
 sched_make_runnable(pt.t)
 if (ppt != NULL) {
 memcpy(ppt, &pt, sizeof(proc_thread_t));
 }
}

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

first subtest

void *waitpid_test(int arg1, void *arg2) {
 do_exit(arg1);
 return NULL;
}

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

first subtest

/**
 * Call waitpid with a -1 pid and print a message
 * about any process that exits.
 * Returns the pid found, including -ECHILD when this
 * process has no children.
 */
static pid_t wait_for_any() {
 int rv;
 pid_t pid = do_waitpid(-1, 0, &rv);
 if (pid != -ECHILD)
 dbg(DBG_TEST, "child (%d) exited: %d\n", pid, rv);
 return pid;
}

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

dbg(DBG_TEST, "waitpid test\n");
start_proc(&pt, "waitpid test", waitpid_test, 32);
pid = do_waitpid(2323, 0, &rv);
if (pid != -ECHILD)
 dbg(DBG_TEST, "Allowed wait on non-existent pid\n");
wait_for_proc(pt.p);

2nd subtest

void *waitpid_test(int arg1, void *arg2) {
 do_exit(arg1);
 return NULL;
}

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

2nd subtest

/**
 * Call do_waitpid with the process ID of the given
 * process. Print a debug message with the exiting
 * process’s status.
 */
static void wait_for_proc(proc_t *p) {
 int rv;
 pid_t pid;
 char pname[PROC_NAME_LEN];

 strncpy(pname, p->p_comm, PROC_NAME_LEN);
 pname[PROC_NAME_LEN-1] = ’\0’;
 pid = do_waitpid(p->p_pid, 0, &rv);
 dbg(DBG_TEST, "%s (%d) exited: %d\n", pname, pid, rv);
}

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

dbg(DBG_TEST, "kthread exit test\n");
start_proc(&pt, "kthread exit test",
 kthread_exit_test, 0);
wait_for_proc(pt.p);

3rd subtest

/*
 * A thread function that returns NULL, silently
 * invoking kthread_exit()
 */
void *kthread_exit_test(int arg1, void *arg2) {
 return NULL;
}

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

dbg(DBG_TEST, "many test\n");
for (i = 0; i < 10; i++)
 start_proc(NULL, "many test", waitpid_test, i);
wait_for_all();
dbg(DBG_TEST, "(C.1) done\n");

4th subtest

/* Repeatedly call wait_for_any() until it returns
 * -ECHILD */
static void wait_for_all() {
 while (wait_for_any() != -ECHILD)
 ;
}

void *waitpid_test(int arg1, void *arg2) {
 do_exit(arg1);
 return NULL;
}

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

faber_thread_test()

Let’s look at the first set of tests in faber_thread_test()

4th subtest

/**
 * Call waitpid with a -1 pid and print a message
 * about any process that exits.
 * Returns the pid found, including -ECHILD when this
 * process has no children.
 */
static pid_t wait_for_any() {
 int rv;
 pid_t pid = do_waitpid(-1, 0, &rv);
 if (pid != -ECHILD)
 dbg(DBG_TEST, "child (%d) exited: %d\n", pid, rv);
 return pid;
}

We will not put all the code in "faber_test.c" and

"sunghan_test.c" on these slides

in the discussion sections, we will discuss more of these test

code

if you have a specific test you want the TA to talk about,

please send him an e-mail before 5pm on Thursday

we will not cover all the test code

you need to learn how to read all these code and use

them to figure out what you need to do

we will probably cover a small number of test cases

IMPORTANT: at any line in faber_thread_test(), ask yourself

where are all the threads/processes?1)

if a thread is not in the run queue, who is going to unblock it

and when/how (by calling what function)?

2)

i.e., in which queue is a thread sleeping

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More Test Code

