Operating Systems - CSCI 402

More On Kernel 1

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel Code

ﬁ} We will go over some kernel code now (we will not put all the code in

"faber_ test.c" and "sunghan_test.c" on these slides)

— we will not cover all the test code
Q we will probably cover a small number of test cases
Q you need to learn how to read all these code and use them to

figure out what you need to do

= If you have a specific test you want the instructor to talk about

next Friday, please send him an e-mail before 5pm on Thursday

_) IMPORTANT: at any line in faber_thread_test (), ask yourself
1) where are all the threads/processes?
¢ l.e., in which queue is a thread sleeping
2) if a thread is not in the run queue, who is going to unblock it
and when/how (by calling what function)?
3) exactly how and where will a particular process/thread die?

@

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= first subtest

dbg (DBG_TEST, "waitpid any test\n");
start_proc(&pt, "waitpid any test", waitpid_test, 23);
wait_for_any();

~
*

Create a process and a thread with the given name
and calling teh given function. Argl is passed to
the function (arg2 is always NULL). The thread
is immediately placed on the run queue. A
proc_thread_t is returned, giving the caller a
pointer to the new process and thread to
coordinate tests. NB, the proc_thread_t 1is
returned by value, so there are no stack problems.

*
*
*
*
*
*
*
*

*/
static void start_proc (proc_thread_t *ppt, char *name,
kthread_func_t £, int argl) {

| &

3

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= first subtest

static void start_proc (proc_thread_t *ppt, char *name,
kthread_func_t £, int argl) {
proc_thread_t pt;

pt.p = proc_create (name);
pt.t = kthread_create(pt.p, £, argl, NULL);
KASSERT (pt.p && pt.t &&
"Cannot create thread or process");
sched_make_runnable (pt.t)
if (ppt != NULL) {
memcpy (ppt, &pt, sizeof (proc_thread_t));
}
}

void *waitpid_test (int argl, void *arg2) {
do_exit (argl);
return NULL,

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= first subtest

/**
* Call waitpid with a -1 pid and print a message
* about any process that exits.
* Returns the pid found, including -ECHILD when this
* process has no children.
*/
static pid_t wait_for_any () {
int rv;
pid_t pid = do_waitpid(-1, 0, &rv);
if (pid != —-ECHILD)
dbg (DBG_TEST, '"child (%d) exited: %d\n", pid, rv);
return pid;

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= 2nd subtest

dbg (DBG_TEST, "waitpid test\n");
start_proc(&pt, "waitpid test", waitpid_test, 32);
pid = do_waitpid (2323, 0, &rv);
if (pid !'= -ECHILD)

dbg (DBG_TEST, "Allowed wait on non-existent pid\n");
wait_for_proc(pt.p);

void *waitpid_test (int argl, wvoid *arg2) {
do_exit (argl);
return NULL;,

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= 2nd subtest

/**
* Call do_waitpid with the process ID of the given
* process. Print a debug message with the exiting
* process’s status.
*/
static void wait_for_proc(proc_t *p) {
int rv;
pid_t pid;

char pname [PROC_NAME_LEN];

strncpy (pname, p—>p_comm, PROC_NAME_LEN) ;

pname [PROC_NAME_LEN-1] = '\0’;

pid = do_waitpid(p—>p_pid, 0, &rv);

dbg (DBG_TEST, "%s (%d) exited: %d\n", pname, pid, rv);

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= 3rd subtest

dbg (DBG_TEST, "kthread exit test\n");

start_proc(&pt, "kthread exit test",
kthread_exit_test, 0);

wait_for_proc(pt.p);

/ *

* A thread function that returns NULL, silently
* invoking kthread_exit ()

*/

void *kthread_exit_test (int argl, void *arg2) ({
return NULL;
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= 4th subtest

dbg (DBG_TEST, "many test\n");
for (i = 0; 1 < 10; i++)
start_proc (NULL, "many test", waitpid_test, 1i);
wait_for_all();
dbg (DBG_TEST, " (C.l1l) done\n");

void *waitpid_test (int argl, void *arg2) {
do_exit (argl);
return NULL,

}

/* Repeatedly call wait_for_any() until it returns

* —ECHILD */
static void wait_for_all () {
while (wait_for_any () != —-ECHILD)

4

Copyright © William C. Cheng

Operating Systems - CSCI 402

faber thread_test ()

) Let’s look at the first set of tests in faber_thread_test ()
= 4th subtest

/**
* Call waitpid with a -1 pid and print a message
* about any process that exits.
* Returns the pid found, including -ECHILD when this
* process has no children.
*/
static pid_t wait_for_any () {
int rv;
pid_t pid = do_waitpid(-1, 0, &rv);
if (pid != —-ECHILD)
dbg (DBG_TEST, '"child (%d) exited: %d\n", pid, rv);
return pid;

Copyright © William C. Cheng

Operating Systems - CSCI 402

More Test Code

> We will not put all the code in "faber_test.c" and
"sunghan_test.c" on these slides
= in the discussion sections, we will discuss more of these test
code
Q we will not cover all the test code
<& you need to learn how to read all these code and use
them to figure out what you need to do
<& we will probably cover a small number of test cases
= if you have a specific test you want the TA to talk about,
please send him an e-mail before 5pm on Thursday

_) IMPORTANT: at any line in faber_thread_test (), ask yourself
1) where are all the threads/processes?
& l.e., in which queue is a thread sleeping
2) if a thread is not in the run queue, who is going to unblock it
and when/how (by calling what function)?
|
o,

Copyright © William C. Cheng

