Operating Systems - CSCI 402

Kernel 1

Bill Cheng

http://merlot.usc.edu/william/usc/

_) Prerequisite: a simple system (Ch 4)
= when you finish the prerequisite, please come back and
review this material

Copyright © William C. Cheng

Operating Systems - CSCI 402

Boot Prestine Kernel

$ script

Script started, file is typescript
reading .login (xterm)

% ./weenix -n
/usr/bin/gemu-system-i386

Not yet implemented: PROCS: bootstrap, file \
main/kmain.c, line 184

panic in main/kmain.c:186 bootstrap(): weenix \
returned to bootstrap()!!! BAD!!!

Kernel Halting.

~C

gemu: terminating on signal 2

5 exit

Script done, file is typescript
% more typescript

Copyright © William C. Cheng

Operating Systems - CSCI 402

Look At "typescript"”

) Where is kernel’s text segment?
= 0xc0000000-0xc0038000 means [0xc0000000, 0xc0038000)
Q this interval is "closed" on the left (i.e., includes) and "open™
on the right (i.e., excludes)
& pretty much all intervals are denoted this way

) Where are the other segments?
= data: [0xc0038000-0xc004Bb&a)
= bss: [0xc004Bb&a-0xc0058000)
= page system: [0xc00al000-0xc£e9d000)
Q | think this is like the dynamic segment for the kernel (i.e.,
Buddy System)

C> If your numbers are slightly different, it’s probably okay

Copyright © William C. Cheng

Operating Systems - CSCI 402

Look At "typescript"”

_) What else?
= kernel data structures are initialized (e.g., memory allocators)

= some hardware are initialized (e.g., PIC)
Q don’t need to understand EVERYTHING

= if your kernel access anywhere outside this range, most likely
you will get a kernel page fault
Q this will be followed by a kernel panic

ﬁ> VERY IMPORTANT: read kernel FAQ about "how can | debug
a page fault that caused kernel panic?"
—= whenever you get a kernel page fault, you must follow the steps
there to figure out EXACTLY where your kernel crashed
Q | have no special power, | have no idea why your kernel

crashed

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel 1
% make nyi

proc/kmutex.c:36 kmutex_init () PROCS
proc/kmutex.c:48 kmutex_lock () PROCS
proc/kmutex.c:58 kmutex_lock_cancellable() PROCS
proc/kmutex.c:78 kmutex_unlock () PROCS
proc/kthread.c:106 kthread_create () PROCS
proc/kthread.c:127 kthread_cancel () PROCS
proc/kthread.c:148 kthread_exit () PROCS
proc/proc.c:223 proc_create () PROCS
proc/proc.c:254 proc_cleanup () PROCS
proc/proc.c:268 proc_kill () PROCS
proc/proc.c:280 proc_kill_all () PROCS
proc/proc.c:294 proc_thread_exited() PROCS
proc/proc.c:315 do_waitpid() PROCS
proc/proc.c:328 do_exit () PROCS
proc/sched.c:121 sched_cancellable_sleep_on|() PROCS
proc/sched.c:137 sched_cancel () PROCS
proc/sched.c:179 sched_switch () PROCS
proc/sched.c:198 sched_make_runnable () PROCS
proc/sched_helper.c:43 sched_sleep_on() PROCS
proc/sched_helper.c:49 sched_wakeup_on () PROCS
proc/sched_helper.c:56 sched_broadcast_on () PROCS
main/kmain.c:184 bootstrap () PROCS
main/kmain.c:279 initproc_create() PROCS
main/kmain.c:298 initproc_run () PROCS

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel 1
ﬁ} Kernel thread creation, cancellation, and destruction
proc/kthread.c:106 kthread_create () PROCS
proc/kthread.c:127 kthread_cancel () PROCS
proc/kthread.c:148 kthread_exit () PROCS

= please keep MPT=0 in Config.mk and on/y implement
single thread processes

ﬁ} Kernel scheduler

proc/sched.c:121 sched_cancellable_sleep_on() PROCS
proc/sched.c:137 sched_cancel () PROCS
proc/sched.c:179 sched_switch () PROCS
proc/sched.c:198 sched_make_runnable () PROCS
proc/sched_helper.c:43 sched_sleep_on() PROCS
proc/sched_helper.c:49 sched_wakeup_on () PROCS
proc/sched_helper.c:56 sched_broadcast_on () PROCS
ﬁ} Kernel process creation, waiting, and destruction
proc/proc.c:223 proc_create () PROCS
proc/proc.c:254 proc_cleanup () PROCS
proc/proc.c:268 proc_kill () PROCS
proc/proc.c:280 proc_kill_all () PROCS
proc/proc.c:294 proc_thread_exited() PROCS
proc/proc.c:315 do_waitpid() PROCS
proc/proc.c:328 do_exit () PROCS 4%?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Kernel 1
_) Kernel mutex
proc/kmutex.c:36 kmutex_init () PROCS
proc/kmutex.c:48 kmutex_lock () PROCS
proc/kmutex.c:58 kmutex_lock_cancellable () PROCS
proc/kmutex.c:78 kmutex_unlock () PROCS
_) Kernel startup
main/kmain.c:184 bootstrap () PROCS
main/kmain.c:279 initproc_create() PROCS
main/kmain.c:298 initproc_run () PROCS

ﬁ} Read the comment blocks to figure out what these functions
suppose to do and how they are related to each other
= use "grep" to see how they are called
= feel free to discuss this in the class Google Group
— you can talk about code that came with the prestine kernel
Q do not post code/pseudo-code you are planning to write

ﬁ> When a thread gives up the CPU, you must make sure that all

global variables and data structures are in a consisten state | }«!’ N
7

Copyright © William C. Cheng

Operating Systems - CSCI 402

How To Start?

_) | would recommend doing this first:
= phase 1: get the kernel to simply start and quit with DRIVERS=0
Q inbootstrap (), create IDLE proc and switch to IDLE proc
& first procedure of IDLE proc is written for you already,
don’t change anything
& Hint: look at the code in faber_thread_test () to see
how to create a process, create a thread in it, run it
& Note: code in faber_thread_test () is running in thread
context, you are notin a thread context in bootstrap ()
In initproc_create (), create INIT proc and INIT thread
don’t write code in initproc_run (), Which is the first
procedure of INIT proc
<& it should self-terminate
& single-step to see where it goes
Q this should wake up the IDLE proc, which will turn off
the machine

O O

Copyright © William C. Cheng

How To Start?

_) | would recommend doing this first:
= phase 1: get the kernel to simply start and quit with DRIVERS=0

Q make sure the kernel halts cleanly

Q these functions are involved (the list may not be complete):

proc/kthread.
proc/kthread.
proc/proc.
proc/proc.
proc/proc.
proc/proc.
proc/sched.
proc/sched.
proc/sched.

OOOQOOOOO

:106
:148
:223
:254
:294
:315
:121
:179
:198

proc/sched_helper.c:43
proc/sched_helper.c:49
proc/sched_helper.c:56
main/kmain.c:184
main/kmain.c:279

kthread_create ()
kthread_exit ()
proc_create ()
proc_cleanup ()
proc_thread_exited()
do_waitpid()
sched_cancellable_sleep_on()
sched_switch ()
sched_make_runnable ()
sched_sleep_on()
sched_wakeup_on ()
sched_broadcast_on ()
bootstrap ()
initproc_create()

PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS
PROCS

Q vyes, it's a lot of code to get working just for phase 1!
Q In a way, phase 1 is the most important step
& if you do it the wrong way, you will have to come
back and fix your code

Copyright © William C. Cheng

Operating Systems - CSCI 402

B

Operating Systems - CSCI 402

How To Start?

_) | would recommend doing this first:
—= phase 2: get the kernel to simply start and quit cleanly
Q call faber_thread_test () from initproc_run ()
& start with Cs402TESTS=1 in Config.mk
& then set CsS402TESTS=2, 3, and so on, up to 8
Q always make sure the kernel halts cleanly
— phase 3: set DRIVERS=1 ih Config.mk

Q run kshell in initproc_run ()
& "help", "echo" and "exit" kshell commands should work

Q add kshell commands to invoke any test function in grading
guidelines and your README (see rules about "SELF-checks")
& for each kshell command, you heed to create a child
process and set the test function as the first procedure of
the thread in the child process

E

Copyright © William C. Cheng

Operating Systems - CSCI 402

How To Start?

) Please remember that the teaching staff cannot tell you what
code to write

ﬁ} Here’s what’s appropriate to talk about in class Google Group
1) the spec
2) the kernel FAQ
3) the grading guidelines
4) test code
QO kernel 1: faber_thread_test (), sunghan_test (),
sunghan_deadlock_test ()
& they are mentioned in the grading guidelines
& your kernel needs to work with these test code perfectly

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hints?
) Hints are all over the place!
= documentation = kernel code itself
= spec = kernel FAQ

= comment in code

_, For example, the spec says:
= the kernel is very very powerful
Q if there is a bug, it’s your bug!
= the weenix kernel is non-preemptive
Q non-preemptive means that a thread cannot be preempted
by another thread
<% it can be interrupted to service an interrupt, then goes
back to what it was doing before
<& If a kernel thread does not want to be cancelled, there
is no way to kill it
—= we are not implementing multiple threads per process, i.e.,

MTP=0 in Config.mk oy
=/

Copyright © William C. Cheng

Operating Systems - CSCI 402

"kmain.c"

kmain ()

context_setup (&bootstrap_context, bootstrap, 0, NULL, bstack,
PAGE_SIZE, bpdir);

context_make_active (&bootstrap_context);

panic ("\nReturned to kmain()!!!\n");

bootstrap ()

NOT_YET_IMPLEMENTED ("PROCS: bootstrap");
panic ("weenix returned to bootstrap()!!! BAD!!!\n");

idleproc_run ()

kthread_t *initthr = initproc_create();
init_call_all();

GDB_CALL_HOOK (initialized);
intr_enable();

sched_make_runnable (initthr);

child = do_waitpid (-1, 0, &status);

initproc_create ()
NOT_YET_IMPLEMENTED ("PROCS: initproc_create");

initproc_run ()
NOT_YET_IMPLEMENTED ("PROCS: initproc_run'");

Copyright © William C. Cheng

