
Kernel Programming

Assignments

(Part 2)

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Compilation and Configuration

for VFS, set DRIVERS and VFS to 1

Config.mk controls what gets compiles and configured into the

kernel (weenix is a monolithic OS)

for VM, set DRIVERS, VFS, S5FS, and VM to 1

for PROCS, use the original Config.mk

set DYNAMIC to 1 in the end if everything is working

set DRIVERS to 1 to complete this assignment

set VM to 0 at first to get kernel/mm/pframe.c working

then set VM to 1 to work on the rest of the assignment

the grader will use these for grading:

DBG = error,test

DBG = error,print,test

by default: DBG = all

% make clean

% make

% ./weenix -n

Every time you modify Config.mk, you should do:

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Debugging with gdb

% ./weenix -n -d gdb -w 10

To see kernel debugging messages AND debug the kernel, do:

% ./weenix -n -d gdb

The weenix documentation says to do this to debug the kernal:

although you can use gdb, but you cannot see kernel debugging

messages (from dbg() calls)

set GDBWAIT=1 in Config.mk then recompile kernel

run weenix under gdb with:

unfortunately, if you have compiled with GDBWAIT=1 and

want to run without gdb, weenix will freeze

you have to set GDBWAIT back to 0 and recompile if you

want to run weenix without gdb

you should set GDBWAIT back to 0 when you submit your

assignment for grading

if you have a slow machine, you should use a larger value

if you have a fast machine, you should use a smaller value

IMPORTANT: your must copy the k1-README.txt template

in the spec into procs-README.txt and make changes

must fill out procs-README.txt, it’s your assignment’s

documentation

this is where you should also include

1) how to split the points (in terms of percentages and

must sum to 100%)

2) brief justification about the split (if not equal split)

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Submissions

Processes and Threads (PROCS)

please understand that if I have to get involved, it can

also be unfair since I won’t have all the information

% make procs-submit
tar cvzf procs-submit.tar.gz \
 Config.mk \
 procs-README.txt \
 ...

submit procs-submit.tar.gz using web form

best to claim even splits

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Submissions

Virtual File System (VFS)

need to fill out vfs-README.txt (start with k2-README.txt)

% make vfs-submit

Virtual Memory (VM)

need to fill out vm-README.txt (start with k3-README.txt)

% make vm-submit

Submit source code only

we will deduct 2 points if you submit binary files

we will deduct 2 points if you submit extra files

we will deduct 2 points if you do not keep the same

directory structure

start with the k2-README.txt template in the spec

start with the k3-README.txt template in the spec

Must NOT include ANY OTHER file not mentioned in "make" above

or we will delete it before grading

you must not add any files

% rm -rf /tmp/xyzzy

% mkdir /tmp/xyzzy

% cd /tmp/xyzzy

% tar xvzf ~/weenix-assignment-3.8.0.tar.gz

% cd weenix-assignment-3.8.0/weenix

% tar xvzf ~/procs-submit.tar.gz

% make clean

% make

% ./weenix -n

[go through grading guidelines line by line]

[check every line of your README file]

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Verify Your Kernel Submission

a pristine weenix-assignment-3.8.0.tar.gz

Assume that in your home directory, you have

your submission file, e.g., procs-submit.tar.gz

Do the following to verify your submission

Read the grading gudelines carefully!

these are just hints and not our "requirements"

The weenix code and comments and the weenix documentation are

from Brown University

they are related to "grading"

Just like the warmup assignments, the spec and the grading

guidelines are the requirements for our CS 402

e.g., altering or removing top comment block in a submitted .c

file will cost you 20 points each!

designate a teammate to check your submission against

every line in the grading guidelines

why such stiff penalty?

because it’s extremely easy to follow this rule

e.g., altering/removing a call to dbgq() in bootstrap() in your

submitted kmain.c file will cost you 20 points

this is a signature showing who downloaded the kernel source

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Grading

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Structure Of Grading Guidelines

Please read the grading guidelines very carefully

when in doubt, ask the instructor!

we are actually trying to help you to write some of your kernel

code and give you some easy points at the same time!

mandatory KASSERTs: section (A)

"Plus Points" section of the grading guidelines

SELF-checks: last section

PRE-CANNED tests: other sections

every code sequence inside any function you wrote to replace

a NOT_YET_IMPLEMENTED() call must END with a

"conforming dbg() call"

add KASSERT() calls (followed by a "conforming dbg() call")

must use "static analysis" (independent of how your code

will actually execute) to analyze your code

"Conforming dbg() call"

you must format it exactly according to spec or you will lose

a lot of points

read the requirements very very carefully!

when in doubt, ask the instructor!

dbg(DBG_PRINT, "(GRADING#S X.Y)\n");

general form:

for section (A) of the grading guidelines, you must use the

corresponding X and Y

X is a subtest number (applicable only when the subtest

can be run separately with a shell-level command)

is the kernel assignment number, can only be 1, 2, or 3

S is the section number of the grading guidelines

for other sections of the grading guidelines:

never use X.Y

read the requirements very very carefully!

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"Conforming dbg() Call"

There are only two reasons to make a "conforming dbg() call"

dbg(DBG_PRINT, "(GRADING#A X.Y)\n");

1)

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"Conforming dbg() Call"

get credit for an item in section (A) of the grading guidelines

must use this form (must specify #, X, and Y):

dbg(DBG_PRINT, "(GRADING#A)\n");

dbg(DBG_PRINT, "(GRADING#B X)\n");

dbg(DBG_PRINT, "(GRADING#C)\n");

...

2) get credit for SELF-checks

must use this form (use X if applicable):

dbg(DBG_PRINT, "(GRADING#A)\n"); means start and

stop the kernel (without doing anything else)

when in doubt, more is better than less!

a code sequence is a block of code that does not contain

conditionals or gotos and has only one entry point at the top

As part of our requirements, you must not put/leave useless stuff

in your kernel (i.e., don’t leave trash in the kernel)

every code sequence must be traversable

if a code sequence is not traversable, you must delete it

if you cannot demonstrate that there is way to get to it, you

must remove it or we will take points off

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"SELF-checks"

when you are confused about "SELF-checks", please come back

and read this slide again to remind yourself why we are doing

"SELF-checks" (and hopefully, that will answer your questions)

This is referred to as "SELF-checks" in the spec

a code path is a path your code may take, i.e., there is a way

to execute your code along that path

must not leave useless code in the kernel!

must add "conforming dbg() call" at the END of code seq

What’s useless code?

is assignment number: 1, 2, or 3

if (cond) {

 /* code seq */

}

if cond can never be true, then code seq is useless

to demonstrate that code seq is useful, you must tell the grader

which test to run to reach the END of code seq

if (cond) {

 /* code seq */

 dbg(DBG_PRINT, "(GRADING#S X)\n");

}

S is section number: B, C, D, ...

X is subsection number (if applicable)
0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"SELF-checks"

just need to tell the grader one way to get there

that would be an incorrect analysis because it depends on

how your code would execute

To determine where you must add "conforming dbg() call", you must

perform "static analysis" of your code (i.e., does not depend on how

your code actually runs)

while (cond) {

 /* seq1 */

}

/* seq2 */

you may argue that the first time the while loop is executed,

cond will be true, then later on, cond will be false, so you

just need a "conforming dbg() call" at the end of seq2

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Must Use Static Analysis For SELF-checks

in this case, you must put a "conforming dbg() call" at the END

of seq1 and at the END of seq2

Please read the spec for details!

Example from spec:

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"Conforming dbg() Call" Requirement

/* sequence1 */

if (cond1) {

 /* sequence2 */

} else {

 /* sequence3 */

}

/* sequence4 */

/* sequence1 */

if (cond1) {

 /* sequence2 */

 /* conforming dbg() call */

} else {

 /* sequence3 */

 /* conforming dbg() call */

}

/* sequence4 */

/* conforming dbg() call */

if you are not sure, you can make a "conforming dbg() call" at

the END of every code sequence

A "sequence" is a list of C statements not containing conditionals,

gotos, or a label which is the target of a goto statement

you cannot go wrong with more!

% make backup

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Your Work & Collaboration

at the end of each day, do:

One simple way to backup your work

if you lose your work, no one can recover your files

You have to have a plan to backup your code and backup routinely

can use private DropBox / iCloud / Microsoft cloud

or use a private bitbucket (must not use github)

share it among your team members only

if you have a "Shared-ubuntu" shared folder in your home

directory, your backup file will be copied there

if not, your backup file will be in the current directory

and you should copy it into a shared folder

it will tell you the name of the backup file

use your host’s cloud backup facility to back up this file/folder

this is why you must not use github.com

there are free git repositories on the web

But you need a shared repository in the cloud to collaborate with

your teammates

unfortunately, most of the free ones are required to be

visible by the world - you must not use these

you can use bitbucket.org but you need to make sure that

your files remain private

apply for free academic account on bitbucket.org to share

with teammates

make sure your projects are truly private

on github.com, private repository automatically

becomes public after 2 years (if you don’t pay)

read "Pro Git" (a free online book, one of our textbooks)

You should use git to collaborate among project partners

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Your Work & Collaboration

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Your Work & Collaboration

git will attempt to merge the changes, but it may not be what

you want

If you have two people working on the same file and then

update the repository one after another

may be it’s best to coordinate and not have two pepole

modifying the same file

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Early and Late Policies

Same early submission policy as warmup projects

Similar late submission policy as warmup projects

except that kernel 1 can be submitted by the kernel 2 deadline

and get a 50% deduction

similarly, kernel 2 can be submitted by the kernel 3 deadline and

get a 50% deduction

kernel 3 has regular late submission policy

if you don’t "reply" to another student’s post, you are not

eligible for this type of extra credit

the maximum number of extra credit points you can get is 10

points for each of the kernel assigments (on a 100-point scale)

You can get extra credit for posting timely and good/useful

answers to the class Google Group in response to questions posted

by other students regarding kernel programming assignments

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extra Credit

"timely" means within 8 hours of the original post

if you just repeat what others are saying, you are being

"helpful" but what you post will not be "useful" since it’s

already been said

that’s what OS hacking (in the good sense) is all about

you need to absorb other people’s code, make sense of it

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Do You Start?

Definitely start with the documentation, spec, and kernel FAQ

Read code, read lots and lots of code

not the answers

It’s the process that matters

it’s not about "implementing an OS"

So, it needs to be experienced

Learning to write OS code is like...

try things out and see what happens (debugging statements)

it’s about learning how to figure out which 2 or 3 lines (or 20 or

30 lines) of code to insert and where

you should not expect quick/straight answers

this is not an OS hacking class

although you don’t have to understand everything

that’s what OS hacking (in the good sense) is all about

you need to absorb other people’s code, make sense of it

Read code, read lots and lots of code

not the answers

It’s the process that matters

it’s not about "implementing an OS"

So, it needs to be experienced

try things out and see what happens (debugging statements)

it’s about learning how to figure out which 2 or 3 lines (or 20 or

30 lines) of code to insert and where

you should not expect quick/straight answers

this is not an OS hacking class

Definitely start with the documentation, spec, and kernel FAQ

Learning to write OS code is like... Zen 0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Do You Start?

although you don’t have to understand everything

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Getting Help

If you have questions about the kernel assignments

post your questions to the class Google Group

sometimes, we may not immediately answer these questions

to give your classmates an opportunity to earn extra credit

points

read documentation, textbook, lecture slides, read more code

we may wait 2 hours

send me e-mail

if you ask me if you should set this variable to x or y, I will ask

you to try both and figure out what makes more sense!

your classmates are a great resource!

please understand that neither I nor other teaching staff can

tell you what code to write!

if you send us questions like that, we may simply forward

your post to the class Google Group since we cannot tell

you what code to write

if no one is really good at this (which is not unusual), someone

(or more) has to step up

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pitfalls To Avoid

Your team need to meet often

work at the same place at the same time

once a day is preferred

You don’t have to know what every piece of code is doing

learn how to assume that other code works (until proven

otherwise)

swallow your pride, be honest with your teammates, don’t

hide your weakness

other code works kind of like what’s covered in lectures

use "grep" to get an idea of how a function is used and how

a field in a data structure is used

everyone gets the same grade

have lots of discussions (and write a fair amount of code)

