Operating Systems - CSCI 402

Kernel Programming

Assignments
(Part 2)

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Compilation and Configuration

ﬁ} Config.mk controls what gets compiles and configured into the
kernel (weenix is a monolithic OS)
= for PROCS, use the original Config.mk
Q set DRIVERS to 1 to complete this assignment
= for VFS, set DRIVERS and VFs to 1
= for VM, set DRIVERS, VF'S, S5FS, and vM to 1
Q setvMto 0 at first to get kernel/mm/pframe.c working
Q then set vM to 1 to work on the rest of the assignment
Q set pyNamic to 1 in the end if everything is working
—= by default: DBG = all
Q the grader will use these for grading:

DBG = error, test
= error,print, test

) Every time you modify config.mk, you should do:
make clean
% make 3@@%

./weenix -n
Copyright © William C. Cheng

o°

o°

Operating Systems - CSCI 402

Debugging with gdb

ﬁ} The weenix documentation says to do this to debug the kernal:
% ./weenix -n -d gdb

= although you can use gdb, but you cannot see kernel debugging
messages (from dbg () calls)

ﬁ> To see kernel debugging messages AND debug the kernel, do:
— set GDBWAIT=1 in Config.mk then recompile kernel
= run weenix under gdb with:
% ./weenix -n -d gdb -w 10
Q if you have a slow machine, you should use a larger value
Q if you have a fast machine, you should use a smaller value
= unfortunately, if you have compiled with GcbBwAIT=1 and
want to run without gdb, weenix will freeze
Q you have to set GDBWAIT back to 0 and recompile if you
want to run weenix without gdb
Q you should set GDBWAIT back to 0 when you submit your
assignment for grading 3

3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Submissions

_) Processes and Threads (PROCS)

% make procs—-submit

tar cvzf procs-submit.tar.gz \
Config.mk \
procs—README . txt \

= must fill out procs—README. txt, it’s your assignment’s

documentation
Q IMPORTANT: your must copy the k1-README . t xt template
in the spec into procs—README . txt and make changes

Q this is where you should also include
1) how to split the points (in terms of percentages and

must sum to 100%)
2) brief justification about the split (if not equal split)
& please understand that if | have to get involved, it can
also be unfair since | won’t have all the information

& best to claim even splits
: _ . 3@?P
= sUbmit procs-submit.tar.gz using web form N

Copyright © William C. Cheng

Operating Systems - CSCI 402

Submissions

) Virtual File System (VFS)
= heed to fill out vEs—-README . txt (start with k2-README . t xt)
Q start with the k2-README . txt template In the spec
$ make vfs—-submit

) Virtual Memory (VM)
= nheed to fill out vm—README . txt (start with k3-README . t xt)
Q start with the k3-README . txt template in the spec
$ make vm—submit

ﬁ> Must NOT include ANY OTHER file not mentioned in "make" above
= or we will delete it before grading
= you must not add any files

_ Submit source code only
= we will deduct 2 points if you submit binary files
= we will deduct 2 points if you submit extra files
= we will deduct 2 points if you do not keep the same / @’_

directory structure
Copyright © William C. Cheng

Operating Systems - CSCI 402

Verify Your Kernel Submission

) Assume that in your home directory, you have
= a pristine weenix-assignment-3.8.0.tar.gz
= your submission file, e.g., procs-submit .tar.gz

) Do the following to verify your submission

rm -rf /tmp/xyzzy

mkdir /tmp/xyzzy

cd /tmp/xyzzy

tar xvzf ~/weenix-assignment-3.8.0.tar.gz
cd weenix—assignment-3.8.0/weenix

tar xvzf ~/procs-submit.tar.gz

make clean

make

./weenix -n

go through grading guidelines line by line]
check every line of your README file]

o° o 00 o° o° o° o°

o°

- ™ O\o

Copyright © William C. Cheng

Operating Systems - CSCI 402

Grading

ﬁ} The weenix code and comments and the weenix documentation are
from Brown University
= these are just hints and not our "requirements"”

G> Just like the warmup assignments, the spec and the grading
guidelines are the requirements for our CS 402
= they are related to "grading"

_, Read the grading gudelines carefully!

= e.d., altering or removing top comment block in a submitted . c
file will cost you 20 points each!
Q why such stiff penalty?

& because it’s extremely easy to follow this rule

= e.g., altering/removing a call to dbgq () In bootstrap () In your
submitted kmain. c file will cost you 20 points
Q this is a signature showing who downloaded the kernel source

= designhate a teammate to check your submission against |
every line in the grading guidelines 734

Copyright © William C. Cheng

Operating Systems - CSCI 402

Structure Of Grading Guidelines

) "Plus Points" section of the grading guidelines
—= mandatory KASSERTs: section (A)
Q we are actually trying to help you to write some of your kernel
code and give you some easy points at the same time!
QO add KAsSsSeRT () calls (followed by a "conforming dbg () call")
= SELF-checks: last section
Q every code sequence inside any function you wrote to replace
a NOT_YET_IMPLEMENTED () call must END with a
"conforming dbg () call”
& must use "static analysis" (independent of how your code
will actually execute) to analyze your code
= PRE-CANNED tests: other sections

_) Please read the grading guidelines very carefully
= when in doubt, ask the instructor!

Copyright © William C. Cheng

Operating Systems - CSCI 402

"Conforming dbg () Call"

ﬁ} "Conforming dbg () call"
= general form:

dbg (DBG_PRINT, " (GRADING#S X.Y)\n");

Is the kernel assignment number, can only be 1, 2, or 3

s Is the section number of the grading guidelines

Q for section (A) of the grading guidelines, you must use the
corresponding x and Y
<& read the requirements very very carefully!

Q for other sections of the grading guidelines:
& X is a subtest number (applicable only when the subtest

can be run separately with a shell-level command)

& neveruseXx.Y

= you must format it exactly according to spec or you will lose
a lot of points
Q read the requirements very very carefully!

= When In doubt, ask the instructor! ' @J

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

"Conforming dbg () Call"

ﬁ} There are only two reasons to make a "conforming dbg () call”
1) get credit for an item in section (A) of the grading guidelines
& must use this form (must specify #, X, and Y):

dbg (DBG_PRINT, " (GRADING#A X.Y)\n");

2) get credit for SELF-checks
& must use this form (use x if applicable):

dbg (DBG_PRINT, " (GRADING#A)\n");
dbg (DBG_PRINT, " (GRADING#B X)\n");
dbg (DBG_PRINT, " (GRADING#C)\n");

& dbg (DBG_PRINT, " (GRADING#A)\n"); means start and
stop the kernel (without doing anything else)
= when in doubt, more is better than less!

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

"SELF-checks"

ﬁ} As part of our requirements, you must not put/leave useless stuff
in your kernel (i.e., don’t leave trash in the kernel)
= every code sequence must be traversable
Q a code sequence is a block of code that does not contain
conditionals or gotos and has only one entry point at the top
& a code path is a path your code may take, i.e., there is a way
to execute your code along that path
Q if a code sequence is not traversable, you must delete it
& must not leave useless code in the kernel!
Q if you cannot demonstrate that there is way to get to it, you
must remove it or we will take points off

) This is referred to as "SELF-checks" in the spec

= when you are confused about "SELF-checks", please come back
and read this slide again to remind yourself why we are doing

"SELF-checks'" (and hopefully, that will answer your questio

ns
®

Copyright © William C. Cheng

Operating Systems - CSCI 402

"SELF-checks"
_) What's useless code?

if (cond) {
/* code seq */

}

= if cond can never be true, then code seqis useless

= to demonstrate that code seqis useful, you must tell the grader
which test to run to reach the END of code seq
Q must add "conforming dbg () call” at the END of code seq

if (cond) {

/* code seq */

dbg (DBG_PRINT, " (GRADING#S X)\n");
}

& # is assignment number: 1, 2, or 3
& s is section number: B, C, D, ...
& X is subsection number (if applicable) |
Q just need to tell the grader one way to get there y @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Must Use Static Analysis For SELF-checks

ﬁ} To determine where you must add "conforming dbg() call”, you must
perform "static analysis" of your code (i.e., does not depend on how
your code actually runs)

while (cond) {
/* seql */

}

/* seq2 */

= you may argue that the first time the while loop is executed,
cond Will be true, then later on, cond will be false, so you
just need a "conforming dbg() call” at the end of seq2
Q that would be an incorrect analysis because it depends on
how your code would execute
Q In this case, you must put a "conforming dbg() call” at the END
of seql and at the END of seqg2

Please read the spec for details! (AR
~ P S8

Copyright © William C. Cheng

Operating Systems - CSCI 402

"Conforming dbg () Call" Requirement
_, Example from spec:

/* sequencel */ /* sequencel */

if (condl) { if (condl) {
/* sequence2 */ /* sequence2 */

} else { [:>’ /* conforming dbg () call */
/* sequence3 */ } else {

} /* sequence3 */

/* sequenced */ /* conforming dbg() call */

}
/* sequenced */
/* conforming dbg() call */

ﬁ} A "sequence" is a list of C statements not containing conditionals,
gotos, or a label which is the target of a goto statement
= if you are not sure, you can make a "conforming dbg () call" at
the END of every code sequence

Q you cannot go wrong with more! |
2
14

Copyright © William C. Cheng

Operating Systems - CSCI 402

Backing Up Your Work & Collaboration

ﬁ} You have to have a plan to backup your code and backup routinely
= if you lose your work, no one can recover your files
= cah use private DropBox / iCloud / Microsoft cloud
= OF use a private bitbucket (must not use github)
Q share it among your team members only

) One simple way to backup your work
= at the end of each day, do:

% make backup

Q it will tell you the name of the backup file
Q if you have a "shared-ubuntu" shared folder in your home
directory, your backup file will be copied there
& if not, your backup file will be in the current directory
and you should copy it into a shared folder
= use your host’s cloud backup facility to back up this file/folder

Copyright © William C. Cheng

Operating Systems - CSCI 402

Backing Up Your Work & Collaboration

ﬁ} You should use git to collaborate among project partners
= read "Pro Git" (a free online book, one of our textbooks)

ﬁ} But you need a shared repository in the cloud to collaborate with
your teammates
= there are free git repositories on the web
Q unfortunately, most of the free ones are required to be
visible by the world - you must not use these
<& on github.com, private repository automatically
becomes public after 2 years (if you don’t pay)
& this is why you must not use github.com
Q you can use bitbucket .org but you need to make sure that
your files remain private
= apply for free academic account on bitbucket .org to share
with teammates
Q make sure your projects are truly private

Copyright © William C. Cheng

Operating Systems - CSCI 402

Backing Up Your Work & Collaboration

ﬁ} If you have two people working on the same file and then
update the repository one after another
= git will attempt to merge the changes, but it may not be what
you want
= may be it’s best to coordinate and not have two pepole
modifying the same file

Copyright © William C. Cheng

Operating Systems - CSCI 402

Early and Late Policies
ﬁ} Same early submission policy as warmup projects

ﬁ> Similar late submission policy as warmup projects
= except that kernel 1 can be submitted by the kernel 2 deadline
and get a 50% deduction
= similarly, kernel 2 can be submitted by the kernel 3 deadline and
get a 50% deduction
— kernel 3 has regular late submission policy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extra Credit

ﬁ} You can get extra credit for posting timely and good/useful
answers to the class Google Group in response to questions posted
by other students regarding kernel programming assignments
= the maximum number of extra credit points you can get is 70

points for each of the kernel assigments (on a 100-point scale)
= "timely"” means within 8 hours of the original post
Q if you don’t "“reply’ to another student’s post, you are not
eligible for this type of extra credit
= if you just repeat what others are saying, you are being
"helpful” but what you post will not be "useful” since it’s
already been said

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Do You Start?
ﬁ} Definitely start with the documentation, spec, and kernel FAQ

_, Read code, read lots and lots of code
= try things out and see what happens (debugging statements)

= you heed to absorb other people’s code, make sense of it
Q although you don’t have to understand everything

= that’s what OS hacking (in the good sense) is all about
Q it’s not about "implementing an OS™

) It’s the process that matters

= not the answers
= [t’s about learning how to figure out which 2 or 3 lines (or 20 or

30 lines) of code to insert and where

) So, it needs to be experienced
= you should not expect quick/straight answers

= this is not an OS hacking class

) Learning to write OS code is like...

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Do You Start?
ﬁ} Definitely start with the documentation, spec, and kernel FAQ

ﬁ> Read code, read lots and lots of code
= try things out and see what happens (debugging statements)
= you heed to absorb other people’s code, make sense of it
Q although you don’t have to understand everything
= that’s what OS hacking (in the good sense) is all about
Q it’s not about "implementing an OS™

) It’s the process that matters
= not the answers

= [t’s about learning how to figure out which 2 or 3 lines (or 20 or

30 lines) of code to insert and where

) So, it needs to be experienced | /
= you should not expect quickistraig
= this is not an OS hacking class; & %

ﬁ> Learning to write OS 6o_de is lik W Ny

Copyright © William C. Cheng

Operating Systems - CSCI 402

Getting Help

ﬁ} If you have questions about the kernel assignments
= read documentation, textbook, lecture slides, read more code
—= send me e-mail

Q please understand that neither | nor other teaching staff can
tell you what code to write!

Q if you ask me if you should set this variable to x or y, | will ask
you to try both and figure out what makes more sense!

& if you send us questions like that, we may simply forward
your post to the class Google Group since we cannot tell
you what code to write

= post your questions to the class Google Group

Q your classmates are a great resource!

QO sometimes, we may not immediately answer these questions
to give your classmates an opportunity to earn extra credit
points
& we may wait 2 hours

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pitfalls To Avoid

) Your team need to meet often
= once a day is preferred
Q work at the same place at the same time
Q have lots of discussions (and write a fair amount of code)
—= swallow your pride, be honest with your teammates, don’t
hide your weakness
Q everyone gets the same grade
Q 1if no one is really good at this (which is not unusual), someone
(or more) has to step up

ﬁ} You don’t have to know what every piece of code is doing
= learn how to assume that other code works (until proven
otherwise)
QO other code works kind of like what’s covered in lectures
= use "grep" to get an idea of how a function is used and how
a field in a data structure is used

Copyright © William C. Cheng

