Operating Systems - CSCI 402

Warmup #2
(Part 1)

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Multi-threading Exercise

ﬁ} Make sure you are familiar with the pthreads library
= Ch 2 of textbook - threads, signals
Q additional resource is a book by Nichols, Buttlar, and Farrell
“Pthreads Programming’’, O’Rielly & Associates, 1996
= you must learn how to use pthreads mutex and
condition variables correctly
Q pthread mutex_lock () /pthread_mutex_unlock ()
Q pthread_cond_wait () /pthread_cond_broadcast ()
& do notuse pthread_cond_signal () for warmup?2
(= you must learn how to handle UNIX signals (<Ctrl+C>)
Q sigprocmask () /sigwait ()
Q pthread_cancel ()
= you may want to learn how to disable/enable cancellation in
pthreads
Q pthread_setcancelstate ()

next week
A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Token Bucket Filter

tokens (rate = r)

bucket
(depth = B)
rate = mu
at Q2
packets
(rate = 1ambda) »J M rate = mu

I:> Ex:

= traffic controller/shaper

ﬁ> Your job is to implement 4 cooperating child threads to move the
packets along by following rules described in the spec

= the main thread creates these threads, join with them, then
print statistics

Copyright © William C. Cheng

Operating Systems - CSCI 402

We Are Not Doing Event-driven Simulation

ﬁ} An event queue is a sorted list of events according to timestamps;
smallest timestamp at the head of queue
= event has zero duration (events can happen at the same time)

G> Object oriented: every object has a "next event” (what and when it
will do next), this event is inserted into the event queue

ﬁ> Execution: remove an event from the head of queue, "execute" the
event (notify the corresponding object so it can insert the next
event)

ﬁ} Insert into the event queue according to timestamp of a new event;
insertion may cause additional events to be deleted or inserted

ﬁ> Potentially repeatable runs (if the same seed is used to initialize
random number generator)

ﬁ> The simulator never "sleeps"; it tries to run as fast as it can to
finish the simulation as quickly as possible AR
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

We Are Not Doing Event-driven Simulation
) Multiple event can happen at the same I

time in an event-driven simulation

= we will not be doing that! [}
B=6
A A rate = mu
C, C, Qa1 Q2
A —>
A A] Il ratemu
S2 ;
S1 -
T = r3=dz-a;
Q1 0 A T >t
|
C/1 Cy/5 ; }p}—

Copyright © William C. Cheng

Operating Systems - CSCI 402

"Time Driven" Simulation

ﬁ} We will use the words "simulation” and "emulation” interchangeably

_,> No "event queue”
= every active object is implemented as a thread
= threads interacting with one another through the use of shared
variables
Q how else can threads "talk” to each other?!

) It takes time to execute simulation code
= the time it takes to do all that is part of the simulation
= to simulation the passing of time, call usleep ()
Q e.g., if doing something takes x usec, call usleep (x)
Q Ubuntu does not run a "realtime” OS, it’s "best effort”
QO usleep (x) WIill return more than x usec later
<& and sometimes, a lot more than x usec later
<& you need to decide if the extra delay is reasonable or it’s

due to a bug in your code |
12,

Copyright © William C. Cheng

Operating Systems - CSCI 402

"Time Driven" Simulation

.

B=6
A A rate = mu
at [
A —>
M M rate = mu

ﬁ} Let your machine decide which thread to run next
= results can never be reproducible exactly
= debugging can be more challenging

ﬁ> Compete for resources (such as Q1, Q2, and anything shared), must
use a single mutex

_) No busy-waiting
= must use a single CV

Copyright © William C. Cheng

a; : arrival
d; : departure time
S; : service time

I; : response time (time in system)
di, d; : queueing/waiting time

I N [T |

time

Arrivals & Departures

P1
|
i’:’:<-—|'1—>
S92 g — S —P>
" d,
S1 :
RN}
i A
|
\ BT6
' \ Y
Q1
0 a1T \
tokens

p1/1
Copyright © William C. Cheng

|

Operating Systems - CSCI 402

rate = mu

&2

rate = mu

I N [T |

a; : arrival time

d; : departure time

S; : service time
I; : response time (time in system)
di, d; : queueing/waiting time

Arrivals & Departures

‘ T ” P?.
! A
-y — | ‘
g2 — S —P '4— So —I-Ie
" a| ! ’
S1 b I
Q2 i - ro-»
Q1 :
azT

Copyright © William C. Cheng

:

p1/1

p2/5

|

Operating Systems - CSCI 402

= r2=d2-a2

rate = mu

&2

rate = mu

Arrivals & Departures

|

Operating Systems - CSCI 402

= r3=d3-a3

= @; : arrival time
= d; : departure time
= §; : service time
= I; : response time (time in system)
1 2 . ags .
= (i, d;j : queueing/waiting time
P1 P2
A
S2 |
S1 T i -
l
|
Q2
4 i
Q1 0 T >
P11 p2/5

Copyright © William C. Cheng

&2

rate = mu

Operating Systems - CSCI 402

Simulation/Emulation

—, Two simulation modes r

1) Deterministic: fixed inter-arrival l
time (1/)), token requirement (P), T
and service time (1/mu)

2) Trace-driven: every packet has B=6
its own inter-arrival time, token v rate -
requirement, and service time a1 Q2)
(alineina"tsfile") v—= || 11 rate -

= if you think about it
carefully, there is really no
difference between these two modes
Q write your code for the trace-driven mode
Q if running in deterministic mode, instead of reading a line
from the "tsfile" to create a packet, just create a packet
using information stored in global variables

Copyright © William C. Cheng

Operating Systems - CSCI 402

»

Simulation/Emulation

B=6
A A rate = mu
a1 a2
A —
i} =g =

ﬁ> You will need to implement 4 cooperating child threads
= packet arrival thread
— token depositing thread
= two server threads
—= these threads work together to simulate the operation of this

token bucket filter
Q threads work together using shared variables

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simulation/Emulation
ﬁ} Very high level pseudo-code for the packet/token thread:
for (;;) {

sleep

generate a packet/token

add packet/token to token bucket filter
}

= Where must you lock and unlock mutex?

) Very high level pseudo-code for the

- N
-

server thread:
for (;;) |
wait for packet in Q2 Bog
remove packet from Q2
sleep (to transmit packet) Y rate - mu
) (1] Q2
= where must you lock and r— || Il (s2
rate = mu
unlock mutex?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simulation/Emulation

) Packet thread pseudo-code (incomplete):

for (;;) {
/* read a line from tsfile if in trace mode */
get inter_arrival_time, tokens_needed, and service_time;
/* calculate sleep time from inter_arrival_ time */
usleep(...);
packet = NewPacket (tokens_needed, service_time, ...);
pthread_mutex_lock (&mutex) ;
Q1 .enqueue (packet) ;

. /* other stuff */

pthread_cond_broadcast (&cv) ;
pthread_mutex_unlock (&mutex) ;

- N
-

}
= must self-terminate as soon as this Be6
thread is no longer needed (i.e., no @
need to generate packets) y rate = mu
= must not call x—»ﬁ ﬁ @
pthread_cond_signal () rate = mu

B

14

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simulation/Emulation

) Token thread pseudo-code (incomplete):

for (;;) {

/* calculate sleep time from inter-token arrival time */

usleep(...);

pthread_mutex_lock (&mutex) ;

tokens++;

if (first packet in Q1 can now be moved into Q2) {
packet = Ql.dequeue();
Q2. enqueue (packet) ;
pthread_cond_broadcast (&cv) ;
tokens = 0; /* why? */

}

pthread_mutex_unlock (&mutex) ;

}

- N
-

B=6
= must self-terminate as soon as this @
thread is no longer needed (i.e., no Y rate = mu
Q1 Q2
need to generate tokens) N m m @
= must not call rate = mu

pthread_cond_signal ()

B

15

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simulation/Emulation

_) Server threads pseudo-code (incomplete):
= same first procedure for both server threads

for (;;) {

/* wait for work */

pthread_mutex_lock (&mutex) ;

while (Q2.length() == 0 && !time_to_quit) {
pthread_cond_wait (&cv, &mutex);

}

packet = Q2.dequeue();

pthread_mutex_unlock (&mutex) ;

/* work */

usleep (packet.service_time);

}

- N
-

= must self-terminate as soon as this B=6
thread is no longer needed (i.e., no Y rate -
need to transmit packets) at Q2 i
r— ||| 1] 82

rate = mu

B

16

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simulation/Emulation

ﬁ} Many other requirements, for example:
= must move a packet at the correct time
Q if a packet is eligible to be moved from Q1 to Q2, it must
happen immediately
all threads must self-terminate when they are no longer needed
drop packets
Q if the token requirement for an arriving packet is too large
(i.e., > B), must drop the packet
= drop tokens
Q if an arriving token finds a full bucket, the token is dropped
= and many more...
Q please read the spec yourself (don’t get it from classmates)

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

Program Printout

) Program output must look like what’s in the spec
= you must NOT wait for emulation to end to print all these

Emulation Parameters:
number to arrive = 20

lambda = 2 (if -t is not specified)

mu = 0.35 (if -t is not specified) from commandline
r =4

B = 10 .

P =3 (if -t is not specified) or tSflle

tsfile = FILENAME (if -t is specified)

00000000.000ms: emulation begins

00000251 .726ms: token tl arrives,
00000502.031ms: token t2 arrives,
00000503.112ms: pl arrives, needs
00000503.376ms: pl enters Q1

00000751.148ms: token t3 arrives,

token bucket now has 1 token
token bucket now has 2 tokens
3 tokens, inter-arrival time = 503.112ms

token bucket now has 3 tokens

00000751.186ms: pl leaves Ql, time in Q1 = 247.810ms, token bucket now has 0 token

00000752.716ms: pl enters Q2

00000752.932ms: pl leaves Q2, time in Q2 = 0.216ms

00000752.982ms: pl begins service
00001004.271ms: p2 arrives, needs
00001004.526ms: p2 enters Q1

00001007.615ms: token t4 arrives,
00001251.259ms: token t5 arrives,
00001505.986ms: p3 arrives, needs
00001506.713ms: p3 enters Q1

00001507.552ms: token t6 arrives,

at S1, requesting 2850ms of service
3 tokens, inter-arrival time = 501.159ms

token bucket now has 1 token
token bucket now has 2 tokens

3 tokens, inter-arrival time = 501.715ms

token bucket now has 3 tokens

00001508.281ms: p2 leaves Ql, time in Q1 = 503.755ms, token bucket now has 0 token
00001508.761ms: p2 enters Q2
00001508.874ms: p2 leaves Q2, time in Q2 = 0.113ms

at S2, requesting 1900ms of service

00001508.895ms: p2 begins service

Copyright © William C. Cheng

Program Printout

00003427.557ms: p2 departs from S2, service time = 1918.662ms, time in system = 2423.286ms
00003612.843ms: pl departs from S1, service time = 2859.861lms, time in system = 3109.731ms
??2?2?2?2???2.7?2??ms: p20 departs from S?, service time = ???.??7?ms, time in system = ??7?.7?7?7ms

???2?27??7?2.?2?77?ms: emulation ends

Statistics:
average packet inter-arrival time = <real-value>
average packet service time = <real-value>

<real-value>
<real-value>
<real-value>
<real-value>

average number of packets in Q1
average number of packets in Q2
average number of packets at S1
average number of packets at S2

average time a packet spent in system = <real-value>
standard deviation for time spent in system = <real-value>

token drop probability = <real-value>
packet drop probability = <real-value>

ﬁ} Timestamps in the left column must have microsecond resolution
= measured time interval must have microsecond resolution

%$.6g" In printf () for <real-value>

) Avalue anywhere in the right column must be the exact
differences between two corresponding timestamps

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Program Printout

00003427.557ms: p2 departs from S2, service time = 1918.662ms, time in system = 2423.286ms
00003612.843ms: pl departs from S1, service time = 2859.861lms, time in system = 3109.731ms
??2?2?2?2???2.7?2??ms: p20 departs from S?, service time = ???.??7?ms, time in system = ??7?.7?7?7ms

?2?2?27??7??2.?2?77?ms: emulation ends

Statistics:
average packet inter-arrival time = <real-value>
average packet service time = <real-value>

<real-value>
<real-value>
<real-value>
<real-value>

average number of packets in Q1
average number of packets in Q2
average number of packets at S1
average number of packets at S2

average time a packet spent in system = <real-value>
standard deviation for time spent in system = <real-value>

token drop probability = <real-value>
packet drop probability = <real-value>

> Ex: why must the service time for p1 be exactly 2859.861ms?
3612.843ms - 752.982ms = 2859.861lms

= Why so strict?
Q your printout must be self-consistent

Copyright © William C. Cheng

Operating Systems - CSCI 402 -1

- m m (
r Calculating Statistics NOTE: not
all activities
packet thread return from usleep() T are shown
Iy create packet (packet arrival)“i S
enter Q1 -
B=6 time in Q1
@ leave Q1 }
a 10 rate = mu enter 827 ime in Q2
1 2
= —_ leave Q2 1
—=TI —& i sorvice at 5111
A1 A rate = mu begin service at S1 1 time in S1
leave S1 T
time

ﬁ> A packetis not a thread, it’s a data structure
= It should have 7 timestamps to store "measured” information
= It should also store "packet specification” (such as specified
inter-arrival time, token requirement, service time)
Q these are not "measured” values

ﬁ> Some packets needs to be excluded from certain statistics
= add to corresponding statistics only when a packet is 7NN

beina eiected
Copyright © William C. Cheng

Operating Systems - CSCI 402

Mean and Standard Deviation

) Average time
= for n samples, add up all the time and divide by n

) Average number of packets at a server
= same a fraction of time the server is busy

IT
0- >

time
) Average number of packets at Q1
A
L
1__
0 F >
time

ﬁ> Standard dewatlon is the squareroot of variance
= Var[X] = E[X?] - (E[X])?
Q must use the population variance equation

Copyright © William C. Cheng

