
Warmup #2

(Part 1)

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Make sure you are familiar with the pthreads library

you must learn how to use pthreads mutex and

condition variables correctly

pthread_mutex_lock()/pthread_mutex_unlock()

pthread_cond_wait()/pthread_cond_broadcast()

you must learn how to handle UNIX signals (<Ctrl+C>)

sigprocmask()/sigwait()

pthread_setcancelstate()

Ch 2 of textbook - threads, signals

additional resource is a book by Nichols, Buttlar, and Farrell

‘‘Pthreads Programming’’, O’Rielly & Associates, 1996

you may want to learn how to disable/enable cancellation in

pthreads

pthread_cancel()

do not use pthread_cond_signal() for warmup2

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multi-threading Exercise
n

e
x

t
w

e
e

k

S2
rate = mu

S1
rate = mu

Q2

tokens (rate = r)

overflow

bucket
(depth = B)

packets
(rate = lambda)

Q1

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Token Bucket Filter

Ex:

traffic controller/shaper

the main thread creates these threads, join with them, then

print statistics

Your job is to implement 4 cooperating child threads to move the

packets along by following rules described in the spec

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

We Are Not Doing Event-driven Simulation

Execution: remove an event from the head of queue, "execute" the

event (notify the corresponding object so it can insert the next

event)

Insert into the event queue according to timestamp of a new event;

insertion may cause additional events to be deleted or inserted

An event queue is a sorted list of events according to timestamps;

smallest timestamp at the head of queue

Object oriented: every object has a "next event" (what and when it

will do next), this event is inserted into the event queue

Potentially repeatable runs (if the same seed is used to initialize

random number generator)

The simulator never "sleeps"; it tries to run as fast as it can to

finish the simulation as quickly as possible

event has zero duration (events can happen at the same time)

S1

S2

Q1

Q2

0 t

C1/1

C1

C2/5

C2

r3 = d3 - a3

C3/2

C3

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

Multiple event can happen at the same

time in an event-driven simulation

we will not be doing that!

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

We Are Not Doing Event-driven Simulation

every active object is implemented as a thread

It takes time to execute simulation code

No "event queue"

the time it takes to do all that is part of the simulation

to simulation the passing of time, call usleep()

threads interacting with one another through the use of shared

variables

We will use the words "simulation" and "emulation" interchangeably

how else can threads "talk" to each other?!

e.g., if doing something takes x usec, call usleep(x)

and sometimes, a lot more than x usec later

you need to decide if the extra delay is reasonable or it’s

due to a bug in your code

Ubuntu does not run a "realtime" OS, it’s "best effort"

usleep(x) will return more than x usec later

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"Time Driven" Simulation

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

"Time Driven" Simulation

Let your machine decide which thread to run next

results can never be reproducible exactly

Compete for resources (such as Q1, Q2, and anything shared), must

use a single mutex

debugging can be more challenging

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

No busy-waiting

must use a single CV

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Arrivals & Departures

B=6

ai : arrival time

di : departure time

si : service time

ri : response time (time in system)

q
1

i , q
2

i : queueing/waiting time

Q1

Q2

0 t

d1

p1/1

a1

 s1

p1

 r1

tokens

S1
r1 = d1 - a1

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

S2

S1

S2

Q1

Q2

0 t

d1

p1/1

a1

 s1

p1

 r1

p2/5

a2

p2

 r2

d2 s2

r2 = d2 - a2

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Arrivals & Departures

ai : arrival time

di : departure time

si : service time

ri : response time (time in system)

q
1

i , q
2

i : queueing/waiting time

S1

S2

Q1

Q2

0 t

p1/1

p1

p2/5

p2

 s2

r3 = d3 - a3

p3/2

a3

p3

d3

 r3

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Arrivals & Departures

ai : arrival time

di : departure time

si : service time

ri : response time (time in system)

q
1

i , q
2

i : queueing/waiting time

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

Two simulation modes

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

1) Deterministic: fixed inter-arrival

time (1/λ), token requirement (P),

and service time (1/mu)

2) Trace-driven: every packet has

its own inter-arrival time, token

requirement, and service time

(a line in a "tsfile")

if you think about it

carefully, there is really no

difference between these two modes

write your code for the trace-driven mode

if running in deterministic mode, instead of reading a line

from the "tsfile" to create a packet, just create a packet

using information stored in global variables

You will need to implement 4 cooperating child threads

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

packet arrival thread

token depositing thread

two server threads

these threads work together to simulate the operation of this

token bucket filter

threads work together using shared variables
0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

for (;;) {

 sleep

 generate a packet/token

 add packet/token to token bucket filter

}

Very high level pseudo-code for the packet/token thread:

for (;;) {

 wait for packet in Q2

 remove packet from Q2

 sleep (to transmit packet)

}

Very high level pseudo-code for the

server thread:

where must you lock and unlock mutex?

where must you lock and

unlock mutex?

for (;;) {

 /* read a line from tsfile if in trace mode */

 get inter_arrival_time, tokens_needed, and service_time;

 /* calculate sleep time from inter_arrival_time */

 usleep(...);

 packet = NewPacket(tokens_needed, service_time, ...);

 pthread_mutex_lock(&mutex);

 Q1.enqueue(packet);

 ... /* other stuff */

 pthread_cond_broadcast(&cv);

 pthread_mutex_unlock(&mutex);

}

Packet thread pseudo-code (incomplete):

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

must self-terminate as soon as this

thread is no longer needed (i.e., no

need to generate packets)

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

must not call
pthread_cond_signal()

for (;;) {

 /* calculate sleep time from inter-token arrival time */

 usleep(...);

 pthread_mutex_lock(&mutex);

 tokens++;

 if (first packet in Q1 can now be moved into Q2) {

 packet = Q1.dequeue();

 Q2.enqueue(packet);

 pthread_cond_broadcast(&cv);

 tokens = 0; /* why? */

 }

 pthread_mutex_unlock(&mutex);

}

Token thread pseudo-code (incomplete):

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

must self-terminate as soon as this

thread is no longer needed (i.e., no

need to generate tokens)

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

must not call
pthread_cond_signal()

for (;;) {

 /* wait for work */

 pthread_mutex_lock(&mutex);

 while (Q2.length() == 0 && !time_to_quit) {

 pthread_cond_wait(&cv, &mutex);

 }

 packet = Q2.dequeue();

 pthread_mutex_unlock(&mutex);

 /* work */

 usleep(packet.service_time);

}

Server threads pseudo-code (incomplete):

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

same first procedure for both server threads

must self-terminate as soon as this

thread is no longer needed (i.e., no

need to transmit packets)

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simulation/Emulation

Many other requirements, for example:

drop packets

if the token requirement for an arriving packet is too large

(i.e., > B), must drop the packet

drop tokens

if an arriving token finds a full bucket, the token is dropped

must move a packet at the correct time

if a packet is eligible to be moved from Q1 to Q2, it must

happen immediately

all threads must self-terminate when they are no longer needed

and many more...

please read the spec yourself (don’t get it from classmates)

Emulation Parameters:
 number to arrive = 20
 lambda = 2 (if -t is not specified)
 mu = 0.35 (if -t is not specified)
 r = 4
 B = 10
 P = 3 (if -t is not specified)
 tsfile = FILENAME (if -t is specified)

00000000.000ms: emulation begins
00000251.726ms: token t1 arrives, token bucket now has 1 token
00000502.031ms: token t2 arrives, token bucket now has 2 tokens
00000503.112ms: p1 arrives, needs 3 tokens, inter-arrival time = 503.112ms
00000503.376ms: p1 enters Q1
00000751.148ms: token t3 arrives, token bucket now has 3 tokens
00000751.186ms: p1 leaves Q1, time in Q1 = 247.810ms, token bucket now has 0 token
00000752.716ms: p1 enters Q2
00000752.932ms: p1 leaves Q2, time in Q2 = 0.216ms
00000752.982ms: p1 begins service at S1, requesting 2850ms of service
00001004.271ms: p2 arrives, needs 3 tokens, inter-arrival time = 501.159ms
00001004.526ms: p2 enters Q1
00001007.615ms: token t4 arrives, token bucket now has 1 token
00001251.259ms: token t5 arrives, token bucket now has 2 tokens
00001505.986ms: p3 arrives, needs 3 tokens, inter-arrival time = 501.715ms
00001506.713ms: p3 enters Q1
00001507.552ms: token t6 arrives, token bucket now has 3 tokens
00001508.281ms: p2 leaves Q1, time in Q1 = 503.755ms, token bucket now has 0 token
00001508.761ms: p2 enters Q2
00001508.874ms: p2 leaves Q2, time in Q2 = 0.113ms
00001508.895ms: p2 begins service at S2, requesting 1900ms of service
...

Program output must look like what’s in the spec

you must NOT wait for emulation to end to print all these

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Printout

from commandline

or tsfile

A value anywhere in the right column must be the exact

differences between two corresponding timestamps
0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Printout
...
00003427.557ms: p2 departs from S2, service time = 1918.662ms, time in system = 2423.286ms
00003612.843ms: p1 departs from S1, service time = 2859.861ms, time in system = 3109.731ms
...
????????.???ms: p20 departs from S?, service time = ???.???ms, time in system = ???.???ms
????????.???ms: emulation ends

Statistics:

 average packet inter-arrival time = <real-value>
 average packet service time = <real-value>

 average number of packets in Q1 = <real-value>
 average number of packets in Q2 = <real-value>
 average number of packets at S1 = <real-value>
 average number of packets at S2 = <real-value>

 average time a packet spent in system = <real-value>
 standard deviation for time spent in system = <real-value>

 token drop probability = <real-value>
 packet drop probability = <real-value>

Timestamps in the left column must have microsecond resolution

measured time interval must have microsecond resolution

use "%.6g" in printf() for <real-value>

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Printout
...
00003427.557ms: p2 departs from S2, service time = 1918.662ms, time in system = 2423.286ms
00003612.843ms: p1 departs from S1, service time = 2859.861ms, time in system = 3109.731ms
...
????????.???ms: p20 departs from S?, service time = ???.???ms, time in system = ???.???ms
????????.???ms: emulation ends

Statistics:

 average packet inter-arrival time = <real-value>
 average packet service time = <real-value>

 average number of packets in Q1 = <real-value>
 average number of packets in Q2 = <real-value>
 average number of packets at S1 = <real-value>
 average number of packets at S2 = <real-value>

 average time a packet spent in system = <real-value>
 standard deviation for time spent in system = <real-value>

 token drop probability = <real-value>
 packet drop probability = <real-value>

Ex: why must the service time for p1 be exactly 2859.861ms?

3612.843ms - 752.982ms = 2859.861ms

why so strict?

your printout must be self-consistent

packet thread return from usleep()

enter Q2

begin service at S1

leave S1

leave Q1
time in Q1

time in S1

enter Q1

create packet (packet arrival)

leave Q2

it should also store "packet specification" (such as specified

inter-arrival time, token requirement, service time)

time in Q2

Some packets needs to be excluded from certain statistics

S2
rate = mu

S1
rate = mu

r

B=6

Q1

λ

Q2

it should have 7 timestamps to store "measured" information

A packet is not a thread, it’s a data structure

these are not "measured" values

time

add to corresponding statistics only when a packet is

being ejected
0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Calculating Statistics NOTE: not

all activities

are shown

must use the population variance equation

Var[X] = E[X
 2

] - (E[X])
 2

Standard deviation is the squareroot of variance

for n samples, add up all the time and divide by n

Average time

same a fraction of time the server is busy

Average number of packets at a server

1

time
0

Average number of packets at Q1

1

time
0

2

3

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mean and Standard Deviation

