Operating Systems - CSCI 402

More On Kernel 3

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address Space Implementation

ﬁ} Address Space is implemented using Virtual Memory Map (vmmap)
= in lectures, sometimes | used the term "memory map"”

vmarea_t vmarea_t vmarea_t 1 vmarea_t
0-7fff 8000-1afff 1b000-1bfff 7fffd000-7fFffff
X, shared rw, private rw, private J rw, private
file
object

= we will use vma or vmarea to refer to vmarea_t

|
= the values in vmas above are not what’s in weenix Y ..’
Copyright © William C. Cheng

mmobj and pagenum

Operating Systems - CSCI 402

ﬁ} This is a very important picture in the kernel FAQ to understand

vaddr
| VMA (vma_off=1)
vin1 vin2 vin3
page# O page#- 1 page#
~ g -1 count -

offset
L

~
3 pages

3 pages
- PN
pfi pf2 pf3 pf4
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

= read the kernel FAQ about "pagenum™” and the next few FAQ
items that follow it

—= these are crucial in understanding how to build an address
space for a user process

Copyright © William C. C

heng

Operating Systems - CSCI 402

mmobj and pagenum

vaddr
| VMA (vma_off=1)

vini vin2 vin3
page# 0 page# 1 page# |2
- g e count >
offset
I\ J
3 pages
3 pages
A
s A
@ pfi pf2 pf3 pfd
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

1) The address space is made up of a list of non-overlapping vmareas
2) Each vmarea is a memory segment (contiguous virtual memory
locations)
= in the above, it’'s shown as [vaddr, vaddr+count)
Q typically vaddr (first virtual address of a memory |
segment) is page aligned q @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

mmobj and pagenum

vaddr
| VMA (vma_off=1)

vini vin2 vin3
page# 0 page# 1 page# |2
- g e count >
offset
I\ J
3 pages
3 pages
A
r N
@ pfi pf2 pf3 pfd
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

3) The kernel manages VM in "pages” (not "bytes"), it allocates enough
pages so that a memory segment can fit inside
= above, it takes 3 virtual pages to cover this memory segment
= each virtual page need to be mapped into a physical page
Q vfn = vpn = virtual page number (20-bits long)

Q you need to get used to printing these numbers in hex 53 @J
Copyright © William C. Cheng

Operating Systems - CSCI 402

mmobj and pagenum

vaddr
| VMA (vma_off=1)

vini vin2 vin3
page# 0 page# 1 page#|2 this page frame does not
- g e count - . .
belong to this mmob j
offset
L J
Y
3 pages
3 pages
r A N
pfi | pf2 | pf3 | pf4
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

4) Page frames are managed by mmobjs
= there is a physical page (hidden) inside each page frame

= if an mmobj manages N page frames, their pagenums are
[vima_off, vma_of£+N) for that mmobj

= not really implemented as a linked list as shown above
Q a hash table is used

Copyright © William C. Cheng

Operating Systems - CSCI 402

mmobj and pagenum

vaddr
| VMA (vma_off=1)

vini vin2 vin3
page# 0 page# 1 page#|2 this page frame does not
- g e count - bel . .
elong to this mmobj
offset
L J
3 pages
3 pages
r A N
pfi | pf2 | pf3 | pf4
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

5) You can create multiple memory segments by mapping different
pages of a file into your address space
= conceptually, a file is divided into pages
—= vma_off in a memory segment gives you the starting page
number of the file

Copyright © William C. Cheng

vaddr

mmobj and pagenum

, YMA (vma_oft=1)

vin1 vin2 vin3
page# 0 page# 1 page#
. g -1 count -

offset
L

~
3 pages

Operating Systems - CSCI 402

3 pages
A
-
pfi pf2 pf3 pf4
pagenum =0 pagenum =1 pagenum =2 pagenum =
N J
Y

offset

6) A page frame may not be present for an mmob j
— since we are doing demand paging, in the beginning, none of

the page frames are present for an mmob j
= as page frames are brought in, they become "resident"
Q I.e., they are cached inside the corresponding mmobj

Q if modified, the page frame becomes "“dirty"”

Copyright © William C. C

heng

=

Operating Systems - CSCI 402

mmobj and pagenum

vaddr
| VMA (vma_off=1)

vini vin2 vin3
page# 0 page# 1 page# |2
- g e count >
offset
I\ J
Y
3 pages
3 pages
A
s A
@ pfi pf2 pf3 pfd
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

7) A page frame is identified by the mmobj that manages it and the

pagenum Of the page frame
= in the kernel FAQ, it uses the notation (o,n) where o0 is an mmob j

and nis a pagenum
= a linked list of mmobjs must be used to make copy-on-write |
work correctly with fork () 93
Copyright © William C. Cheng

Operating Systems - CSCI 402

mmobj and pagenum

vaddr
| VMA (vma_off=1)

vini vin2 vin3
page# 0 page# 1 page# |2
- g e count >
offset
I\ J
Y
3 pages
3 pages
A
s A
@ pfi pf2 pf3 pfd
pagenum =0 pagenum =1 pagenum =2 pagenum =3
N J
Y

offset

8) Page table maps a virtual page number to a physical page number
= in the above picture, vEnl/v£n2/v£n3 needs to be mapped to
the physical page that lives inside p£2/p£3/p£4, respectively
— pf_addr of a page frame contains a kernel virtual address

for the corresponding "physical page" |
Q pt_virt_to_phys () converts it to physical address 103

Copyright © William C. Cheng

Operating Systems - CSCI 402

Forward-Mapped (Multilevel) Page Table

4KB Physical Page

——

_________ VIM|R|[Prot| Physical Page #

- -
- -
- -
- -
- -

20 12 >I
VA: Page # Offset
vpn /vfn |
Page Table .
vpn=0)
vpn=1| 1T
vpn=2| .- D S

-
-

- -
- -
- -
- -
- -
- -
- --

- -

--—-

> >
- P
- -
\ -
- -
- P

-
- -
- -
- -
- -—-
- -
- -
- -
- -

—— Pagé Table Entry

-
-
-
-
-
-
-
-

ﬁ} weenix runs on an x86 CPU

= X86 CPU uses a forward-mapped

page table in the hardware

Q PTE is not like the above picture

= but the programming abstraction

is a basic (two-level) page table

Copyright © William C. Cheng

Operating Systems - CSCI 402

Very Useful gdb Commands
) Address space

kernel info vmmap_mapping_info curproc—>p_vmmap

= the /oader builds address space for a user-space program
= after your user-space program is "loaded"”, what does the address
space looks like?
= when you get your first legitimate page fault in
handle_pagefault (), look at your address space
Q if it’s is wrong, is there point proceeding?!
Q ask your classmates in the class Google Group if they are
seeing the same thing
& don’t just ask others to share, that’s not nice!

) Page table (not that useful)

kernel info pt_mapping_info curproc->p_pagedir

Copyright © William C. Cheng

Operating Systems - CSCI 402

Read Some Code

= "hello.c" int main (int argc, char **argv)

{
open (" /dev/tty0", O_RDONLY, 0);
open (" /dev/tty0", O_WRONLY, O0);
write(l, "Hello, world!\n", 14);
return O;

}

ﬁ> Kernel

"elf32.c" - the loader
= "access.c" - need to understand copy_£from_user () and
copy_to_user ()
"exec.c" - how to go into user space
"pagefault.c" - handle page fault
"vn_mmobj_ops.c" - code for the mmob5j inside a vnode
"syscall.c" - to see how to implement sys_write (), look
at how other sys_* () functions are implemented / @J

0 0 0 [

Copyright © William C. Cheng

