
More On Kernel 3

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address Space Implementation

Address Space is implemented using Virtual Memory Map (vmmap)

vmarea_t
0-7fff

x, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

file
object

PCB

vmmap_t

in lectures, sometimes I used the term "memory map"

we will use vma or vmarea to refer to vmarea_t

the values in vmas above are not what’s in weenix

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

read the kernel FAQ about "pagenum" and the next few FAQ

items that follow it

This is a very important picture in the kernel FAQ to understand

these are crucial in understanding how to build an address

space for a user process

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

The address space is made up of a list of non-overlapping vmareas1)

Each vmarea is a memory segment (contiguous virtual memory

locations)

2)

in the above, it’s shown as [vaddr,vaddr+count)

typically vaddr (first virtual address of a memory

segment) is page aligned

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

each virtual page need to be mapped into a physical page

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

The kernel manages VM in "pages" (not "bytes"), it allocates enough

pages so that a memory segment can fit inside

3)

above, it takes 3 virtual pages to cover this memory segment

vfn = vpn = virtual page number (20-bits long)

you need to get used to printing these numbers in hex

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

Page frames are managed by mmobjs4)

there is a physical page (hidden) inside each page frame

not really implemented as a linked list as shown above

a hash table is used

if an mmobj manages N page frames, their pagenums are

[vma_off, vma_off+N) for that mmobj

this page frame does not

belong to this mmobj

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

5)

vma_off in a memory segment gives you the starting page

number of the file

You can create multiple memory segments by mapping different

pages of a file into your address space

conceptually, a file is divided into pages

this page frame does not

belong to this mmobj

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

A page frame may not be present for an mmobj6)

since we are doing demand paging, in the beginning, none of

the page frames are present for an mmobj

as page frames are brought in, they become "resident"

i.e., they are cached inside the corresponding mmobj

if modified, the page frame becomes "dirty"

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

A page frame is identified by the mmobj that manages it and the

pagenum of the page frame

7)

in the kernel FAQ, it uses the notation (o,n) where o is an mmobj

and n is a pagenum

a linked list of mmobjs must be used to make copy-on-write

work correctly with fork()

pf4

pagenum = 3

offset

 count

VMA (vma_off=1)

vfn1 vfn2 vfn3

vaddr

mmobj

offset

page# 0 page# 1 page# 2

pf3

pagenum = 2

pf2

pagenum = 1

pf1

pagenum = 0

3 pages

3 pages

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

mmobj and pagenum

Page table maps a virtual page number to a physical page number8)

in the above picture, vfn1/vfn2/vfn3 needs to be mapped to

the physical page that lives inside pf2/pf3/pf4, respectively

pf_addr of a page frame contains a kernel virtual address

for the corresponding "physical page"

pt_virt_to_phys()converts it to physical address

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Forward-Mapped (Multilevel) Page Table

4KB Physical Page

Physical Page #ProtRMV

VA: Page # Offset

20 12

Page Table

Page Table Entry

vpn / vfn

vpn=0

vpn=1

vpn=2

x86 CPU uses a forward-mapped

page table in the hardware

but the programming abstraction

is a basic (two-level) page table

weenix runs on an x86 CPU

PTE is not like the above picture

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Very Useful gdb Commands

kernel info vmmap_mapping_info curproc->p_vmmap

Address space

kernel info pt_mapping_info curproc->p_pagedir

Page table (not that useful)

after your user-space program is "loaded", what does the address

space looks like?

ask your classmates in the class Google Group if they are

seeing the same thing

don’t just ask others to share, that’s not nice!

if it’s is wrong, is there point proceeding?!

when you get your first legitimate page fault in

handle_pagefault(), look at your address space

the loader builds address space for a user-space program

"exec.c" - how to go into user space

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Read Some Code

User

"hello.c"

Kernel

"elf32.c" - the loader

"vn_mmobj_ops.c" - code for the mmobj inside a vnode

"access.c" - need to understand copy_from_user() and
copy_to_user()

"syscall.c" - to see how to implement sys_write(), look

at how other sys_*() functions are implemented

int main(int argc, char **argv)
{
 open("/dev/tty0", O_RDONLY, 0);
 open("/dev/tty0", O_WRONLY, 0);
 write(1, "Hello, world!\n", 14);
 return 0;
}

"pagefault.c" - handle page fault

