Operating Systems - CSCI 402

Warmup #1

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Discussion Sections

_) IMPORTANT:
= please understand that discussion section material are NOT

substitute for reading the specs and the grading guidelines

Q you are expect to read the specs
Q you are expect to read the requirements the specs refer to

Q you are expect to read the grading guidelines
Q Iit’s your responsibility

Copyright © William C. Cheng

Operating Systems - CSCI 402

Programming & Good Habbits
_) Always check return code!

= open (), write()
—= malloc ()
— switch (errno) { ... }

_ Initialize all variables!
= int i=0;
= char *p=NULL;,
= struct timewval timeout;
memset (&timeout, 0, sizeof (struct timeval));

) Neverleak any resources!
= malloc () and free()
= open() and close()
—= delete temporary files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Programming & Good Habbits

) Don’tassume external input will be short
= Uuse strncpy () and not strcpy ()

= USse snprintf () and not sprint£ ()
—= use sizeof () and not a constant, for example,

unsigned char buf[80];

buf[0] = ’'\0’; /* initialization */

strncpy (buf, argv[l], sizeof (buf));
buf[sizeof (buf)-1] = ’"\0’; /* in case argv[l] is long */

ﬁ> Fix your code so that you have zero compiler warnings!
= use —-Wall when you compile to get all compiler warnings

Copyright © William C. Cheng

Operating Systems - CSCI 402

Notes on gdb
_ The debugger is your friend! Get to know it NOW!

compile program with:
start debugging:
set breakpoint:

run program (w/ arguments):
clear breakpoint:

stack trace:

print field:

print in hex:

single-step at same level:
single-step into a function:
print field after every cmd:
assighment:

continue:

quit:

Copyright © William C. Cheng

-g

gdb [-tui] 1listtest

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

break main

break listtest.c:87

run [argl arg2 ...]

clear

where

print pList->anchor
print/x pList->anchor
next

step

display pList-—>num_members
set pList—->num_members=99
cont

quit

Operating Systems - CSCI 402

Warmup #1
_) 2parts

= develop a doubly-linked circular list called My402List
Q this corresponds to part (A) of the grading guidelines
Q to implement a traditional /inked-list abstraction
<& internally, the implementation is a circular list
< internally, it behaves like a fraditional list
& why? circular list implementation may be a little "cleaner™
= use your doubly-linked circular list to implement a command:
Q sort- sort a list of bank transactions
Q this corresponds to part (B) of the grading guidelines

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Linked-List Abstraction

ﬁ} A list of elements, linked so that you can move from one to the
next (and/or previoius)
= each element holds an object of some sort

ﬁ> Functionally:
= First()
= Next()
= Last()
= Prev()
= |nsert()
= Remove()
= Count()

) Need to have a well-defined interface
= once you have a good interface, if the implementation is
broken, fix the implementation!
Q don’t fix the "application™

Copyright © William C. Cheng

A Linked-List Abstraction

) There are basically two types of lists

1) next/prev pointers in object
2) next/prev pointers outside of object

Operating Systems - CSCI 402

ﬁ> (1) has a major drawback that a list item cannot be inserted into
Last

multiple lists Fi

rst

'

nhext ©-

_>

hext &

—

—® prev
o

~® prev

?

hext @

'

_>

~® prev

hext &

-

?

—® prev

= we will implement (2) in warmup1, our kernel uses (1)

First

'

next @

_>

@ prev

next @

——

r

—® prev

obj ¢

Copyright © William C

. Cheng

'

obj

?

’
'

Last

'

next €

_>

—® prev

nhext .—17

~<—0 prev

obj ¢

obj ¢
'

'

Operating Systems - CSCI 402

Doubly-linked Circular List

) Abstraction Fiist Last
hext &— next & —> U —— hext &— next ®-
@ prev <+—® prev [+——— <—® prev <+—1® prev 17
J obj I obj ¢ obj ¢ obj ¢
? ? ? ?

) Implementation
My402List

= why this way? Last() First()
L Y ~anchor | vy
hext &— next © > next > next &—> next ®
® prev [«—® prev [« prev < ® prev (+—® prev
obj o obj o obj o obj o obj o
2 2 2 2

= your job is to implement the traditional list abstraction

usin% a circular list
Copyright © William C. Cheng

Operating Systems - CSCI 402

my402list.h

#ifndef _MY402LIST_H_
##define _MY402LIST_H_

#include "c¢s402.h"

typedef struct tagMy402ListElem {
void *obj;
struct tagMy402ListElem *next;
struct tagMy402ListElem *prev;
} My402ListElem;

typedef struct tagMy402List ({
int num_members;
My402ListElem anchor;

/* You do not have to set these function pointers */
int (*Length) (struct tagMy402List ¥*);
int (*Empty) (struct tagMy402List *);

int (*Append) (struct tagMy402List *, wvoid¥);

int (*Prepend) (struct tagMy402List *, wvoid¥*);

void (*Unlink) (struct tagMy402List *, My402ListElem¥);
void (*UnlinkAll) (struct tagMy402List ¥*);

ﬁ} You need to learn to ighore things you don’t understand

— assume that they are perfect
Copyright © William C. Cheng

Operating Systems - CSCI 402

my402list.h

int (*InsertBefore) (struct tagMy402List *, void*, My402ListElem¥*);

int (*InsertAfter) (struct tagMy402List *, wvoid*, My402ListElem*);

My402ListElem * (*First) (struct tagMy402List *);

My402ListElem * (*Last) (struct tagMy402List *);

My402ListElem * (*Next) (struct tagMy402List *, My402ListElem *cur);
My402ListElem * (*Prev) (struct tagMy402List *, My402ListElem *cur);

My402ListElem * (*Find) (struct tagMy402List *, wvoid *obj);
} My402List;

extern int My402ListLength (My402List*);
extern int My402ListEmpty (My402List¥*);

extern int My402ListAppend (My402List*, void¥*);

extern int My402ListPrepend (My402List*, wvoid¥*);

extern void My402ListUnlink (My402List*, My402ListElem*);

extern void My402ListUnlinkAll (My402List¥*);

extern int My402ListInsertAfter (My402List*, void*, My402ListElem¥);
extern int My402ListInsertBefore (My402List*, void¥*, My402ListElem¥*);

extern My402ListElem *My402ListFirst (My402List¥*);

extern My402ListElem *My402ListLast (My402List*);

extern My402ListElem *My402ListNext (My402List*, My402ListElem*);
extern My402ListElem *My402ListPrev (My402List*, My402ListElem¥*);
extern My402ListElem *My402ListFind (My402List*, wvoid¥*);

extern int My402ListInit (My402List*);
#endif /*_MY402LIST_H_*/

ﬁ> You need to implement all the mentioned functions
Copyright © William C. Cheng

Operating Systems - CSCI 402

my402list.c

_) How to start?
= cp my4021list.h my402l1list.c
= editmy4021ist.c in a text editor
Q replace data structure declarations with "#include"
Q change all function declarations to function implementations

<

remove "extern' and implement function

#include "my402l1list.h"

extern
extern

extern
extern
extern
extern
extern
extern

extern
extern
extern
extern

extern

extern

Copyright © William C. Cheng

int
int

int
int
void
void
int
int

My402ListLength (My402List¥*) ;
My402ListEmpty (My402List*) ;

My402ListAppend (My402List*, wvoid*);

My402ListPrepend (My402List*, wvoid¥*);

My402ListUnlink (My402List*, My402ListElem¥*);
My402ListUnlinkAll (My402List¥*);

My402ListInsertAfter (My402List*, void*, My402ListElem¥*);
My402ListInsertBefore (My402List*, wvoid*, My402ListElem*);

My402ListElem *My402ListFirst (My402List¥*);
My402ListElem *My402ListLast (My402List*¥*);
My402ListElem *My402ListNext (My402List*, My402ListElem*);
My402ListElem *My402ListPrev (My402List*, My402ListElem*);

My402ListElem *My402ListFind(My402List*, wvoid¥*);

int My402ListInit (My402List*);

Copyright © William C. Cheng

Implementation
My402List

Last() First()

L Y anchor Y
hext & — next e > next > next & —> next @

® prev <—® prev [« prev < ® prev <—® prev
obj o obj o obj obj o obj o
? ? ? ?

int Length() { return num_members; }
int Empty () { return num_members<=0; }

int Append(void *obj);

int Prepend(void *obj);

void Unlink (My402ListElem¥*) ;

void UnlinkAll ();

int InsertBefore (void *obj, My402ListElem *elem);
int InsertAfter (void *obj, My402ListElem *elem);

My402ListElem *First ();
My402ListElem *Last ();
My402ListElem *Next (My402ListElem *cur);
My402ListElem *Prev (My402ListElem *cur);

My402ListElem *Find(void *obj);
int Init();

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Usage - Traversing the List

My402List
Last() First()
L y "~ anchor | ¥y
next & —> next ® > next > next &—> next ®
® prev «—® prev [« prev < ® prev («—® prev
obj I obj o obj obj o obj o
2 2 2 2
void Traverse (My402List *1list) |:> ThIS iS hOW an application
{
My402ListElem *elem=NULL; will use My402List
for (elem=My402ListFirst (list); = you must support this
elem !'= NULL; " "ot
elem=My402ListNext (1list, elem)) { contract” with you
Foo *foo=(Foo*) (elem—>0bj); app"catign
/* access foo here */ = |f bl‘Oken, fix the
L "implementation" and

not the "application”
14

I

Copyright © William C. Cheng

Operating Systems - CSCI 402

listtest

I:> Use provided listtest.c and Makefile tO create 1listtest
= listtest must run without error and you must not change
cs402.h, my4021ist .h, listtest.c and Makefile
= they specify how your code inmy4021ist.c is expected to be
used

) You should learn how to run listtest under gdb

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sort Command

I:> warmupl sort [tfile]
= produce a sorted transaction history for the transaction records
intfile (Oor stdin) and compute balances

) Inputis an ASCII text file (use £gets () to read a line)
= each line in a tfile contains 4 fields delimited by <TaAB>
Q transcation type (single character)
& "+" for deposit
& - for withdrawal
Q transcation time (UNIX time)
¢ man -s 2 time
Q amount (a number, a period, two digits)
Q transcation description (textual description)
& cannot be empty

_, Output must be in the specified format exactly
= use the grading guidelines to check if you miss something
Q formatting bugs should be very easy to fix 4

16

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sort Command

) Output

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

e
+

| Date | Description | Amount | Balance |

+ + + + ———+
Thu Aug 21 2008 1,723.00 1,723.00
Wed Dec 31 2008 (45.33) 1,677.67
Mon Jul 13 2009 10,388.07 12,065.74
Sun Jan 10 2010 (654.32) 11,411.42

+

-t
+

+

_, How to keep track of balance
= first thing that comes to mind is to use double
= the weird thing is that if you are not very careful with
double, your output will be wrong (by 1 penny) once in a
while
= recommendation: keep the balance in cents, not dollars
Q no precision problem with integers!

ﬁ} Read grading guidelines and find many examples of |
valid input and expected printout y @;

Copyright © William C. Cheng

Sort Command

Operating Systems

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

| Date | Description | Amount | Balance |
Thu Aug 21 2008 1,723.00 1,723.00
Wed Dec 31 2008 (45.33) 1,677.67
Mon Jul 13 2009 10,388.07 12,065.74
Sun Jan 10 2010 (654.32) 11,411.42

-t
nLn

-
e

+

- CSCI 402

ﬁ} The spec requires you to call ctime () to convert a Unix timestamp

to string

= then pick the right characters to display as date

= e.(., ctime () returns "Thu Aug 30 08:17:32 2012\n"

Q becareful, ctime () returns a pointer that points to a

global variable, so you must make a copy
char date[1l6];

char buf[26];
strncpy (buf,

date[0]
date[1]

date[15] = "\0’;

Copyright © William C. Cheng

ctime(...),
= buf[0];
= buf[l];

sizeof (buf));

Operating Systems - CSCI 402

Sort Command

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

.
+

| Date | Description | Amount | Balance |

+ + + + ———+
Thu Aug 21 2008 1,723.00 1,723.00
Wed Dec 31 2008 (45.33) 1,677.67
Mon Jul 13 2009 10,388.07 12,065.74
Sun Jan 10 2010 (654.32) 11,411.42

-t -t
T T

+
+

_, Format your data in your own buffer
— write a function to "format” numeric fields into null-terminated
strings
Q Iit’s a little more work, but you really should have this
code isolated
<& in case you have bugs, just fix this function
= you can even do the formatting when you append or insert
your data structure to your list
Q need more fields in your data structure
= this way, you can just print things out easily
—= Use printf("%s", ...) toprinta field to stdout 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Warmup #1

) I'm giving you a lot of details on how to do things in C
= this is the first and last assighment that | will do this!
= you must learn C (and Unix) on your own

_, Read man pages

) Ask questions in class Google Group
= or send e-mail to me

ﬁ> Come to office hours, especially if you are stuck

Copyright © William C. Cheng

Operating Systems - CSCI 402

Some General Requirements

ﬁ} Some major requirements for all programming assignments
= severe pentalty for failing make (can lose up to 10 points)
Q we will attempt to fix your Makefile if we cannot compile
your code
Q we are not permitted to change your code
— severe pentalty for using large memory buffers
Q if input file is large, you must not read the whole file into
into a large memory buffer
& must learn how to read a large file properly
— severe pentalty for any segmentation fault -- you must test
your code well
= severe pentalty for not using separate compilation or for
having all your source code in header files -- you must learn
to plan how to write your program
Q read warmup1 FAQ to see what’s the best way to go about this

®

Copyright © William C. Cheng

Operating Systems - CSCI 402

Grading Requirements

ﬁ} For warmup assignments, it’s important that every byte of your
data is read and written correctly
= you are not entitled to partial credit just because you wrote
some code

ﬁ> For warmup assignments, you should run your code against the
grading guidelines on 32-bit Ubuntu 16.04
= must not change the commands there
Q we will change the data for actual grading, but we will
stick to the commands (as much as we can)
= to be fair to all, running scripts in the grading guidelines on the
grader’s 32-bit Ubuntu 16.04 is the only way we can grade

Copyright © William C. Cheng

Operating Systems - CSCI 402

Separate Compilation

) Break up your code into modules
= compile the modules separately, at least one rule per
module per rule in the Makefile
= a separate rule to link all the modules together
Q if your program requites additional libraries, add them

to the link stage

ﬁ} To receive full credit for separate compilation
— to create an executable, at a minimum, you must run the
compiler at least twice and the linker once
= see the warmup1 FAQ for exactly how to avoid losing points

Copyright © William C. Cheng

Operating Systems - CSCI 402

README

_ Start with the README templates from the spec
= BUILD & RUN (required)
Q replace "(Comments: ?)" with appropriate responses
= SELF-GRADING (required)
Q replace each "?" with a numerical score
= BUGS /TESTS TO SKIP (required)
Q replace "(Comments: ?)" with a list of tests to skip or "none"
<& you would still lose points, but this may prevent losing
additional points in another part
= ADDITIONAL INFORMATION FOR GRADER (optional)
Q grader must read this
= OTHERS (optional)
Q will not be considered for grading

ﬁ} There should be no "?" left in a response in a required section after
you have filled out a README file correctly

= 0. ill ifa"?"i ' |
0.5 pt w.| be deduc.ted | a. |s.not. repla.ced with / @J
something appropriate or if the line is omitted 24

Copyright © William C. Cheng

Operating Systems - CSCI 402

Code Design - Functional vs. Procedural
) Don't design your program "procedurally”

> You need to learn how to write functions!
= please note that this is not "functional programming” ("functional
programming” is something else)
= a function has a well-defined interface
Q what are the meaning of the parameters
QO what does it suppose to return
= pre-conditions
Q what must be true when the function is entered
Q you assume that these are true
<& you can verify it if you want
= post-conditions
Q what must be true when the function returns
= you design your program by making designing a sequence
of function calls

Copyright © William C. Cheng

Operating Systems - CSCI 402

Warmup #1 - Miscellaneous Requirements

> Run your code against the grading guidelines
= must not change the test program

ﬁ} You must not use any external code fragments

ﬁ} You must not use array to implement any list functions
= must use pointers because this is a pointer exercise
= read my review about pointers in warmup1 FAQ

ﬁ> It’s important that every byte of your data is read and
written correctly.
= diff commands in the grading guidelines must not produce any
output or you will not get credit
Q what does "not produce any output” mean?
& it means exactly what it says!

ﬁ> Please see Warmup #1 spec for additional details
— please read the entire spec (including the grading |
guidelines) yourself . 2.?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Development

ﬁ} Get familiar with "Warmup #1 FAQ" and "Programming FAQ"
_, Text Editors

= emacs, pico, vi
= some students like Sublime Text
Q you are on your own with Sublime Text

_, Compiler
= "gcec —--version" should say it’s version 5.4.something

_) IDE

= some students like Eclipse
Q you are on your own with Eclipse
= the grader is not permitted to use an IDE to compile or run your
program
Q if you use an IDE, it’s your responsibility to make sure that
you provide a Makefile so that the grader can type the
command in the spec to compile / @’_

Copyright © William C. Cheng

