
Warmup #1

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

IMPORTANT:

please understand that discussion section material are NOT

substitute for reading the specs and the grading guidelines

you are expect to read the specs

you are expect to read the requirements the specs refer to

you are expect to read the grading guidelines

it’s your responsibility

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Discussion Sections

open(), write()
Always check return code!

malloc()
switch (errno) { ... }

Never leak any resources!

malloc() and free()
open() and close()
delete temporary files

int i=0;
Initialize all variables!

struct timeval timeout;
memset(&timeout, 0, sizeof(struct timeval));

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Programming & Good Habbits

char *p=NULL;

use strncpy() and not strcpy()
Don’t assume external input will be short

use snprintf() and not sprintf()

Fix your code so that you have zero compiler warnings!

use sizeof() and not a constant, for example,

unsigned char buf[80];

buf[0] = ’\0’; /* initialization */
strncpy(buf, argv[1], sizeof(buf));
buf[sizeof(buf)-1] = ’\0’; /* in case argv[1] is long */

use -Wall when you compile to get all compiler warnings

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Programming & Good Habbits

print field after every cmd: (gdb) display pList->num_members
assignment: (gdb) set pList->num_members=99

print field: (gdb) print pList->anchor
print in hex: (gdb) print/x pList->anchor

single-step at same level: (gdb) next
single-step into a function: (gdb) step

continue: (gdb) cont

clear breakpoint: (gdb) clear
run program (w/ arguments): (gdb) run [arg1 arg2 ...]

compile program with:

start debugging: gdb [-tui] listtest
-g

set breakpoint: (gdb) break main

The debugger is your friend! Get to know it NOW!

quit: (gdb) quit

stack trace: (gdb) where

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Notes on gdb

(gdb) break listtest.c:87

develop a doubly-linked circular list called My402List

2 parts

use your doubly-linked circular list to implement a command:

sort - sort a list of bank transactions

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Warmup #1

to implement a traditional linked-list abstraction

internally, the implementation is a circular list

internally, it behaves like a traditional list

why? circular list implementation may be a little "cleaner"

this corresponds to part (A) of the grading guidelines

this corresponds to part (B) of the grading guidelines

A list of elements, linked so that you can move from one to the

next (and/or previoius)

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Linked-List Abstraction

each element holds an object of some sort

Functionally:

First()

Next()

Last()

Prev()

Insert()

Remove()

Count()

Need to have a well-defined interface

once you have a good interface, if the implementation is

broken, fix the implementation!

don’t fix the "application"

1)

There are basically two types of lists

next/prev pointers in object

2) next/prev pointers outside of object

(1) has a major drawback that a list item cannot be inserted into

multiple lists

we will implement (2) in warmup1, our kernel uses (1)

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Linked-List Abstraction

next

prev

obj

?

next

prev

obj

?

next

prev

obj

?

next

prev

obj

?

First Last

next

prev

next

prev

next

prev

next

prev

?

First Last

???

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Doubly-linked Circular List

next

prev

obj

?

next

prev

obj

?

next

prev

obj

next

prev

obj

?

next

prev

obj

?

anchor

My402List

next

prev

obj

?

next

prev

obj

?

next

prev

obj

?

next

prev

obj

?

First Last

First()Last()

Abstraction

Implementation

why this way?

your job is to implement the traditional list abstraction

using a circular list

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

my402list.h
#ifndef _MY402LIST_H_
#define _MY402LIST_H_

#include "cs402.h"

typedef struct tagMy402ListElem {
 void *obj;
 struct tagMy402ListElem *next;
 struct tagMy402ListElem *prev;
} My402ListElem;

typedef struct tagMy402List {
 int num_members;
 My402ListElem anchor;

 /* You do not have to set these function pointers */
 int (*Length)(struct tagMy402List *);
 int (*Empty)(struct tagMy402List *);

 int (*Append)(struct tagMy402List *, void*);
 int (*Prepend)(struct tagMy402List *, void*);
 void (*Unlink)(struct tagMy402List *, My402ListElem*);
 void (*UnlinkAll)(struct tagMy402List *);

assume that they are perfect

You need to learn to ignore things you don’t understand

 int (*InsertBefore)(struct tagMy402List *, void*, My402ListElem*);
 int (*InsertAfter)(struct tagMy402List *, void*, My402ListElem*);

 My402ListElem *(*First)(struct tagMy402List *);
 My402ListElem *(*Last)(struct tagMy402List *);
 My402ListElem *(*Next)(struct tagMy402List *, My402ListElem *cur);
 My402ListElem *(*Prev)(struct tagMy402List *, My402ListElem *cur);

 My402ListElem *(*Find)(struct tagMy402List *, void *obj);
} My402List;

extern int My402ListLength(My402List*);
extern int My402ListEmpty(My402List*);

extern int My402ListAppend(My402List*, void*);
extern int My402ListPrepend(My402List*, void*);
extern void My402ListUnlink(My402List*, My402ListElem*);
extern void My402ListUnlinkAll(My402List*);
extern int My402ListInsertAfter(My402List*, void*, My402ListElem*);
extern int My402ListInsertBefore(My402List*, void*, My402ListElem*);

extern My402ListElem *My402ListFirst(My402List*);
extern My402ListElem *My402ListLast(My402List*);
extern My402ListElem *My402ListNext(My402List*, My402ListElem*);
extern My402ListElem *My402ListPrev(My402List*, My402ListElem*);

extern My402ListElem *My402ListFind(My402List*, void*);

extern int My402ListInit(My402List*);
#endif /*_MY402LIST_H_*/

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

my402list.h

You need to implement all the mentioned functions

#include "my402list.h"

extern int My402ListLength(My402List*);
extern int My402ListEmpty(My402List*);

extern int My402ListAppend(My402List*, void*);
extern int My402ListPrepend(My402List*, void*);
extern void My402ListUnlink(My402List*, My402ListElem*);
extern void My402ListUnlinkAll(My402List*);
extern int My402ListInsertAfter(My402List*, void*, My402ListElem*);
extern int My402ListInsertBefore(My402List*, void*, My402ListElem*);

extern My402ListElem *My402ListFirst(My402List*);
extern My402ListElem *My402ListLast(My402List*);
extern My402ListElem *My402ListNext(My402List*, My402ListElem*);
extern My402ListElem *My402ListPrev(My402List*, My402ListElem*);

extern My402ListElem *My402ListFind(My402List*, void*);

extern int My402ListInit(My402List*); 0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

my402list.c

How to start?

cp my402list.h my402list.c

replace data structure declarations with "#include"

edit my402list.c in a text editor

change all function declarations to function implementations

remove "extern" and implement function

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation

next

prev

obj

?

next

prev

obj

?

next

prev

obj

next

prev

obj

?

next

prev

obj

?

anchor

My402List
First()Last()

int Length() { return num_members; }
int Empty() { return num_members<=0; }

int Append(void *obj);
int Prepend(void *obj);
void Unlink(My402ListElem*);
void UnlinkAll();
int InsertBefore(void *obj, My402ListElem *elem);
int InsertAfter(void *obj, My402ListElem *elem);

My402ListElem *First();
My402ListElem *Last();
My402ListElem *Next(My402ListElem *cur);
My402ListElem *Prev(My402ListElem *cur);

My402ListElem *Find(void *obj);
int Init();

void Traverse(My402List *list)
{
 My402ListElem *elem=NULL;

 for (elem=My402ListFirst(list);
 elem != NULL;
 elem=My402ListNext(list, elem)) {
 Foo *foo=(Foo*)(elem->obj);

 /* access foo here */
 }
}

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Usage - Traversing the List

next

prev

obj

?

next

prev

obj

?

next

prev

obj

next

prev

obj

?

next

prev

obj

?

anchor

My402List
First()Last()

This is how an application

will use My402List
you must support this

"contract" with you

application

if broken, fix the

"implementation" and

not the "application"

Use provided listtest.c and Makefile to create listtest

they specify how your code in my402list.c is expected to be

used

listtest must run without error and you must not change

cs402.h, my402list.h, listtest.c and Makefile

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

listtest

You should learn how to run listtest under gdb

Input is an ASCII text file (use fgets() to read a line)

produce a sorted transaction history for the transaction records

in tfile (or stdin) and compute balances

warmup1 sort [tfile]

each line in a tfile contains 4 fields delimited by <TAB>
transcation type (single character)

"+" for deposit

"-" for withdrawal

transcation time (UNIX time)

man -s 2 time
amount (a number, a period, two digits)

transcation description (textual description)

cannot be empty

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sort Command

Output must be in the specified format exactly

use the grading guidelines to check if you miss something

formatting bugs should be very easy to fix

Output

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+-----------------+--------------------------+----------------+----------------+
| Date | Description | Amount | Balance |
+-----------------+--------------------------+----------------+----------------+
Thu Aug 21 2008	...	1,723.00	1,723.00
Wed Dec 31 2008	...	(45.33)	1,677.67
Mon Jul 13 2009	...	10,388.07	12,065.74
Sun Jan 10 2010	...	(654.32)	11,411.42
+-----------------+--------------------------+----------------+----------------+

first thing that comes to mind is to use double
How to keep track of balance

the weird thing is that if you are not very careful with

double, your output will be wrong (by 1 penny) once in a

while

recommendation: keep the balance in cents, not dollars

no precision problem with integers!

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sort Command

Read grading guidelines and find many examples of

valid input and expected printout

char date[16];
char buf[26];
strncpy(buf, ctime(...), sizeof(buf));
date[0] = buf[0];
date[1] = buf[1];
...
date[15] = ’\0’;

The spec requires you to call ctime() to convert a Unix timestamp

to string

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+-----------------+--------------------------+----------------+----------------+
| Date | Description | Amount | Balance |
+-----------------+--------------------------+----------------+----------------+
Thu Aug 21 2008	...	1,723.00	1,723.00
Wed Dec 31 2008	...	(45.33)	1,677.67
Mon Jul 13 2009	...	10,388.07	12,065.74
Sun Jan 10 2010	...	(654.32)	11,411.42
+-----------------+--------------------------+----------------+----------------+

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sort Command

then pick the right characters to display as date

e.g., ctime() returns "Thu Aug 30 08:17:32 2012\n"
becareful, ctime() returns a pointer that points to a

global variable, so you must make a copy

Format your data in your own buffer

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+-----------------+--------------------------+----------------+----------------+
| Date | Description | Amount | Balance |
+-----------------+--------------------------+----------------+----------------+
Thu Aug 21 2008	...	1,723.00	1,723.00
Wed Dec 31 2008	...	(45.33)	1,677.67
Mon Jul 13 2009	...	10,388.07	12,065.74
Sun Jan 10 2010	...	(654.32)	11,411.42
+-----------------+--------------------------+----------------+----------------+

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sort Command

you can even do the formatting when you append or insert

your data structure to your list

need more fields in your data structure

this way, you can just print things out easily

use printf("%s", ...) to print a field to stdout

write a function to "format" numeric fields into null-terminated

strings

it’s a little more work, but you really should have this

code isolated

in case you have bugs, just fix this function

Read man pages

Ask questions in class Google Group

Come to office hours, especially if you are stuck

I’m giving you a lot of details on how to do things in C

this is the first and last assignment that I will do this!

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Warmup #1

or send e-mail to me

you must learn C (and Unix) on your own

Some major requirements for all programming assignments

severe pentalty for failing make (can lose up to 10 points)

severe pentalty for using large memory buffers

severe pentalty for any segmentation fault -- you must test

your code well

severe pentalty for not using separate compilation or for

having all your source code in header files -- you must learn

to plan how to write your program

we will attempt to fix your Makefile if we cannot compile

your code

we are not permitted to change your code

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Some General Requirements

if input file is large, you must not read the whole file into

into a large memory buffer

must learn how to read a large file properly

read warmup1 FAQ to see what’s the best way to go about this

For warmup assignments, it’s important that every byte of your

data is read and written correctly

For warmup assignments, you should run your code against the

grading guidelines on 32-bit Ubuntu 16.04

must not change the commands there

we will change the data for actual grading, but we will

stick to the commands (as much as we can)

to be fair to all, running scripts in the grading guidelines on the

grader’s 32-bit Ubuntu 16.04 is the only way we can grade

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Grading Requirements

you are not entitled to partial credit just because you wrote

some code

Break up your code into modules

compile the modules separately, at least one rule per

module per rule in the Makefile
a separate rule to link all the modules together

if your program requites additional libraries, add them

to the link stage

To receive full credit for separate compilation

to create an executable, at a minimum, you must run the

compiler at least twice and the linker once

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Separate Compilation

see the warmup1 FAQ for exactly how to avoid losing points

ADDITIONAL INFORMATION FOR GRADER (optional)

grader must read this

replace each "?" with a numerical score

Start with the README templates from the spec

BUILD & RUN (required)

SELF-GRADING (required)

BUGS / TESTS TO SKIP (required)

OTHERS (optional)

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

README

replace "(Comments: ?)" with appropriate responses

replace "(Comments: ?)" with a list of tests to skip or "none"

you would still lose points, but this may prevent losing

additional points in another part

will not be considered for grading

There should be no "?" left in a response in a required section after

you have filled out a README file correctly

0.5 pt will be deducted if a "?" is not replaced with

something appropriate or if the line is omitted

Don’t design your program "procedurally"

You need to learn how to write functions!

a function has a well-defined interface

pre-conditions

what are the meaning of the parameters

what does it suppose to return

what must be true when the function is entered

post-conditions

what must be true when the function returns

you assume that these are true

you can verify it if you want

you design your program by making designing a sequence

of function calls

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Code Design - Functional vs. Procedural

please note that this is not "functional programming" ("functional

programming" is something else)

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Warmup #1 - Miscellaneous Requirements

You must not use any external code fragments

You must not use array to implement any list functions

It’s important that every byte of your data is read and

written correctly.

Please see Warmup #1 spec for additional details

Run your code against the grading guidelines

must not change the test program

must use pointers because this is a pointer exercise

diff commands in the grading guidelines must not produce any

output or you will not get credit

please read the entire spec (including the grading

guidelines) yourself

what does "not produce any output" mean?

it means exactly what it says!

read my review about pointers in warmup1 FAQ

emacs, pico, vi
Text Editors

Compiler

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Development

"gcc --version" should say it’s version 5.4.something

IDE

some students like Eclipse

some students like Sublime Text

you are on your own with Sublime Text

you are on your own with Eclipse

the grader is not permitted to use an IDE to compile or run your

program

if you use an IDE, it’s your responsibility to make sure that

you provide a Makefile so that the grader can type the

command in the spec to compile

Get familiar with "Warmup #1 FAQ" and "Programming FAQ"

