Introduction to Operating Systems - CSCI 350

CS 350
PA4: MFQ
Scheduler

Bill Cheng

http.://merlot.usc.edu/william/usc/

_ Based on slides created by Kivilcim Cumbul

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PA4

ﬁ} Implement a basic non-preemptive MFQ (Multilevel Feedback
Queue)
—= changes in "proc.c", "proc.h", "trap.c"

ﬁ> Add a new system call to get information about a running process
= int getpinfo (pid)

ﬁ> Design tests to demonstrate the correctness of your scheduler
= "pad-mixed.c", "pad-aging.c', "pad-cheat.c"

_) Create timeline graphs

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Preparation
) Read Ch 5 of the xv6 book

) Download xv6 for PA4
= open a terminal and type the following

cd ~/cs350

mkdir pa4

cd pa4

wget —-user=USERNAME --password=PASSWORD \
http://merlot.usc.edu/cs350-m25/programming/pad4/xv6-pad—-src.tar.gz

tar xvf xvé6-pad-src.tar.gz

cd xvé6-pad-src

= make sure you choose 1 CPU in your VM

CPUS :=1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Submission

> Which files do you need to modify?
= open a terminal and type the following:

pwd
cd ~/cs350/pad/xv6-pad-src
make —n pa4d4-submit

Q you should see:

tar cvzf pad-submit.tar.gz \
Makefile \
pad-README. txt \
proc.c proc.h \
trap.c \
syscall.c syscall.h \
sysproc.c \
defs.h \
pstat.h stat.h \
user.h \
usys.S \
pa4d-mixed.c pad—-mixed.out \
pad4-mixed-parent .pdf pad-mixed-child.pdf \
pad-aging.c pad-aging.out pad-aging.pdf \
pad—-cheat.c pad-cheat.out

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 2: MFQ Scheduler

ﬁ} In this project, you’ll implement a simplified Multi-level Feedback
Queue (MFQ) scheduler in xv6

= "proc.c", "proc.h", "trap.c"

) Read Ch 5 of the xv6 book

ﬁ> The default and only scheduling policy in xv6 is round robin, and
we will change it

ﬁ> In this project, you’ll implement a simplified Multi-level Feedback
Queue (MFQ) scheduler in xv6

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

XV6 Scheduler

shell cat
User
Kernel
save restore
kstack swtch () kstack swtch () kstack
| |
shell scheduler cat

Copyright © William C. Cheng

) Conceptually:

ticks = 1
ticks =2
ticks =3
ticks = 4
ticks =5
ticks =6

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Default XV6 Scheduler: Round Robin 1

= a tickis 10ms
= we don’t know how

4(2)

7(4)

8(7)

10(1)

11(3)

14(6) long a process needs

to run

7(4)

8(7)

10(1)

11(3)

14(6)

4(1)

8(7)

10(1)

11(3)

14(6)

4(1)

7(3)

10(1)

11(3)

14(6)

4(1)

7(3)

8(6)

11(3)

14(6)

4(1)

7(3)

8(6)

14(6)

4(1)

7(3)

8(6)

11(2)

) Conceptually:

Introduction to Operating Systems - CSCI 350

New XV6 Scheduler: MFQ

Q0 (high) a1), |71y ls@ [1001) [11(1) [1401)
a1 | 120 [15@ [13@) [50)
Q2 (low) 27(9) |3(7) |2(6)

= if Q0 is not empty, serve QO round robin style

Q downgrade a process if it doesn’t give up the CPU volentarily
= if Q0 is empty and Q1 is not empty, serve Q1 round robin style

(each process gets 2 ticks at a time)

Q downgrade a process if it doesn’t give up the CPU volentarily
= if Q0 and Q1 are empty and Q2 is not empty, serve Q2 round

robin style (each process gets 8 ticks at a time) (i\

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350 -1

pstat.h i

= don’t forget to:
#include "pstat.h"

in "proc.c"

#ifndef _PSTAT_H_
##define _PSTAT_H_
#define NTICKS 500 -
/* NSCHEDSTATS is the number of sched_stat_t slots per process.
The scheduler fills in the slots as it schedules processes

to record information about scheduling */
#define NSCHEDSTATS 1500

/*

* responsible for recording the scheduling state per process

* at a particular tick

* e.g. a process can have an array of sched_stat_t’s, with each
* of them holding the info of a scheduling round of the process
*/

struct sched_stat_t

{

int start_tick; //the number of ticks when this process is scheduled

int duration; //number of ticks the process is running before it
//gives up the CPU
int priority; //the priority of the process when it’s scheduled

//you may add more fields for debugging purposes
};
#endif

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

proc.h

I:> Inside struct proc

int times[3]; // number of times each process was scheduled at
// each of 3 priority queues

int ticks[3]; // number of ticks each process used the last time
// it was scheduled in each priority queue
// cannot be greater than the time-slice for each queue

uint wait_time; // number of ticks each RUNNABLE process waited
// in the lowest priority queue

// schedule stats for each tick
struct sched_stat_t sched_stats[NSCHEDSTATS];

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How To Use Them?

I:> In struct proc

proc—>times[0]

proc—>times|[1]
proc—>times|[2]

proc—>ticks|[0]
proc—>ticks|[1]
proc—>ticks|[2]

proc—>wait_time

—= need to print these when printing stats

I:> In struct sched_stat_t

proc—>sched_stat_t [pid] .start_tick
proc—>sched_stat_t [pid] .duration
proc—>sched_stat_t [pid] .priority

—= these are important stats of your process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

proc.h Additional Variables

ﬁ} You may define as many variables as you want into struct proc
Or struct sched_stats_t
— some examples for struct proc

int total_ticks; // total number of timer ticks the process
// has run for
uint num_stats_used; // count to the end of the array

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing MFQ

ﬁ} For simplicity, we recommend that you use arrays to represent
priority queues
= [t is much easier to deal with fixed-sized arrays in xv6 than
dealing with linked-lists

struct proc* gO[NPROC]; // level 1, first — 1 tick
struct proc* gl[NPROC]; // level 2, — 2 ticks
struct proc* g2[NPROC]; // level 3, last — 8 ticks

= need counters to represent queue sizes

extern struct proc* gqO[NPROC]; struct proc* qO[NPROC];
extern struct proc* gl [NPROC]; struct proc* ql[NPROC];
extern struct proc* g2[NPROC]; struct proc* g2[NPROC];
extern int c0; // count int c0 = -1;
extern int c¢l; // count int cl1 = -1;
extern int c2; // count int e¢2 = -1;

ﬁ> Can use something else like tail, front, capacity, etc.

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

MFQ Scheduler

1) numbered from 0 (highest priority) down to 2 (lowest priority)

2) when ticks, highest priority RUNNABLE process is scheduled to run

3) if more than one process on the same level, then use round robin
fashion

4) QO0: 1 timer tick, Q1: 2 timer ticks, Q2: 8 timer ticks

5) cheat: can get out before CPU increase the tick

6) when a new process arrives, it should start at priority 0 (place this
process at the end of the highest priority queue)

7) at priorities 0 and 1, after a process consumes its time-slice it should
be downgraded one priority level (whenever a process is moved to
a lower priority level, it should be placed at the end of the queue)

8) if a process wakes up after voluntarily giving up the CPU place it at
the end of the highest priority queue; it should not preempt a process
with the same priority

9) your scheduler should never preempt a lower priority process if a
higher priority process is available to run

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Visualization
) tick 1: proc 4 needs 1 tick to finish

Qo 4(1), |7(1) |8(7) |10(1) | 11(1) | 14(1)
Q1
Q2 |27©

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Visualization
) tick 2: proc 7 needs 1 tick to finish

Qo 4$))< 7(1), 8@ |10(1) | 11(1) |14(1)

Q1

Q2 27(9)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Visualization
) tick 3: proc 8 needs 7 ticks to finish, use 1 tick

Qo 4$))< 7$))< 8(7), |10(1) |11(1) |14(1)

Q1

Q2 27(9)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Visualization
) tick 4: proc 10 needs 1 tick to finish

Qo 4$J)< 7$J)< 856)< 10(1) | 11(1) | 14(1)

Q1

Q2 27(9)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Visualization
) tick 7: proc 12 needs 1 tick to finish

w (XXX [R[RR

Q1

Q2 27(9)

Copyright © William C. Cheng

Visualization

) tick 8: proc 15 needs 2 ticks to finish

Qo

Q1

Q2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

4$J)<

X

856)<

X

X

X

X

15(2)

13(2)

5(1)

8(6)

27(9)

Visualization

_ tick 10: proc 13 needs 2 ticks to finish

Qo

Q1

Q2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

4$J)<

X

856)<

X

X

X

X

X

13(2)

5(1)

8(6)

27(9)

Visualization

) tick 12: proc 5 needs 1 ticks to finish

Qo

Q1

Q2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

4$J)<

X

856)<

X

X

X

X

X

X

5(1)

8(6)

27(9)

Visualization

Introduction to Operating Systems - CSCI 350

) tick 13: proc 8 needs 6 more ticks to finish

Qo

Q1

Q2

Copyright © William C. Cheng

4$J)<

X

856)<

X

X

X

X

X

X

5$J)<

8(6)

27(9)

Visualization

Introduction to Operating Systems - CSCI 350

) tick 15: proc 27 needs 9 more ticks to finish

Qo

Q1

Q2

Copyright © William C. Cheng

4$J)<

X

856)<

X

X

X

X

X

X

5$J)<

X

27(9)

-

Visualization

) tick 23: proc 3 needs 7 ticks to finish

Qo

Q1

Q2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

4$J)<

X

856)<

X

X

G

X

X

5$J)<

T

Visualization
) tick 23: proc 3 needs 7 ticks to finish

Introduction to Operating Systems - CSCI 350

w0 [R [R[R[R
o [RTRTRXX
Q2 ?y 3(7) 2(6) 8(4) 27(1)

I

ﬁ> IMPORTANT: since these are arrays, must shuffle the entire array
to the left when removing a process from a queue

=

26

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

allocproc()

static struct proc*
allocproc (void)

{

struct proc *p;
char *sp;

acquire (&ptable.lock) ;

for (p = ptable.proc;
P < &ptable.proc[NPROC]; p++)
if (p—>state == UNUSED)
goto found;

release (&ptable.lock);
return O;

found:
// need remove p from queues if in there

}

ﬁ> You may have a reference to p in one of the 3 queues
= search for it and if found, remove it from the queue by |
shuffling left W2y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

allocproc()
) Find p and shuffle left

if (p—>pid >= 0){
for (int 1 = 0; (i < c0); i++){
if (p == qO0[i]) {
// delete gO0[i] by shifting array elements by
// one position to the left starting at index i+l1;

}
}
for (int i = 0; i < cl; i++){
// do the same thing for ql
}
for (int i = 0; i < c2; i++){
// do the same thing for gl
}

4(1) |7(1) |8@ |10(1) |11(1) |14(1) |- - i

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

allocproc()
) Ex: look for pid 10 and remove it

41) |7(1) [|8(7) (10(1) J11(1) | 14(1)

— don’t just zero out the pointer

41) |7(1) |8(7) 1% 11(1) | 14(1)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

allocproc()
) Ex: look for pid 10 and remove it

41) |7(1) [|8(7) (10(1) J11(1) | 14(1)

— don’t just zero out the pointer

41) |7(1) |8(7) 1% 11(1) | 14(1)

= shuffle left

41) |7(1) [|8(7) |11(1) |14(1) -X

size has been reduced 3
Copyright © William C. Cheng

Q don’t forget to decrement the counter since the queue (i\
0 —
=/

Introduction to Operating Systems - CSCI 350

allocproc()
) Need to initialize all the new PA4 fields
ﬁ> At the end of allocproc (), heed to add p to g0 to the end of q0

gO[cO++] = p;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

userinit ()

) Everything starts with userinit ()
= oh page 23 of the xv6 book, it says:

Code: creating the first process

Now well look at how the kernel creates user-level processes and ensures that

[hg;‘ are gtmngm 1solated

After main (1217) initializes several devices and subsystems, it creates the first pro-
cess by calling userinit (2520, Userinits first action is to call allocproc. The job

= need to reset/initialize scheduler stats at the beginning of
userinit ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

scheduler ()

I:> main () calls userinit () then calls mpmain () which invokes the
scheduler by calling scheduler ()
= oh page 25 of the xv6 book, it says:

Code: Running the first process

Now that the first processs state is prepared, it is time to_run it. After main calls
userinit, mpmain calls scheduler to start running processes (1257). Scheduler (2758)
looks for a process with p->state set to RUNNABLE, and there’s only one: initproc. It
sets the per-cpu variable proc to the process 1t found and calls switchuvm to tell the
hardware to start using the target processs page table (1879). Changing page tables

= oh the bottom of page 25 of the xv6 book, it says:

scheduler now sets p->state to RUNNING and calls swtch (3059) to perform a
context switch to the target processs kernel thread. swtch first saves the current regis-
ters. The current context is not a process but rather a special per-cpu scheduler con-

text, so scheduler tells swtch to save the current hardware registers in per-cpu stor-
age (cpu->scheduler) rather than in any processs kernel thread context. swtch then
loads the saved registers of the target kernel thread (p->context) into the x86 hard-
ware registers, including the stack pointer and instruction pointer. Well examine
swtch in more detail in Chapter 5. Lhe fAnal ret instruction (3078) pops the target
processs %eip from the stack, finishing the context switch. Now the processor is run-
ning on the kernel stack of process p.

= this is the round robin scheduler and you need to change @
it to use the MFQ scheduling policy 23\

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

scheduler ()

) The xv6 scheduler is a per-CPU process scheduler
= each CPU calls scheduler () after setting itself up

— scheduler never returns, it loops, doing:
1) choose a process to run

2) swtch () to run that process
3) eventually that process transfers control by calling either
sleep (), yield (), or exit (), which all calls swtch () to

get back to the scheduler

ﬁ> If a process calls sleep (), it would be considered that the process

is giving up the CPU volentarily
= nheed to make note of that since its crucial to MFS scheduling
= calling yield () is not considered giving up the CPU volentarily

because yield () is called in trap ()

)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

switchuvm () & switchkwvm ()

) The uin switchuvm() stands for user, the k in switchkvm ()
stands for kernel
— keep this part of code structure, need a different way to find p

void
scheduler (void)
{
struct proc *p;
struct cpu *c = mycpu();

for (;;) |

// found a RUNNABLE process p, run it
c—>proc = p;
= | switchuvm(p) ;
p—>state = RUNNING;

swtch (& (c—>scheduler), p—->context);
= | switchkvm() ;

c—>proc = 0;

}

}
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How To Modify scheduler ()

ﬁ} In the round robin scheduler, the scheduler () loops through all

Processes
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
if (p—>state != RUNNABLE)
continue;

= heed to look for a RUNNABLE process Iin g0 instead
Q if noO RUNNABLE process in q0, look in g1
Q if no RUNNABLE process in gql, look in g2

Copyright © William C. Cheng

How To Modify scheduler () - 1st Half

if g0 is not empty

// loop to find RUNNABLE process in the g0 array
if gqO[i]->state != RUNNABLE)
continue;

p = q0[i]; // found first RUNNABLE in qO
p—>sched_stats[?] .start_tick = ticks;
p—>sched_stats[?] .duration = 0O;
P—>sched_stats[?].Priority = 0;

c—->proc = p;
switchuvm (p) ;
p—>state = RUNNING;

swtch (& (c->scheduler), p->context);
switchkvm() ;

// p came back, update stats
duration = ticks - p—>sched_stats[?].start_tick;
p—>num_stats_used++;
p—>times[0]++; // number of times run in g0
p—>ticks[0] = duration; // g0 stat

// update other things in your data structures

= the above is incomplete and depends on what you have

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

How To Think About Stats

) How to time something in general?

start time = x

// do some work

// let others do their things
come back

end time =y

duration = y - x

struct sched_stat_t

{

int start_tick; //the number of ticks when this process is scheduled

int duration; //number of ticks the process is running before it

//gives up the CPU

int priority; //the priority of the process when it’s scheduled

//you may add more fields for debugging purposes

};
#endif

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Stats

I:> tick cames from proc.c PSTAT START

khkkkkkkkk

|:> prOC_>t0tal_tiCkS: number of name = CPUintensive, pid = 5

timer ticks the process has run wait time = 0
ticks = {1, 2, 8}

|:> proc—>ticks[]: number of ticks times = {1, 1, 3}

kkhkkkkkkkk

a process used the last time it start=1, duration=1, priority=0
was scheduled in each priority start=2, duration=0, priority=l

start=2, duration=0, priority=1
queue start=2, duration=0, priority=1

start=2, duration=0, priority=1

|:> proc—>times|[]: number of times start=2, duration=0, priority=1

a process was scheduled at each start=2, duration=0, priority=l
o start=2, duration=0, priority=1
priority queue start=4, duration=8, priority=2
start=12, duration=8, priority=2

duration = ticks - start_tick; PSTAT_END

p—>num_stats_used++;
p—>times[0] ++;
p—>ticks[0] = duration;
. // update other things in your data structures

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How To Modify scheduler () - 2nd Half

if g0 is not empty
// continued from a few slides back

if (p—>ticks[0] >= 1)
// move p to gl (need to increment cl)
// plus other necessary changes
gl[cl] = p // put at end of gl
g0[i] = 0 // delete p from g0
// shift all left from i in g0

boost () // boost if necessary
c—>proc = 0 // reset the CPU

= the above is incomplete and depends on what you have

Copyright © William C. Cheng

Q1

if gl is not empty

// loop to find RUNNABLE process in the gl array
if gl[i]->state != RUNNABLE)
continue;

p = gql[il; // found first RUNNABLE in ql

c—->proc = p;
switchuvm (p) ;
p—>state = RUNNING;

swtch (& (c—->scheduler), p->context);
switchkvm() ;

// p came back, update stats
duration = ticks - start_tick;
p—>num_stats_used++;
p—>times[1]++; // number of times run in g0
p—>ticks[1l] = duration; // gl stat

// update other things in your data structures

= the above is incomplete and depends on what you have

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Q1 - 2nd Half

if gl is not empty
// continued from previous slide

if (p—>ticks[1l] >= 2)
// move p to g2 (need to increment c2)
// other necessary changes
g2[c2] = p // put at end of g2
gl[i] = 0 // delete p from gl
// shift all left from i in ql

boost () // boost if necessary
c—>proc = 0 // reset the CPU

= the above is incomplete and depends on what you have

Copyright © William C. Cheng

Q2

if g2 is not empty

// loop to find RUNNABLE process in the gl array
if g2[i]->state != RUNNABLE)
continue;

p = g2[i]l; // found first RUNNABLE in ql

c—->proc = p;
switchuvm (p) ;
p—>state = RUNNING;

swtch (& (c—->scheduler), p->context);
switchkvm() ;

// p came back, update stats
duration = ticks - start_tick;
p—>num_stats_used++;
p—>times[2]++; // number of times run in g0
p—>ticks[2] = duration; // gl stat

// update other things in your data structures

= the above is incomplete and depends on what you have

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Q2 - 2nd Half

if g2 is not empty
// continued from previous slide

if (p—>ticks[2] >= 8)
// increment c2
// shift all left from i in g2
g2[c2] = p // put at end of g2

boost () // boost if necessary
c—>proc = 0 // reset the CPU

= the above is incomplete and depends on what you have

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

boost ()

) You need to implement the priority boosting mechanism which will
be used to increase a priority of a process that has not been
scheduled in a while
= the goal is to avoid starvation, which happens when a process

never receives CPU time because higher-priority processes keep
arriving

ﬁ} After a RUNNABLE process has been waiting in the lowest priority
queue for 50 ticks or more, move the process to the end of the
highest priority queue

> This method of priority boosting is called aging

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

boost ()

) wait_time: number of ticks since the process last run

= if any of the processes in g2 has wait_time > 50, boost its
priority and move it to the end of g0

P = p_to_boost

change priority of p

cO++;

q0[c0] = p

delete p from g2 and shift left

= please note that as far as grading goes, it’s acceptable to
boost a process in g1 having wait_time > 50

Copyright © William C. Cheng

getpinfo ()

I:> int getpinfo(int pid)

Introduction to Operating Systems - CSCI 350

= this is a system call, make sure to define it in syscall .h,
syscall.c, user.h, usys.S, and sysproc.c

= defineitin proc.h

PSTAT_START =

% % % J %k kK <

name = CPUintensive, pid = 5
=g wait time = 0

we will n
€ ot ticks = {1, 2, 8}

these are the exact
strings you must use
because they are

gradethese_> times = {1, 1, 3}
% % % % & K kK =
start=1, duration=1, priority=0
start=2, duration=0, priority=1
start=2, duration=0, priority=1
start=2, duration=0, priority=1
start=2, duration=0, priority=1
start=2, duration=0, priority=1
start=2, duration=0, priority=1
start=2, duration=0, priority=1
start=4, duration=8, priority=2
start=12, duration=8, priority=2

important delimeters

PSTAT_END -

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

getpinfo ()

getpinfo (int pid):

get lock
get current process
loop through all processes in ptable to find pid
if not found
release lock
return -1
cprintf:
PSTAT_START
khkkhkkkkkk*k
proc—>name
proc—>wait_time
proc—>ticks[0],ticks[1l],ticks[2]
proc—>times[0] ,times[1l],times[2]
kkkhkkkkkk*k
for each stat (until num_stats)
if item wvalid in sched_stats
cprintf: start_tick, duration, priority
cprintf
PSTAT_END
release lock
return 0O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Timer Interrupt

) The XV6 timer ticks every 10ms
= timer interrupt code in trap () :

if (myproc() && myproc () —>state == RUNNING &&
tf->trapno == T_IRQO+IRQ_TIMER)
yield();

Q the above is the round robin scheduler
& ticks (global variable) is increment in trap ()

_, What to do for the MFQ scheduler:

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Timer Interrupt

_, For the MFQ scheduler
= |et current_stat be the last entry in the sched_stats of the

running process
= let num_ticks be the number of ticks experienced by the current

process
num_ticks = ticks - current_stat.start_tick
= call yield () if:
Q the priority of the running process is 0 and num_ticks > 1
Q the priority of the running process is 1 and num_ticks > 2
Q the priority of the running process is 2 and num_ticks > 8

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 3: Write Test Programs

_) Three tests
= pad-mixed.c: a mix of I/O intensive and CPU intensive
processes
— pad-aging.c: demonstrate that you have implemented aging
= pad-cheat . c: demonstrate that a program can cheat to always
run at highest priority

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

pad—-mixed

pad—-mixed:

pid = fork()
if (pid > 0)
io_intensive (num_ios);
wait ()
getpinfo (getpid())
exit ()
else
cpu_intensive (num_millions);
getpinfo (getpid())
exit ()
end—-if

Copyright © William C. Cheng

r

= try different values of num_ios and
num_millions

= total running time should be less than
100 ticks

Introduction to Operating Systems - CSCI 350

pad—-mixed

_, What’s an I/O intensive job?
= sit in a tight loop calling print£ (99)

static void io_intensive (int num_itr)
{
for (int 1 = 0; i < num_itr; i++) {
print£ (99, "\n");
}
}

= play with num_itr to control the running time

—, What's a CPU intensive job?
= sit in a tight loop to increment an integer for millions of times
= Cah use a volatile long long integer to slow things down

static void cpu_intensive (int num _millions)

{

volatile unsigned long long k = O;
for (int i = 0; i < num_millions*1000000; i++) ({
k++;

}
}

—= play with num_millions to control the running time
Copyright © William C. Cheng

pad—-aging

pad4d—-aging:

pid = fork()
if (pid > 0) then
for (i = 0; i < 10; i++)
if (fork() == 0) then
cpu_intensive (num) ;
getpinfo (getpid());
exit();
end-if
end-for
cpu_intensive (num) ;
for (i = 0; i < 11; i++)
wait ()
end-for
getpinfo (getpid());
exit ()
else
cpu_intensive (num) ;
getpinfo (getpid());
exit ()
end-if

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

= try different values of num

= important to see that for at least one
process, the priority would change
from 2 to O for at least once

= total running time should be less than
500 ticks (remember that you can only
keep track of up to 1500 stats)

Introduction to Operating Systems - CSCI 350

pad—-cheat
(
pad-cheat: = important to see that the child
process always run with priority=0
pid = fork() = child process must be scheduled to
run for at least 30 times
if (pid > 0) = don’t do anything else in the child
wait () (such as calling print£())
exit () L

else
do the following 30 times
sleep (1)
getpinfo (getpid())
exit ()

ﬁ} Since sleep (1) is considered giving up the CPU, the child should
always run with highest priority (which can be seen from the
getpinfo () printout
= make sure your have modified sleep () to indicate that you

have given up the CPU before sleep () calls sched ()

ﬁ} Your child process must call sleep (1) for at least 30 times
29

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 4: Graphing Results
) Use excel or python - matplotlib

ﬁ> This is just an example it is not guaranteed that it works:
https://github.com/joshmin98/auto-graph-project3/

= it won’t run on the = PSTAT_START

"Standard" SyStem % % %k ok kk ok ok
= you can create a transcript nsme = CPUintensive, pid =5
. wait time = 0
using the "script” program ticks = {1, 2, 8}
then process the times = {1, 1, 3}
* k kkkkkkk
"transcript" file start=1, duration=1l, priority=0
Q do "man script" start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=4, duration=8, priority=2

start=12, duration=8, priority=2
= PSTAT END

@

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 4: Graphing Results

_) Ex: running pad-mixed

PSTAT_START
Kk ko dd ok kk ok

PSTAT_START
% % ke k kK

name = pad-mixed, pid = 3 name = pad-mixed, pid = 4

wait time = 0 wait time = 0

ticks = {1, 2, 4} ticks = {1, 2, 8}

times = {7, 1, 3} times = {1, 1, 7}

yield count = 4 yield count = 9

willing yields count = 7 willing yields count = 0

wait count = 0 wait count = 0

kkkkkkkk*k %k Kk kkkkkkk

start=203, duration=0, priority=0 start=207, duration=1, priority=0
start=204, duration=0, priority=0 start=208, duration=2, priority=1
start=204, duration=0, priority=0 start=218, duration=8, priority=2
start=204, duration=0, priority=0 start=234, duration=8, priority=2
start=204, duration=0, priority=0 start=246, duration=8, priority=2
start=204, duration=0, priority=0 start=254, duration=8, priority=2
start=204, duration=1, priority=0 start=262, duration=8, priority=2
start=205, duration=2, priority=1 start=270, duration=8, priority=2
start=210, duration=8, priority=2 start=278, duration=8, priority=2
start=226, duration=8, priority=2 PSTAT_END

start=242, duration=4, priority=2

PSTAT_END

Copyright © William C.

Cheng

Introduction to Operating Systems - CSCI 350

Part 4: Graphing Results

Qo
Q1
200 210 220 230 240 250 260 270 280 ticks
Timeline graph for pa4-mixed (pid=3)
Qo
Q1

200 210 220 230 240 250 260 270 280 ticks

Timeline graph for pa4-mixed (pid=4) 34

58

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 4: Graphing Results
) Need to submit the following files:

pa4—mixed.c pad—-mixed.out
pad-mixed-parent .pdf pad-mixed-child.pdf

pad—-aging.c pad—-aging.out pad-aging.pdf

pad4—-cheat.c pad—-cheat.out

= pad-*.out: transcript of running the corresponding pa4-*
program

= pad4-mixed-parent.pdf and pa4-mixed-child.pdf: see
previoius slide

— pad-aging.pd£: graph the timeline of one of the processes
that’s showing that it was boosted

Copyright © William C. Cheng

