
CS 350

PA4: MFQ

Scheduler

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Based on slides created by Kivilcim Cumbul

Implement a basic non-preemptive MFQ (Multilevel Feedback

Queue)

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PA4

changes in "proc.c", "proc.h", "trap.c"

Create timeline graphs

Add a new system call to get information about a running process

int getpinfo(pid)

Design tests to demonstrate the correctness of your scheduler

"pa4-mixed.c", "pa4-aging.c", "pa4-cheat.c"

CPUS := 1

cd ~/cs350

mkdir pa4

cd pa4

wget --user=USERNAME --password=PASSWORD \

 http://merlot.usc.edu/cs350-m25/programming/pa4/xv6-pa4-src.tar.gz

tar xvf xv6-pa4-src.tar.gz

cd xv6-pa4-src

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Preparation

Read Ch 5 of the xv6 book

Download xv6 for PA4

open a terminal and type the following

make sure you choose 1 CPU in your VM

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Submission

pwd

cd ~/cs350/pa4/xv6-pa4-src

make -n pa4-submit

open a terminal and type the following:

Which files do you need to modify?

you should see:

tar cvzf pa4-submit.tar.gz \

 Makefile \

 pa4-README.txt \

 proc.c proc.h \

 trap.c \

 syscall.c syscall.h \

 sysproc.c \

 defs.h \

 pstat.h stat.h \

 user.h \

 usys.S \

 pa4-mixed.c pa4-mixed.out \

 pa4-mixed-parent.pdf pa4-mixed-child.pdf \

 pa4-aging.c pa4-aging.out pa4-aging.pdf \

 pa4-cheat.c pa4-cheat.out

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: MFQ Scheduler

"proc.c", "proc.h", "trap.c"

In this project, you’ll implement a simplified Multi-level Feedback

Queue (MFQ) scheduler in xv6

Read Ch 5 of the xv6 book

The default and only scheduling policy in xv6 is round robin, and

we will change it

In this project, you’ll implement a simplified Multi-level Feedback

Queue (MFQ) scheduler in xv6

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

XV6 Scheduler

Kernel

User

shell cat

kstack kstack

shell scheduler

swtch() kstack

cat

swtch()

save restore

ticks = 1

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Default XV6 Scheduler: Round Robin

Conceptually:

- - -

ticks = 2

ticks = 3

ticks = 4

ticks = 5

ticks = 6

4(2) 7(4) 8(7) 10(1) 11(3) 14(6)

- - -4(1)7(4) 8(7) 10(1) 11(3) 14(6)

4(1)8(7) 10(1) 11(3) 14(6) 7(3) - - -

- - -

- - -

- - -

4(1)10(1) 11(3) 14(6) 7(3) 8(6)

4(1)11(3) 14(6) 7(3) 8(6) -

-4(1)14(6) 7(3) 8(6) 11(2)

a tick is 10ms

we don’t know how

long a process needs

to run

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

New XV6 Scheduler: MFQ

Conceptually:

Q0 (high)
4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

12(1) 15(2) 13(2) 5(1) - - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2 (low)

if Q0 is not empty, serve Q0 round robin style

if Q0 is empty and Q1 is not empty, serve Q1 round robin style

(each process gets 2 ticks at a time)

if Q0 and Q1 are empty and Q2 is not empty, serve Q2 round

robin style (each process gets 8 ticks at a time)

downgrade a process if it doesn’t give up the CPU volentarily

downgrade a process if it doesn’t give up the CPU volentarily

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

pstat.h

#ifndef _PSTAT_H_

#define _PSTAT_H_

#define NTICKS 500

/* NSCHEDSTATS is the number of sched_stat_t slots per process.

 The scheduler fills in the slots as it schedules processes

 to record information about scheduling */

#define NSCHEDSTATS 1500

/*

 * responsible for recording the scheduling state per process

 * at a particular tick

 * e.g. a process can have an array of sched_stat_t’s, with each

 * of them holding the info of a scheduling round of the process

 */

struct sched_stat_t

{

 int start_tick; //the number of ticks when this process is scheduled

 int duration; //number of ticks the process is running before it

 //gives up the CPU

 int priority; //the priority of the process when it’s scheduled

 //you may add more fields for debugging purposes

};

#endif

don’t forget to:
#include "pstat.h"

in "proc.c"

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

proc.h

int times[3]; // number of times each process was scheduled at

 // each of 3 priority queues

int ticks[3]; // number of ticks each process used the last time

 // it was scheduled in each priority queue

 // cannot be greater than the time-slice for each queue

uint wait_time; // number of ticks each RUNNABLE process waited

 // in the lowest priority queue

// schedule stats for each tick

struct sched_stat_t sched_stats[NSCHEDSTATS];

Inside struct proc

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Use Them?

proc->times[0]

proc->times[1]

proc->times[2]

proc->ticks[0]

proc->ticks[1]

proc->ticks[2]

proc->wait_time

In struct proc

proc->sched_stat_t[pid].start_tick

proc->sched_stat_t[pid].duration

proc->sched_stat_t[pid].priority

In struct sched_stat_t

need to print these when printing stats

these are important stats of your process

int total_ticks; // total number of timer ticks the process

 // has run for

uint num_stats_used; // count to the end of the array

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

proc.h Additional Variables

some examples for struct proc

You may define as many variables as you want into struct proc

or struct sched_stats_t

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing MFQ

it is much easier to deal with fixed-sized arrays in xv6 than

dealing with linked-lists

For simplicity, we recommend that you use arrays to represent

priority queues

struct proc* q0[NPROC]; // level 1, first → 1 tick

struct proc* q1[NPROC]; // level 2, → 2 ticks

struct proc* q2[NPROC]; // level 3, last → 8 ticks

extern struct proc* q0[NPROC];

extern struct proc* q1[NPROC];

extern struct proc* q2[NPROC];

extern int c0; // count

extern int c1; // count

extern int c2; // count

proc.h

struct proc* q0[NPROC];

struct proc* q1[NPROC];

struct proc* q2[NPROC];

int c0 = -1;

int c1 = -1;

int c2 = -1;

proc.c

Can use something else like tail, front, capacity, etc.

need counters to represent queue sizes

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

MFQ Scheduler

numbered from 0 (highest priority) down to 2 (lowest priority)1)

when ticks, highest priority RUNNABLE process is scheduled to run2)

if more than one process on the same level, then use round robin

fashion

3)

Q0: 1 timer tick, Q1: 2 timer ticks, Q2: 8 timer ticks4)

cheat: can get out before CPU increase the tick5)

when a new process arrives, it should start at priority 0 (place this

process at the end of the highest priority queue)

6)

at priorities 0 and 1, after a process consumes its time-slice it should

be downgraded one priority level (whenever a process is moved to

a lower priority level, it should be placed at the end of the queue)

7)

if a process wakes up after voluntarily giving up the CPU place it at

the end of the highest priority queue; it should not preempt a process

with the same priority

8)

your scheduler should never preempt a lower priority process if a

higher priority process is available to run

9)

Q0
4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

12(1) 15(2) 13(2) 5(1) - - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 1: proc 4 needs 1 tick to finish

Q0
4(0) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

12(1) 15(2) 13(2) 5(1) - - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 2: proc 7 needs 1 tick to finish

Q0
4(0) 7(0) 8(7) 10(1) 11(1) 14(1) - - -

12(1) 15(2) 13(2) 5(1) - - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 3: proc 8 needs 7 ticks to finish, use 1 tick

Q0
4(0) 7(0) 8(6) 10(1) 11(1) 14(1) - - -

12(1) 15(2) 13(2) 5(1) 8(6) - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 4: proc 10 needs 1 tick to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(1) 15(2) 13(2) 5(1) 8(6) - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 7: proc 12 needs 1 tick to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(2) 13(2) 5(1) 8(6) - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 8: proc 15 needs 2 ticks to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(0) 13(2) 5(1) 8(6) - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 10: proc 13 needs 2 ticks to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(0) 13(0) 5(1) 8(6) - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 12: proc 5 needs 1 ticks to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(0) 13(0) 5(0) 8(6) - - - -

27(9) 3(7) 2(6) - - - - - -

Q1

Q2

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 13: proc 8 needs 6 more ticks to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(0) 13(0) 5(0) 8(4) - - - -

27(9) 3(7) 2(6) 8(4) - - - - -

Q1

Q2

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 15: proc 27 needs 9 more ticks to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(0) 13(0) 5(0) 8(4) - - - -

27(1) 3(7) 2(6) 8(4) 27(1) - - - -

Q1

Q2

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

tick 23: proc 3 needs 7 ticks to finish

tick 23: proc 3 needs 7 ticks to finish

Q0
4(0) 7(0) 8(6) 10(0) 11(0) 14(0) - - -

12(0) 15(0) 13(0) 5(0) 8(4) - - - -

27(1) 3(7) 2(6) 8(4) 27(1) - - - -

Q1

Q2

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Visualization

IMPORTANT: since these are arrays, must shuffle the entire array

to the left when removing a process from a queue

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

allocproc()

search for it and if found, remove it from the queue by

shuffling left

You may have a reference to p in one of the 3 queues

static struct proc*

allocproc(void)

{

 struct proc *p;

 char *sp;

 acquire(&ptable.lock);

 for(p = ptable.proc;

 p < &ptable.proc[NPROC]; p++)

 if(p->state == UNUSED)

 goto found;

 release(&ptable.lock);

 return 0;

found:

 // need remove p from queues if in there

 ...

}

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

allocproc()

if (p->pid >= 0){

 for (int i = 0; (i < c0); i++){

 if (p == q0[i]){

 // delete q0[i] by shifting array elements by

 // one position to the left starting at index i+1;

 }

 }

 for (int i = 0; i < c1; i++){

 // do the same thing for q1

 }

 for (int i = 0; i < c2; i++){

 // do the same thing for q1

 }

}

Find p and shuffle left

4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

allocproc()

Ex: look for pid 10 and remove it

4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

don’t just zero out the pointer

4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

don’t just zero out the pointer

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

allocproc()

Ex: look for pid 10 and remove it

4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

4(1) 7(1) 8(7) 10(1) 11(1) 14(1) - - -

shuffle left

4(1) 7(1) 8(7) 11(1) 14(1) - - - -

don’t forget to decrement the counter since the queue

size has been reduced

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

allocproc()

Need to initialize all the new PA4 fields

q0[c0++] = p;

At the end of allocproc(), need to add p to q0 to the end of q0

need to reset/initialize scheduler stats at the beginning of
userinit()

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

userinit()

Everything starts with userinit()

on page 23 of the xv6 book, it says:

on the bottom of page 25 of the xv6 book, it says:

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

scheduler()

main() calls userinit() then calls mpmain() which invokes the

scheduler by calling scheduler()

on page 25 of the xv6 book, it says:

this is the round robin scheduler and you need to change

it to use the MFQ scheduling policy

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

scheduler()

The xv6 scheduler is a per-CPU process scheduler

each CPU calls scheduler() after setting itself up

scheduler never returns, it loops, doing:

1) choose a process to run

2) swtch() to run that process

3) eventually that process transfers control by calling either

sleep(), yield(), or exit(), which all calls swtch() to

get back to the scheduler

If a process calls sleep(), it would be considered that the process

is giving up the CPU volentarily

need to make note of that since its crucial to MFS scheduling

calling yield() is not considered giving up the CPU volentarily

because yield() is called in trap()

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

switchuvm() & switchkvm()

The u in switchuvm() stands for user, the k in switchkvm()

stands for kernel

keep this part of code structure, need a different way to find p

void

scheduler(void)

{

 struct proc *p;

 struct cpu *c = mycpu();

 ...

 for (;;) {

 ...

 // found a RUNNABLE process p, run it

 c->proc = 0;

 ...

 }

}

 c->proc = p;

 switchuvm(p);

 p->state = RUNNING;

 swtch(&(c->scheduler), p->context);

 switchkvm();

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Modify scheduler()

In the round robin scheduler, the scheduler() loops through all

processes

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

 if(p->state != RUNNABLE)

 continue;

need to look for a RUNNABLE process in q0 instead

if no RUNNABLE process in q0, look in q1

if no RUNNABLE process in q1, look in q2

the above is incomplete and depends on what you have
0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Modify scheduler() - 1st Half

if q0 is not empty

 // loop to find RUNNABLE process in the q0 array

 if q0[i]->state != RUNNABLE)

 continue;

 p = q0[i]; // found first RUNNABLE in q0

 p->sched_stats[?].start_tick = ticks;

 p->sched_stats[?].duration = 0;

 p->sched_stats[?].priority = 0;

 c->proc = p;

 switchuvm(p);

 p->state = RUNNING;

 swtch(&(c->scheduler), p->context);

 switchkvm();

 // p came back, update stats

 duration = ticks - p->sched_stats[?].start_tick;

 p->num_stats_used++;

 p->times[0]++; // number of times run in q0

 p->ticks[0] = duration; // q0 stat

 ... // update other things in your data structures

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Think About Stats

How to time something in general?

start time = x

// do some work

// let others do their things

come back

end time = y

duration = y - x

struct sched_stat_t

{

 int start_tick; //the number of ticks when this process is scheduled

 int duration; //number of ticks the process is running before it

 //gives up the CPU

 int priority; //the priority of the process when it’s scheduled

 //you may add more fields for debugging purposes

};

#endif

proc->times[]: number of times

a process was scheduled at each

priority queue

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Stats

tick cames from proc.c

proc->total_ticks: number of

timer ticks the process has run

proc->ticks[]: number of ticks

a process used the last time it

was scheduled in each priority

queue

duration = ticks - start_tick;

p->num_stats_used++;

p->times[0]++;

p->ticks[0] = duration;

... // update other things in your data structures

PSTAT_START

name = CPUintensive, pid = 5

wait time = 0

ticks = {1, 2, 8}

times = {1, 1, 3}

start=1, duration=1, priority=0

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=4, duration=8, priority=2

start=12, duration=8, priority=2

PSTAT_END

the above is incomplete and depends on what you have

if q0 is not empty

 // continued from a few slides back

 if (p->ticks[0] >= 1)

 // move p to q1 (need to increment c1)

 // plus other necessary changes

 q1[c1] = p // put at end of q1

 q0[i] = 0 // delete p from q0

 // shift all left from i in q0

 ...

boost() // boost if necessary

c->proc = 0 // reset the CPU

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Modify scheduler() - 2nd Half

if q1 is not empty

 // loop to find RUNNABLE process in the q1 array

 if q1[i]->state != RUNNABLE)

 continue;

 p = q1[i]; // found first RUNNABLE in q1

 ...

 c->proc = p;

 switchuvm(p);

 p->state = RUNNING;

 swtch(&(c->scheduler), p->context);

 switchkvm();

 // p came back, update stats

 duration = ticks - start_tick;

 p->num_stats_used++;

 p->times[1]++; // number of times run in q0

 p->ticks[1] = duration; // q1 stat

 ... // update other things in your data structures

the above is incomplete and depends on what you have

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Q1

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Q1 - 2nd Half

if q1 is not empty

 // continued from previous slide

 if (p->ticks[1] >= 2)

 // move p to q2 (need to increment c2)

 // other necessary changes

 q2[c2] = p // put at end of q2

 q1[i] = 0 // delete p from q1

 // shift all left from i in q1

 ...

boost() // boost if necessary

c->proc = 0 // reset the CPU

the above is incomplete and depends on what you have

if q2 is not empty

 // loop to find RUNNABLE process in the q1 array

 if q2[i]->state != RUNNABLE)

 continue;

 p = q2[i]; // found first RUNNABLE in q1

 ...

 c->proc = p;

 switchuvm(p);

 p->state = RUNNING;

 swtch(&(c->scheduler), p->context);

 switchkvm();

 // p came back, update stats

 duration = ticks - start_tick;

 p->num_stats_used++;

 p->times[2]++; // number of times run in q0

 p->ticks[2] = duration; // q1 stat

 ... // update other things in your data structures

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Q2

the above is incomplete and depends on what you have

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Q2 - 2nd Half

if q2 is not empty

 // continued from previous slide

 if (p->ticks[2] >= 8)

 // increment c2

 // shift all left from i in q2

 q2[c2] = p // put at end of q2

 ...

boost() // boost if necessary

c->proc = 0 // reset the CPU

the above is incomplete and depends on what you have

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

boost()

the goal is to avoid starvation, which happens when a process

never receives CPU time because higher-priority processes keep

arriving

You need to implement the priority boosting mechanism which will

be used to increase a priority of a process that has not been

scheduled in a while

After a RUNNABLE process has been waiting in the lowest priority

queue for 50 ticks or more, move the process to the end of the

highest priority queue

This method of priority boosting is called aging

if any of the processes in q2 has wait_time > 50, boost its

priority and move it to the end of q0

wait_time: number of ticks since the process last run

p = p_to_boost

change priority of p

c0++;

q0[c0] = p

delete p from q2 and shift left

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

boost()

please note that as far as grading goes, it’s acceptable to

boost a process in q1 having wait_time > 50

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

getpinfo()

this is a system call, make sure to define it in syscall.h,

syscall.c, user.h, usys.S, and sysproc.c

int getpinfo(int pid)

define it in proc.h

PSTAT_START

name = CPUintensive, pid = 5

wait time = 0

ticks = {1, 2, 8}

times = {1, 1, 3}

start=1, duration=1, priority=0

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=4, duration=8, priority=2

start=12, duration=8, priority=2

PSTAT_END

these are the exact

strings you must use

because they are

important delimeters

we will not

grade these

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

getpinfo()

getpinfo(int pid):

 get lock

 get current process

 loop through all processes in ptable to find pid

 if not found

 release lock

 return -1

 cprintf:

 PSTAT_START

 proc->name

 proc->wait_time

 proc->ticks[0],ticks[1],ticks[2]

 proc->times[0],times[1],times[2]

 for each stat (until num_stats)

 if item valid in sched_stats

 cprintf: start_tick, duration, priority

 cprintf

 PSTAT_END

 release lock

 return 0

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Timer Interrupt

timer interrupt code in trap():

The XV6 timer ticks every 10ms

if(myproc() && myproc()->state == RUNNING &&

 tf->trapno == T_IRQ0+IRQ_TIMER)

 yield();

the above is the round robin scheduler

What to do for the MFQ scheduler:

ticks (global variable) is increment in trap()

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Timer Interrupt

let current_stat be the last entry in the sched_stats of the

running process

For the MFQ scheduler

num_ticks = ticks - current_stat.start_tick

let num_ticks be the number of ticks experienced by the current

process

call yield() if:

the priority of the running process is 0 and num_ticks ≥ 1

the priority of the running process is 1 and num_ticks ≥ 2

the priority of the running process is 2 and num_ticks ≥ 8

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 3: Write Test Programs

pa4-mixed.c: a mix of I/O intensive and CPU intensive

processes

Three tests

pa4-aging.c: demonstrate that you have implemented aging

pa4-cheat.c: demonstrate that a program can cheat to always

run at highest priority

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

pa4-mixed

pa4-mixed:

 pid = fork()

 if (pid > 0)

 io_intensive(num_ios);

 wait()

 getpinfo(getpid())

 exit()

 else

 cpu_intensive(num_millions);

 getpinfo(getpid())

 exit()

 end-if

try different values of num_ios and
num_millions

total running time should be less than

100 ticks

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

pa4-mixed

sit in a tight loop calling printf(99)

What’s an I/O intensive job?

sit in a tight loop to increment an integer for millions of times

What’s a CPU intensive job?

can use a volatile long long integer to slow things down

static void cpu_intensive(int num_millions)

{

 volatile unsigned long long k = 0;

 for (int i = 0; i < num_millions*1000000; i++) {

 k++;

 }

}

static void io_intensive(int num_itr)

{

 for (int i = 0; i < num_itr; i++) {

 printf(99, "\n");

 }

}

play with num_itr to control the running time

play with num_millions to control the running time

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

pa4-aging

pa4-aging:

 pid = fork()

 if (pid > 0) then

 for (i = 0; i < 10; i++)

 if (fork() == 0) then

 cpu_intensive(num);

 getpinfo(getpid());

 exit();

 end-if

 end-for

 cpu_intensive(num);

 for (i = 0; i < 11; i++)

 wait()

 end-for

 getpinfo(getpid());

 exit()

 else

 cpu_intensive(num);

 getpinfo(getpid());

 exit()

 end-if

try different values of num

important to see that for at least one

process, the priority would change

from 2 to 0 for at least once

total running time should be less than

500 ticks (remember that you can only

keep track of up to 1500 stats)

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

pa4-cheat

pa4-cheat:

 pid = fork()

 if (pid > 0)

 wait()

 exit()

 else

 do the following 30 times

 sleep(1)

 getpinfo(getpid())

 exit()

Since sleep(1) is considered giving up the CPU, the child should

always run with highest priority (which can be seen from the

getpinfo() printout

make sure your have modified sleep() to indicate that you

have given up the CPU before sleep() calls sched()

Your child process must call sleep(1) for at least 30 times

important to see that the child

process always run with priority=0

child process must be scheduled to

run for at least 30 times

don’t do anything else in the child

(such as calling printf())

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 4: Graphing Results

Use excel or python - matplotlib

This is just an example it is not guaranteed that it works:

https://github.com/joshmin98/auto-graph-project3/

PSTAT_START

name = CPUintensive, pid = 5

wait time = 0

ticks = {1, 2, 8}

times = {1, 1, 3}

start=1, duration=1, priority=0

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=2, duration=0, priority=1

start=4, duration=8, priority=2

start=12, duration=8, priority=2

PSTAT_END

you can create a transcript

using the "script" program

then process the

"transcript" file

do "man script"

it won’t run on the

"standard" system

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 4: Graphing Results

Ex: running pa4-mixed

PSTAT_START

name = pa4-mixed, pid = 3

wait time = 0

ticks = {1, 2, 4}

times = {7, 1, 3}

yield count = 4

willing yields count = 7

wait count = 0

start=203, duration=0, priority=0

start=204, duration=0, priority=0

start=204, duration=0, priority=0

start=204, duration=0, priority=0

start=204, duration=0, priority=0

start=204, duration=0, priority=0

start=204, duration=1, priority=0

start=205, duration=2, priority=1

start=210, duration=8, priority=2

start=226, duration=8, priority=2

start=242, duration=4, priority=2

PSTAT_END

PSTAT_START

name = pa4-mixed, pid = 4

wait time = 0

ticks = {1, 2, 8}

times = {1, 1, 7}

yield count = 9

willing yields count = 0

wait count = 0

start=207, duration=1, priority=0

start=208, duration=2, priority=1

start=218, duration=8, priority=2

start=234, duration=8, priority=2

start=246, duration=8, priority=2

start=254, duration=8, priority=2

start=262, duration=8, priority=2

start=270, duration=8, priority=2

start=278, duration=8, priority=2

PSTAT_END

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 4: Graphing Results

200 210 220 230 240 250 260 270 280 ticks

Q0

Q1

Q2

Timeline graph for pa4-mixed (pid=3)

200 210 220 230 240 250 260 270 280 ticks

Q0

Q1

Q2

Timeline graph for pa4-mixed (pid=4)

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 4: Graphing Results

Need to submit the following files:

pa4-mixed.c pa4-mixed.out

pa4-mixed-parent.pdf pa4-mixed-child.pdf

pa4-aging.c pa4-aging.out pa4-aging.pdf

pa4-cheat.c pa4-cheat.out

pa4-*.out: transcript of running the corresponding pa4-*

program

pa4-mixed-parent.pdf and pa4-mixed-child.pdf: see

previoius slide

pa4-aging.pdf: graph the timeline of one of the processes

that’s showing that it was boosted

