
CS 350

PA3: Mutex &

Condition Variable

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Based on slides created by Kivilcim Cumbul

Start with your PA2 code (no separate starter code will be provided)

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PA3

PA3 only makes sense if you have multithreading

kthread_mutex_alloc(), kthread_mutex_dealloc(),

kthread_mutex_lock(), kthread_mutex_unlock()

Part 2 - implement mutex functions

Part 1 - preparation

reading code and documentation

if your PA2 code is not working, you will not be able to pass

any of the PA3 tests and you will end up with a very low score

cd

mkdir cs350/pa3

mkdir cs350/pa3/xv6-pa3-src

cd cs350/pa3/xv6-pa3-src

cp ../../pa2/xv6-pa2-src/* .

rm -f pa2-submit.tar.gz

make clean

no condition variables!

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Submission

pwd

cd ~/cs350/pa3/xv6-pa3-src

make -n pa3-submit

open a terminal and type the following:

Which files do you need to modify?

you should see:

tar cvzf pa3-submit.tar.gz \

 Makefile \

 pa3-README.txt \

 proc.c \

 proc.h \

 syscall.c \

 sysproc.c \

 kthread.h \

 exec.c

these are the only files are are supposed to submit

if you submit additional files, the grader will have to delete

them before grading

if you submit binary files, points will be deducted

some files may be the same as in your PA2 submission

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Preparation

Read POSIX Threads Programming tutorial by Blaise Barney from

Lawrence Livermore National Laboratory

Read the spinlock code in XV6

pthread_mutex_lock(), pthread_mutex_unlock()

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Implement Mutex Functions

kthread_mutex_alloc(), kthread_mutex_dealloc(),

kthread_mutex_lock(), kthread_mutex_unlock()

Implement mutex API for kernel

you will implement these functions in "proc.c" and add the

following to "kthread.h"

#define MAX_MUTEXES 64

int kthread_mutex_alloc();

int kthread_mutex_dealloc(int mutex_id);

int kthread_mutex_lock(int mutex_id);

int kthread_mutex_unlock(int mutex_id);

unless otherwise specified, we use the term lock and mutex

interchangeably (although in general, a lock may allow multiple

threads to have concurrent access to a resource)

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Changes In "proc.h"

Mutex data structures

what are the possible mutex states?

enum mutexstate { MUNUSED, MLOCKED, MUNLOCKED };

what should go into a mutex struct?

int mid; // unique mutex ID ≥ 1

enum mutexstate;

at a minimum:

Changes In "proc.c"

Similar to ptable, we need a mtable

Need a global variable to know what mutex ID to return next

int nextmid = 1;

must never reuse a mutex ID

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_alloc()

should return the ID of the initialized mutex, or -1 upon failure

Allocates a mutex object and initializes it; the initial state should be

unlocked

Something like the following:

for(m = mtable.mutex; && m < &mtable.mutex[MAX_MUTEXES]; Mp++) {

 ...

}

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Looping Through Mutex Table

Or:

for(i = 0; i < MAX_MUTEXES; i++) {

 m = &mtable.mutex[i];

 ...

}

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_alloc()

kthread_mutex_alloc():

 create a mutex pointer m (using struct in "proc.h")

 Loop through mutex table

 if m is unused

 m->mutex_id = nextmid++;

 m->state = MUNLOCKED;

 initialize all other values if needed

 if m == &mtable.mutex[MAX_MUTEXES]

 return -1

 else

 return m->mutex_id

Note: the above is not the only way to implement mutex allocation

also, this is not a complete pseudocode

you have to add locks if necessary

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_dealloc()

De-allocates a mutex object which is no longer needed

the function should return 0 upon success and -1 upon failure

if the given mutex is currently locked, this function should

return -1

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_dealloc()

kthread_mutex_dealloc(int mutex_id):

 create a mutex pointer m (using struct in "proc.h")

 loop through mutex table to find given mutex_id

 if m is locked

 return -1

 if not found

 return -1

 else

 m->mid = 0

 m->state = MUNUSED

 zero out all the other values if needed

 return 0

Note: the above is not the only way to implement mutex

deallocation

also, this is not a complete pseudocode

you have to add locks if necessary

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_lock()

This function is used by a thread to lock the mutex specified by

the argument mutex_id

if the mutex is already locked by another thread, this call will

block the calling thread (change the thread state to TBLOCKED)

until the mutex is unlocked

you may add a TBLOCKED state in "proc.h" if you’d like

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_lock()

kthread_mutex_lock(int mutex_id):

 create a mutex pointer m (using struct in "proc.h")

 loop through mutex table to find the target mutex id (parameter)

 if m->mid == mutex_id

 break;

 if not found

 return -1

 while (m->state == MLOCKED)

 sleep // on m

 if (m->state != MUNLOCKED)

 return -1

 m->state = MLOCKED

 return 0

Note: the above is not the only way to implement mutex lock

also, this is not a complete pseudocode

you have to add locks if necessary

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_unlock()

This function unlocks the mutex specified by the argument

mutex_id if called by the owning thread, and if there are any

blocked threads, one of the threads will acquire the mutex

an error will be returned if the mutex was already unlocked

the mutex may be owned by one thread and unlocked by another

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_mutex_unlock()

kthread_mutex_unlock(int mutex_id):

 create a mutex pointer m (using struct in "proc.h")

 loop through mutex table to find the target mutex id (parameter)

 if m->mid == mutex_id

 break;

 if not found

 return -1

 while (m->state == MUNLOCKED)

 return -1

 m->state = MUNLOCKED

 call wakeup on m to wake up all threads waiting for this mutex

 return 0

Note: the above is not the only way to implement mutex lock

also, this is not a complete pseudocode

you have to add locks if necessary

You are supposed to be reading the XV6 book: xv6-rev11.pdf and

the XV6 source code to understand how the spinlock (and locking

in general) works in XV6

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

mutextest1.c

You are supposed to read the code of the test programs

mutextest2.c

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

this means process holding multiple locks

panic: sched locks

before calling sched() make sure to release all other locks

ac(ptable)

ac(mtable)

rel(mtable)

rel(ptable)

