Introduction to Operating Systems - CSCI 350

CS 350
PA3: Mutex &
Condition Variable

Bill Cheng

http.://merlot.usc.edu/william/usc/

_ Based on slides created by Kivilcim Cumbul

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

PA3

ﬁ} Start with your PA2 code (no separate starter code will be provided)

cd

mkdir cs350/pa3

mkdir cs350/pa3/xv6-pa3-src
cd cs350/pa3/xv6-pa3-src

cp ../../pa2/xv6-pa2-src/* .
rm —-f pa2-submit.tar.gz
make clean

= PA3 only makes sense if you have multithreading
Q 1if your PA2 code is not working, you will not be able to pass
any of the PA3 tests and you will end up with a very low score

) Part 1- preparation
— reading code and documentation

) Part 2 - implement mutex functions
= kthread_mutex_alloc (), kthread_mutex_dealloc(),

kthread_mutex_lock (), kthread_mutex_unlock ()
= ho condition variables! 3 @!,}_

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Submission

> Which files do you need to modify?
= open a terminal and type the following:

pwd
cd ~/cs350/pa3/xv6-pa3-src
make —-n pa3-submit

Q you should see:

tar cvzf pa3-submit.tar.gz \
Makefile \
pa3-README. txt \
proc.c \
proc.h \
syscall.c \
sysproc.c \
kthread.h \
exec.c

& some files may be the same as in your PA2 submission

= these are the only files are are supposed to submit
Q if you submit additional files, the grader will have to delete
them before grading @!’}

Q if you submit binary files, points will be deducted
Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Part 1: Preparation

ﬁ} Read POSIX Threads Programming tutorial by Blaise Barney from
Lawrence Livermore National Laboratory
= pthread_mutex_lock (), pthread_mutex_unlock ()

I:> Read the spinlock code in XV6

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Part 2: Implement Mutex Functions
) Implement mutex API for kernel

= kthread_mutex_alloc (), kthread_mutex_dealloc(),
kthread_mutex_lock (), kthread_mutex_unlock ()

= Unless otherwise specified, we use the term lock and mutex
interchangeably (although in general, a lock may allow multiple
threads to have concurrent access to a resource)

= you will implement these functions in "proc.c" and add the
following to "kthread.h"

##define MAX_MUTEXES 64

int kthread_mutex_alloc();

int kthread_mutex_dealloc (int mutex_id);
int kthread_mutex_lock (int mutex_id);
int kthread_mutex_unlock (int mutex_id);

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Changes In "proc.h"

) Mutex data structures
= what are the possible mutex states?

enum mutexstate { MUNUSED, MLOCKED, MUNLOCKED };

= what should go into a mutex struct?
Q at a minimum:

int mid; // unique mutex ID > 1

enum mutexstate;

Changes In "proc.c"
I:> Similar to ptable, we need a mtable
) Need a global variable to know what mutex ID to return next
int nextmid = 1;

= must never reuse a mutex ID @,}

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread mutex_alloc()

ﬁ} Allocates a mutex object and initializes it; the initial state should be
unlocked
= should return the ID of the initialized mutex, or -1 upon failure

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Looping Through Mutex Table
> Something like the following:

for(m = mtable.mutex; && m < &mtable.mutex[MAX MUTEXES]; Mp++) {
}
Or:

for(i = 0; i < MAX_MUTEXES; i++) {
m = &mtable.mutex[i];

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread mutex_alloc()

kthread_mutex_alloc() :

create a mutex pointer m (using struct in "proc.h")
Loop through mutex table
if m is unused
m->mutex_id = nextmid++;
m—>state = MUNLOCKED;
initialize all other values if needed
if m == &mtable.mutex[MAX_MUTEXES]
return -1
else
return m->mutex_id

= Note: the above is not the only way to implement mutex allocation
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread mutex _dealloc ()

ﬁ} De-allocates a mutex object which is no longer needed
= the function should return 0 upon success and -1 upon failure
Q if the given mutex is currently locked, this function should
return -1

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread mutex _dealloc ()

kthread_mutex_dealloc (int mutex_id) :

create a mutex pointer m (using struct in "proc.h")
loop through mutex table to find given mutex_id
if m is locked
return -1

if not found
return -1
else
m—>mid = 0
m—>state = MUNUSED
zero out all the other wvalues if needed

return O

= Note: the above is not the only way to implement mutex

deallocation
= also, this is not a complete pseudocode

Q you have to add locks if hecessary @!’}

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread _mutex_ lock ()

ﬁ} This function is used by a thread to lock the mutex specified by
the argument mutex_id
= If the mutex is already locked by another thread, this call will
block the calling thread (change the thread state to TBLOCKED)
until the mutex is unlocked
Q you may add a TBLOCKED state in "proc.h" Iif you'd like

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread _mutex_ lock ()

kthread _mutex_lock (int mutex_id) :

create a mutex pointer m (using struct in "proc.h")
loop through mutex table to find the target mutex id (parameter)
if m-—>mid == mutex_id
break;
if not found
return -1

while (m—>state == MLOCKED)
sleep // on m
if (m—->state != MUNLOCKED)

return -1

m—->state = MLOCKED
return 0O
—= Note: the above is not the only way to implement mutex lock
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread_mutex_unlock ()

ﬁ} This function unlocks the mutex specified by the argument
mutex_id if called by the owning thread, and if there are any
blocked threads, one of the threads will acquire the mutex
= the mutex may be owned by one thread and unlocked by another
= an error will be returned if the mutex was already unlocked

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

kthread_mutex_unlock ()

kthread_mutex_unlock (int mutex_id) :

create a mutex pointer m (using struct in "proc.h")
loop through mutex table to find the target mutex id (parameter)
if m->mid == mutex_id
break;
if not found
return -1
while (m—>state == MUNLOCKED)
return -1

m—>state = MUNLOCKED
call wakeup on m to wake up all threads waiting for this mutex
return 0

—= Note: the above is not the only way to implement mutex lock
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Common Errors

ﬁ} You are supposed to read the code of the test programs
= mutextestl.c

—= mutextest2.c

ﬁ> You are supposed to be reading the XV6 book: xv6-rev11.pdf and
the XV6 source code to understand how the spinlock (and locking
in general) works in XV6

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Common Errors

panic: sched locks

G> this means process holding multiple locks
—= before calling sched () make sure to release all other locks

ac (ptable)
ac (mtable)

rel (mtable)
rel (ptable)

Copyright © William C. Cheng



