
CS 350

PA2: Kernel Level

Threads

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Based on slides created by Kivilcim Cumbul

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PA2

download xv6 for PA2

Set up a standard 32-bit Ubuntu 16.04 system

kthread_create(), kthread_id(), kthread_exit(),
kthread_join()

Part 2 - thread system calls

Part 1 - add threads to the kernel

fork(), exec(), exit()

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Download XV6 For PA2

Follow the instructions on the PA2 spec

Open a terminal and type the following

cd

cd cs350

mkdir pa2

cd pa2

wget --user=USERNAME --password=PASSWORD \

 http://merlot.usc.edu/cs350-m25/programming/pa2/xv6-pa2-src.tar.gz

tar xvf xv6-pa2-src.tar.gz

cd xv6-pa2-src

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Submission

pwd

cd cs350/pa2/xv6-pa2-src

make -n pa2-submit

open a terminal and type the following:

Which files do you need to modify?

you should see:

tar cvzf pa2-submit.tar.gz \

 Makefile \

 pa2-README.txt \

 proc.c \

 proc.h \

 syscall.c \

 sysproc.c \

 kthread.h \

 exec.c

these are the only files are are supposed to submit

if you submit additional files, the grader will have to delete

them before grading

if you submit binary files, points will be deducted

I don’t think you need to modify Makefile at all

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add Threads To The Kernel

fork(), exec(), exit()

Change the implementation of some existing system calls

fork(), and exit() are in "proc.c"

exec() is in "exec.c"

note: some functions might not need changes (you need to pick

which ones to change)

growproc() is responsible for retrieving more memory when

the process asks for it

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Background: growproc()

to access any PCB, must acquire the ptable.lock spinlock

// Grow current process’s memory

// by n bytes.

// Return 0 on success,

// -1 on failure.

int

growproc(int n)

{

 uint sz;

 acquire(&ptable.lock);

 sz = proc->sz;

 if (n > 0){

 if ((sz = allocuvm(

 proc->pgdir, sz,

 sz + n)) == 0){

 release(&ptable.lock);

 return -1;

 }

 } else if (n < 0){

 if ((sz = deallocuvm(

 proc->pgdir, sz,

 sz + n)) == 0){

 release(&ptable.lock);

 return -1;

 }

 }

 proc->sz = sz;

 switchuvm(proc);

 release(&ptable.lock);

 return 0;

}

need to synchronize accesses to proc->sz

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Background: growproc()

growproc() is responsible for retrieving more memory when

the process asks for it

always release locks before return statement if it is not released

previously

// Grow current process’s memory

// by n bytes.

// Return 0 on success,

// -1 on failure.

int

growproc(int n)

{

 uint sz;

 acquire(&ptable.lock);

 sz = proc->sz;

 if (n > 0){

 if ((sz = allocuvm(

 proc->pgdir, sz,

 sz + n)) == 0){

 release(&ptable.lock);

 return -1;

 }

 } else if (n < 0){

 if ((sz = deallocuvm(

 proc->pgdir, sz,

 sz + n)) == 0){

 release(&ptable.lock);

 return -1;

 }

 }

 proc->sz = sz;

 switchuvm(proc);

 release(&ptable.lock);

 return 0;

}

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Background: growproc()

growproc() is responsible for retrieving more memory when

the process asks for it

you might need to think more about synchronization and find

where to put functions/methods, locks, etc.

// Grow current process’s memory

// by n bytes.

// Return 0 on success,

// -1 on failure.

int

growproc(int n)

{

 uint sz;

 acquire(&ptable.lock);

 sz = proc->sz;

 if (n > 0){

 if ((sz = allocuvm(

 proc->pgdir, sz,

 sz + n)) == 0){

 release(&ptable.lock);

 return -1;

 }

 } else if (n < 0){

 if ((sz = deallocuvm(

 proc->pgdir, sz,

 sz + n)) == 0){

 release(&ptable.lock);

 return -1;

 }

 }

 proc->sz = sz;

 switchuvm(proc);

 release(&ptable.lock);

 return 0;

}

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

fork()

fork() should duplicate only the calling thread, if other threads

exist in the process they will notexist in the new process

are there any conflicts between shared variables?

Questions to ask:

do we need to kill any threads after calling fork?

is the acquired the lock enough for synchronization or should we

put more locks?

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

exit()

exit() should kill the process and all of its threads, remember

while a single threads executing exit(), others threads of the

same process might still be running

kill_all();

// jump into the scheduler, never to return
thread->state = TINVALID;
proc->state = ZOMBIE;
sched();
panic("zombie exit");

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kill_all()

We have to create a kill_all() function to kill all the alive

threads:

kill_all():
 create thread pointer *t
 for each thread t:
 if (thread t is not the current thread and
 not running and not unused) then
 make t a zombie
 end-if
 end-for
 make current thread zombie
 kill process

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

exec()

The thread performing exec should "tell" other threads of the same

process to destroy themselves and only then complete the exec()

task

modify kill_all() method and create kill_others()

kill_others():
 create thread pointer *t
 for each thread t:
 if (thread t is not the current thread and
 not running and not unused) then
 make t a zombie
 end-if
 end-for

kill_others() kills all alive threads but itself

kthread_create(), kthread_id(), kthread_exit(),
kthread_join()

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Thread System Calls

Implement thread API for kernel

you will implement these functions in "proc.c" and add the

following to "kthread.h"

int kthread_create(void*(*start_func)(),

 void* stack, int stack_size);

int kthread_id();

void kthread_exit(void);

int kthread_join(int thread_id);

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Changing Thread States

t->state = TZOMBIE;

in "proc.h"

enum threadstate {

 TUNUSED,

 TEMBRYO,

 TSLEEPING,

 TRUNNABLE,

 TRUNNING,

 TZOMBIE,

 TINVALID

};

enum procstate {

 UNUSED,

 USED,

 ZOMBIE

};

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Changing Thread States

t->tid != thread->tid;

in "proc.h"

struct thread {

 int tid; // Unique thread ID

 enum threadstate state; // thread state

 char *kstack; // Bottom of kernel stack for this thread

 struct proc *parent; // Parent process

 struct trapframe *tf; // Trap frame for current syscall

 struct context *context; // swtch() here to run process

 void *chan; // If non-zero, sleeping on chan

 int killed; // If non-zero, have been killed

};

Read the code in allocthread() to see how every field is

initialized

e.g., since the trap frame is the bottom of the kernel stack, you

don’t need to allocate memory for the trap frame

thread, proc, and cpu are global variables that point to the

current thread, the current process, and the current CPU

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Loop Through Threads?

Look at allocthread() in "proc.c"

struct thread*

allocthread(struct proc * p)

{

 struct thread *t;

 for(t = p->threads; found != 1 && t < &p->threads[NTHREAD]; t++) {

 ...

 }

 ...

}

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How To Loop Through Processes?

Look at allocproc() in "proc.c"

struct thread*

allocproc()

{

 struct proc *p;

 struct thread *t;

 for(p = ptable.proc; && p < &ptable.proc[NPROC]; p++) {

 ...

 }

 ...

}

Need a global variable to know what process ID and thread ID to

return next

int nextpid = 1;

int nexttid = 1;

must never reuse a process ID or a thread ID

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kill_all()

kill_all():
 create thread pointer *t
 for each thread t: // loop through threads
 if (t is not current thread and not running
 and not unused) then // check its state
 make t a zombie // change its state
 end-if
 end-for
 make current thread zombie // find current thread
 // and change its state
 kill process // proc->killed = 1

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_create()

the newly created thread state will be TRUNNABLE

Calling kthread_create() will create a new thread within the

context of the calling process

the caller of kthread_create() must allocate a user stack for

the new thread to use (it should be enough to allocate a single

page i.e., 4K for the thread stack)

this does not replace the

kernel stack for the thread

upon success, the identifier of the newly created thread is

returned

start_func is a pointer to the entry function, which the thread will

start executing

in case of an error, a non-positive value is returned

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_create()

in Linux the kernel allocates the memory for the new thread stack

The kernel thread creation system call on real Linux does not

receive a user stack pointer

you will need to create the stack in user mode and send its

pointer to the system call in order to be consistent with current

memory allocator of xv6

Note: the above is not the only way to create a thread

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_create()

kthread_create(void* (*start_func)(), void* stack, int stack_size):

 create a thread pointer

 allocate the thread using allocthread() function

 check if t is 0 // allocated correctly?

 if not, return -1

 else

 copy current thread’s trap frame

 find stack address of the thread using stack pointer given parameter

 make stack pointer inside trap frame stack address + stack size

 update base pointer inside trap frame as stack pointer

 find address of the start function which is given in parameter

 make instruction pointer inside trap frame start address

 return tid

stack pointer: t->tf->esp

base pointer: t->tf->ebp

instruction pointer: t->tf->eip

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

esp, eip, ebp

we have to change the stack address of new thread

t->tf->esp

so we use given parameter to make stack address different than

current thread

add given stack’s address with stack size to find where to put

stack pointer

initially base pointer and stack pointer point the same place

t->tf->ebp

instruction pointer points the instructions which will be

implemented by thread

t->tf->eip

this pointer has to point stack function at the beginning

only present on

privilege change
0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

More Information In Ch 3 Of XV6 Book

interrupt stack

SS

ESP

EFLAGS

CS

EIP

Error
trap

frame

(saved

user

state)

Figure 3.1 of xv6 book (with low address on top and high address on

the bottom) shows the kernel stack after an INT instruction

also in Ch 2 slides for the x86 CPU
CPU

SS: ESP handler() {

 pushad

 ...

}
CS: EIP

kernel

interrupt stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers xv6

trap

frame

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

More Information In Ch 3 Of XV6 Book

Figure 3.1 of xv6 book (with low address on top and high address on

the bottom) shows the kernel stack after an INT instruction

also in Ch 2 slides for the x86 CPU
CPU

SS: ESP handler() {

 pushad

 ...

}
CS: EIP

only present on

privilege change

kernel

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_id()

Easiest function to implement in PA2

upon success, this function returns the caller thread’s id

in case of error, a non-positive error identifier is returned

remember, thread id and process id are not the same thing

kthread_id():

 if process and thread exists

 return t->tid

 else

 return -1

Note: this is not the only way to return a thread id

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_exit()

This function terminates the execution of the calling thread

if called by a thread (even the main thread) while other threads

exist within the same process, it shouldn’t terminate the whole

process

if it is the last running thread, process should terminate

each thread must explicitly call kthread_exit() in order to

terminate normally

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_exit()

kthread_exit():

 create a thread pointer

 create a found flag

 loop through all threads to find another thread running

 if t is not current thread // because calling thread is current

 if t is not unused, not a zombie, and not invalid

 make found flag true

 break // only one running is enough

 if found // I am not the last thread in my process

 wakeup all waiting using wakeup1() // read wakeup1() code

 else // found flag is false, therefore, I’m the last thread

 exit()

 make this thread zombie

 call sched() to schedule another thread

Note: the above is not the only way to exit a thread

also, this is not a complete pseudocode

you have to add locks if necessary

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_join()

This function suspends the execution of the calling thread until the

target thread (of the same process), indicated by the argument

thread_id, terminates

if the thread has already exited, execution should not be

suspended

if successful, the function returns zero

otherwise, -1 should be returned to indicate an error

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_join()

kthread_join(int thread_id):

 check if thread_id is valid

 create a thread pointer t

 loop through all threads to find target thread id (parameter)

 make t points to target thread with thread_id

 if not found

 return -1

 while (t->tid == thread_id and t is not in the TZOMBIE state)

 make t sleep using sleep() function with a lock // read sleep() code

 if state of t is zombie

 clearThread(t);

 return 0

Note: the above is not the only way to join threads

also, this is not a complete pseudocode

you have to add locks if necessary

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

threadtest1.c

You are supposed to read the code of the test programs

threadtest2.c

threadtest3.c

You are supposed to be reading the XV6 book: xv6-rev11.pdf

and the XV6 source code to understand how the scheduler works

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

Make sure to implement system calls for all kthread functions

$ threadtest1

3 threadtest1: unknown sys call 23

thread in main -1,process 3

3 threadtest1: unknown sys call 22

3 threadtest1: unknown sys call 22

3 threadtest1: unknown sys call 25

Got id : -1

3 threadtest1: unknown sys call 25

Got id : -1

Finished.

3 threadtest1: unknown sys call 24

...

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

panic: acquire and panic: release errors mean that program fails to

acquire lock because it is already acquired earlier or it cannot

released lock because it is already released

cpu with apicid 0: panic: acquire

 80104b85 80104334 80100226 80101a78 80101c4a ...

cpu with apicid 0: panic: release

 80104cc8 80103b51 80105dec 80105129 80106338 801060eb ...

OR:

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

this means process holding multiple locks

panic: sched locks

before calling sched() make sure to release all other locks

ac(ptable)

rel(ptable)

