Introduction to Operating Systems - CSCI 350

CS 350
PA2: Kernel Level
Threads

Bill Cheng

http://merlot.usc.edu/william/usc/

_ Based on slides created by Kivilcim Cumbul

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PA2

_ Setup a standard 32-bit Ubuntu 16.04 system
= download xv6 for PA2

ﬁ} Part 1 - add threads to the kernel

= fork (), exec (), exit ()

) Part 2 - thread system calls

—= kthread_create (), kthread_id (), kthread_exit (),
kthread_join ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Download XV6 For PA2
) Follow the instructions on the PA2 spec

G> Open a terminal and type the following

cd

cd c¢s350

mkdir pa2

cd pa2

wget ——-user=USERNAME --password=PASSWORD \
http://merlot.usc.edu/cs350-m25/programming/pa2/xv6-pa2-src.tar.gz

tar xvf xvé6-pa2-src.tar.gz

cd xvé6—-pa2-src

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Submission

> Which files do you need to modify?
= open a terminal and type the following:

pwd
cd cs350/pa2/xv6-pa2-src
make —-n pa2-submit

Q you should see:

tar cvzf pa2-submit.tar.gz \
Makefile \
pa2-README . txt \
proc.c \
proc.h \
syscall.c \
sysproc.c \
kthread.h \
exec.c

& ldon’t think you need to modify Makefile at all

= these are the only files are are supposed to submit
Q if you submit additional files, the grader will have to delete
them before grading @!’}

Q if you submit binary files, points will be deducted
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add Threads To The Kernel

ﬁ} Change the implementation of some existing system calls
= fork (), exec (), exit ()
Q fork(),and exit () arein "proc.c"

Q exec() Isin "exec.c"
= nhote: some functions might not need changes (you need to pick

which ones to change)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Background: growproc ()

ﬁ} growproc () is responsible for retrieving more memory when
the process asks for it

// Grow current process’s memory } else if (n < 0){
// by n bytes. if ((sz = deallocuvm(
// Return 0 on success, proc—>pgdir, sz,
// -1 on failure. sz + n)) == 0){
int release (&ptable.lock);
growproc (int n) return -1;
{ }
uint sz; }
acquire (&ptable.lock); proc—>sz = sz;
Sz = proc—->sz; switchuvm (proc) ;
if (n > 0){ release (&ptable.lock);
if ((sz = allocuvm(return O;
proc—->pgdir, sz, }
sz + n)) == 0){

release (&ptable.lock);
return -1;

}

= to access any PCB, must acquire the ptable. lock spinlock
= heed to synchronize accesses t0 proc—>sz

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Background: growproc ()

ﬁ} growproc () is responsible for retrieving more memory when

Copyright © William C. Cheng

the process asks for it

// Grow current process’s memory } else if (n < 0){
// by n bytes. if ((sz = deallocuvm(
// Return 0 on success, proc—>pgdir, sz,
// -1 on failure. sz + n)) == 0){
int o release (&ptable.lock);
growproc (int n) return -1;
{ }
uint sz; }
= acquire (&ptable.lock); proc—->sz = sz;
Sz = proc—->sz; switchuvm (proc) ;
if (n > 0){ = release (&ptable.lock);
if ((sz = allocuvm(return O;
proc—->pgdir, sz, }
sz + n)) == 0){
- release (&ptable.lock) ;

return -1;

}
— always release locks before return statement if it is not released

previously |
&

Introduction to Operating Systems - CSCI 350

Background: growproc ()

ﬁ} growproc () is responsible for retrieving more memory when
the process asks for it

// Grow current process’s memory } else if (n < 0){
// by n bytes. if ((sz = deallocuvm(
// Return 0 on success, proc—>pgdir, sz,
// -1 on failure. sz + n)) == 0){
int release (&ptable.lock);
growproc (int n) return -1;
{ }
uint sz; }
acquire (&ptable.lock); proc—>sz = sz;
Sz = proc—->sz; switchuvm (proc) ;
if (n > 0){ release (&ptable.lock);
if ((sz = allocuvm(return O;
proc—->pgdir, sz, }
sz + n)) == 0){

release (&ptable.lock);
return -1;

}

= you might need to think more about synchronization and find
where to put functions/methods, locks, etc.

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

fork ()

ﬁ} fork () should duplicate only the calling thread, if other threads
exist in the process they will notexist in the new process

ﬁ} Questions to ask:
= are there any conflicts between shared variables?
—= do we need to kill any threads after calling fork?
= is the acquired the lock enough for synchronization or should we
put more locks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

exit ()

ﬁ} exit () should kill the process and all of its threads, remember
while a single threads executing exit (), others threads of the
same process might still be running

kill_alil (),

// jump into the scheduler, never to return
thread—->state = TINVALID;

proc—>state = ZOMBIE;

sched () ;

panic("zombie exit");

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kill all ()

) We have to create akill_all() function to kill all the alive
threads:

kill_all():
create thread pointer *t
for each thread t:
if (thread t is not the current thread and
not running and not unused) then
make t a zombie
end-if
end-for
make current thread zombie
kill process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

exec ()

ﬁ} The thread performing exec should "tell” other threads of the same

process to destroy themselves and only then complete the exec ()
task

) modify kill_all () method and create kill_others ()
= kill_others () Kills all alive threads but itself

kill_others () :
create thread pointer *t
for each thread t:
if (thread t is not the current thread and
not running and not unused) then
make t a zombie
end-if
end-for

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 2: Thread System Calls

) Implement thread API for kernel
= kthread_create (), kthread_id (), kthread_exit (),
kthread_join()
= you will implement these functions in "proc.c" and add the
following to "kthread.h"

int kthread_create (void* (*start__func) (),
void* stack, int stack_size);
int kthread_id();
void kthread_exit (void);
int kthread_join (int thread_id);

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Changing Thread States

t->state = TZOMBIE;

= in "proc.h"

enum threadstate { enum procstate ({
TUNUSED, UNUSED,
TEMBRYO, USED,
TSLEEPING, ZOMBIE
TRUNNABLE, };
TRUNNING,
TZOMBIE,
TINVALID

};

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Changing Thread States

t->tid != thread->tid;

= thread, proc, and cpu are global variables that point to the
current thread, the current process, and the current CPU
= in "proc.h"

struct thread {

int tid; // Unique thread ID

enum threadstate state; // thread state

char *kstack; // Bottom of kernel stack for this thread
struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall

struct context *context; // swtch() here to run process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

};

) Read the code in allocthread() to see how every field is
initialized
= e.g., since the trap frame is the bottom of the kernel stack, yog |
don’t need to allocate memory for the trap frame

Copyright © William C. Cheng

15

Introduction to Operating Systems - CSCI 350

How To Loop Through Threads?

I:> Look at allocthread () in "proc.c"

struct thread*

allocthread(struct proc * p)

{
struct thread *t;

for(t = p—>threads; found != 1 && t < &p—>threads[NTHREAD]; t++) ({

}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How To Loop Through Processes?

I:> Look at allocproc() In "proc.c"

struct thread*
allocproc()

{

struct proc *p;
struct thread *t;

for(p = ptable.proc; && p < &ptable.proc[NPROC]; p++) {
}
}

ﬁ} Need a global variable to know what process ID and thread ID to
return next

int nextpid = 1;
1;

int nexttid

= must never reuse a process ID or a thread ID

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kill_alil ()

kill_all():
create thread pointer *t
for each thread t: // loop through threads
if (t is not current thread and not running
and not unused) then // check its state
make t a zombie // change its state
end-if
end—-for
make current thread zombie // find current thread
// and change its state
kill process // proc—->killed =1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_create ()

_) Calling kthread_create () will create a new thread within the

context of the calling process

= the newly created thread state will be TRUNNABLE

= the caller of kthread_create () must allocate a user stack for
the new thread to use (it should be enough to allocate a single
page i.e., 4K for the thread stack)

= this does not replace the
kernel stack for the thread

ﬁ> start_func is a pointer to the entry function, which the thread wili
start executing
= Upon success, the identifier of the newly created thread is
returned
= in case of an error, a non-positive value is returned

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_create ()

ﬁ} The kernel thread creation system call on real Linux does not
receive a user stack pointer
= In Linux the kernel allocates the memory for the new thread stack
= you will need to create the stack in user mode and send its
pointer to the system call in order to be consistent with current
memory allocator of xv6

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_create ()

kthread_create (void* (*start_func) (), void* stack, int stack_size):

create a thread pointer

allocate the thread using allocthread() function

check if t is 0 // allocated correctly?
if not, return -1

else
copy current thread’s trap frame
find stack address of the thread using stack pointer given parameter
make stack pointer inside trap frame stack address + stack size
update base pointer inside trap frame as stack pointer
find address of the start function which is given in parameter
make instruction pointer inside trap frame start address
return tid

= stack pointer: t—>tf->esp
= base pointer: t->t f->ebp
= instruction pointer: t—>tf->eip

ﬁ> Note: the above is not the only way to create a thread

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

esp, eip, ebp

I:> t—>tf->esp
= we have to change the stack address of new thread
= SO We use given parameter to make stack address different than
current thread
— add given stack’s address with stack size to find where to put
stack pointer

I:> t->tf->ebp
= [nitially base pointer and stack pointer point the same place

I:> t—->tf->eip
= instruction pointer points the instructions which will be
implemented by thread

= this pointer has to point stack function at the beginning

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

More Information In Ch 3 Of XV6 Book

ﬁ} Figure 3.1 of xv6 book (with low address on top and high address on
the bottom) shows the kernel stack after an INT instruction
= also in Ch 2 slides for the x86 CPU

CPU kernel
SS: ESP — handler () {
pushad
CS: EIP y T

interrupt stack

.
Error trap
ICE:ISP frame
EFLAGS || (Saved
only present on ESP user]
privilege change{ SS) state) P 33 @7

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

More Information In Ch 3 Of XV6 Book

ﬁ} Figure 3.1 of xv6 book (with low address on top and high address on
the bottom) shows the kernel stack after an INT instruction

= also in Ch 2 slides for the x86 CPU

CPU kernel
SS: ESP handler () {
pushad
CS: EIP I . y T

-
all

general-
purpose
registers

1

only present on {
privilege change

Copyright © William C. Cheng

EAX, EBX,

ECX, EDX
ESP, EBP
ESI, EDI

Error

EIP

CS

EFLAGS

ESP

SS

interrupt stack

Xv6
- trap
frame

Introduction to Operating Systems - CSCI 350

kthread_id()

) Easiest function to implement in PA2
= Uupon success, this function returns the caller thread’s id

= In case of error, a non-positive error identifier is returned
= remember, thread id and process id are not the same thing

kthread_id() :

if process and thread exists
return t->tid

else
return -1

> Note: this is not the only way to return a thread id

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_exit ()

ﬁ} This function terminates the execution of the calling thread
= if called by a thread (even the main thread) while other threads
exist within the same process, it shouldn’t terminate the whole
process
= [f it is the last running thread, process should terminate
= each thread must explicitly call kthread_exit () in order to
terminate normally

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_exit ()

kthread_exit () :

create a thread pointer
create a found flag
loop through all threads to find another thread running
if t is not current thread // because calling thread is current
if t is not unused, not a zombie, and not inwvalid
make found flag true
break // only one running is enough

if found // I am not the last thread in my process
wakeup all waiting using wakeupl() // read wakeupl () code
else // found flag is false, therefore, I'm the last thread
exit ()
make this thread zombie
call sched() to schedule another thread

= Note: the above is not the only way to exit a thread
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
kthread_join ()

ﬁ} This function suspends the execution of the calling thread until the
target thread (of the same process), indicated by the argument
thread_id, terminates
= [f the thread has already exited, execution should not be

suspended
= [f successful, the function returns zero
= otherwise, -1 should be returned to indicate an error

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_join ()

kthread_join(int thread_id):

check if thread_id is wvalid

create a thread pointer t

loop through all threads to find target thread id (parameter)
make t points to target thread with thread_id

if not found
return -1

while (t->tid == thread_id and t is not in the TZOMBIE state)
make t sleep using sleep() function with a lock // read sleep() code

if state of t is zombie
clearThread(t) ;

return 0

= Note: the above is not the only way to join threads
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Errors

ﬁ} You are supposed to read the code of the test programs
= threadtestl.c
= threadtest2.c
= threadtest3.c

ﬁ> You are supposed to be reading the XV6 book: xv6-revi1.pdf
and the XV6 source code to understand how the scheduler works

Copyright © William C. Cheng

$ threadtestl
3 threadtestl:
thread in main
3 threadtestl:
3 threadtestl:
3 threadtestl:
Got id : -1

3 threadtestl:
Got id : -1
Finished.

3 threadtestl:

Introduction to Operating Systems - CSCI 350

Common Errors

unknown sys call

-1,process 3

unknown
unknown
unknown

unknown

unknown

sys
sys
sys

sys

sys

call
call
call

call

call

23
22
22
25

25

24

ﬁ} Make sure to implement system calls for all kthread functions

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Errors

cpu with apicid 0: panic: acquire
80104b85 80104334 80100226 80101a78 8010l1lc4a ...

OR:

cpu with apicid 0: panic: release
80104cc8 80103b51 80105dec 80105129 80106338 801060eb ...

ﬁ} panic: acquire and panic: release errors mean that program fails to
acquire lock because it is already acquired earlier or it cannot
released lock because it is already released

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Errors

panic: sched locks

G> this means process holding multiple locks
—= before calling sched () make sure to release all other locks

ac (ptable)

rel (ptable)

Copyright © William C. Cheng

