Introduction to Operating Systems - CSCI 350

CS 350
PA1: Add System Calls
To XV6

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Is Unix/Linux Still Relevant Today?
I:> Linux & Unix

[Multics

(i)~

) Microsoft (MsS-DOS, Windows 3.x }— R.LP.
[0S/2? |
—"3(Windows NT}-~(Vista)
VMS? |

) Apple (Lisa & Mac |~ R.LP.
: Mach Z Mac OS X J
) Darwin]<
| FreeBSD i0S

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

What Is C?

> Unix/Linux system calls have a C functional interface
= must use a system call to use hardware

) Early 1960s: CPL (Combined Programming Language)
—= developed at Cambridge University and University of
London

_, 1966: BCPL (Basic CPL): simplified CPL
= intended for systems programming

> 1969: B: simplified BCPL (stripped down so its compiler would
run on minicomputer)
= used to implement earliest Unix

_, Early 1970s: C: expanded from B
= motivation: they wanted to play "Space Travel" on minicomputer
= used to implement all subsequent Unix OSes

Unix has been written in C ever since (AR
~ [0

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PA1

_ Setup a standard 32-bit Ubuntu 16.04 system
— download xv6 and get familiar with xv6

) Part1-add a new system call

—= trace()

) Part2 - add a second system call
—= date ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Some Basic Linux Commands

1s touch tmp/defg
ls -a ls —-alF tmp

ls -1 pPs —x

echo "hello" pPs —auxw

echo -n "hello" pico tmp/xyz
echo ‘date’ rm tmp/defg tmp/xyz
echo ‘date +5m%d%$y—%$HSMS$S' ls —-alF tmp
cat /etc/os-release rmdir tmp

more /etc/os-release 1s —-alF tmp
mkdir tmp df

pwd top

cd tmp exit

pwd

1ls

cd

cp /etc/os-release tmp

cp tmp/os-release tmp/abc
ls —-aF tmp

mv tmp/os-release tmp/xyz
ls —-aF tmp

diff tmp/abc tmp/xyz

man gcc

rm tmp/abc

Copyright © William C. Cheng

Notes On gdb

_ The debugger is your friend! Get to know it NOW!
start debugging:
list source code:

set breakpoint:

list all breakpoints:
continue:

clear breakpoint:

stack trace:

print field:

print in hex:

single-step at same level:
single-step into a function:
print field after every cmd:
assignment:

quit:

gdb

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

) Start using the debugger with PA1!

= %et he!:E from TAs and me
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

list

break foo.c:123
info breakpoints
cont

clear

where

print f.BlockType
print/x f.BlockType
next

step

display f.BlockType
set f.BlockType=0

quit

Introduction to Operating Systems - CSCI 350

Set Up A Standard System

ﬁ} Go to class home page, scroll all the way to the bottom and click on
the install a standard 32-bit Ubuntu 16.04 system link

) You have two choices

1) install a virtual machine hypervisor, then install my virtual
appliance into the VM hypervisor to create a virtual machine
Q install VirtualBox if you have Intel/AMD CPU
Q install UTM if you have Apple CPU (M1/M2/M3)

2) create an VM instance from my AMIon AWS Free Tier
(free for one year if you don’t go over the usage limit)

= If you like to do development on your host machine, you need to

figure out a way to transfer files between your host machine and

the "standard” system

Q my recommendation is to use FileZilla

Q some would like to use SSH in VScode
<& this would only work with (1) above and you need to give

4 GB RAM becuase VScode is memory hungry

7

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Download XV6
) Follow the instructions on the PA1 spec

G> Open a terminal and type the following

cat /etc/os-release
pwd
mkdir c¢s350
cd cs350
mkdir pal
cd pal
wget —-user=USERNAME --password=PASSWORD \
http://merlot .usc.edu/cs350-m25/programming/pal/xv6-pal-src.tar.gz
tar xvf xvé6-pal-src.tar.gz
cd xv6—-pal-src
1s

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Run XV6

) Three ways to run xve:
1) run xv6 console in a separate window:

make gemu

= | do not recommend this way
2) run xv6 in commandline mode:

make gemu-—nox
$ 1ls

$ echo Hello
$ cat README

3) debug xv6 commandline mode:
make gemu—-nox-—gdb
= in a separate terminal, do:

gdb

(gdb) source .gdbinit
(gdb) list exec.c:11
(gdb) break exec
(gdb) break sys_open
(gdb) cont

== i 5 ‘%!’)_
by default, you are debugging the kernel vy

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6
) The last line in .gdbinit says to debug the kernel

(gdb) symbol-file kernel

= sometimes, you may need the assembly listing of the kernel

objdump —--disassemble —--section=".text" kernel > kernel.txt
objdump —--disassemble —--section=".text" —-S kernel > kernel.txt

Q you can open kernel.txt with your favorite text editor
= switch to debug the "1s" user space program

(gdb) symbol-file _1s
(gdb) 1list 25

(gdb) break 1s

(gdb) break open
(gdb) cont

= in the first window, when you get the xv6 prompt, type "1s" to
run the "1s" program
Q you should break at the beginning of the 1s () function
(gdb) c
Continuing. 3 @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

Q you should break at the open () functionsystem call
& since open () is a system call, things would look different
[1b: 5c2] 0x772 <printf+162>: in (%dx) , $al

Thread 1 hit Breakpoint 2, open () at usys.S:20

20 SYSCALL (open)
(gdb) list usys.S:20
15 SYSCALL (read)
16 SYSCALL (write)
17 SYSCALL (close)
18 SYSCALL (kill)
19 SYSCALL (exec)
20 SYSCALL (open)

(gdb) list usys.S:9

4 ##define SYSCALL (name) \

5 .globl name; \

6 name: \

7 movl $SYS_ ## name, %eax; \
8 int $T_SYSCALL; \

9 ret

10

11 SYSCALL (fork)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

ﬁ} An application program doesn’t know how to open a file
= why now?
= only the OS kernel knows how to do that
= to ask the OS kernel for help, you make a system call
= in xv6, the convention is that if £oo () is a system call, the
corresponding OS kernel function is called sys_foo ()

ﬁ} To go from user space code to the kernel requires a context switch
= there are different types of context switches
= here we switch from the user space context to the kernel
space context
Q we will talk more about this in class
Q for now, you need to switch to debug kernel code

(gdb) delete

(gdb) symbol-file kernel
(gdb) break sys_open
(gdb) cont

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

ﬁ} The kernel versions of the system calls that are related to the file
systemisin sysfile.c
= sys_open () looks like regular C code
Q but remember, you are now in the all power kernel, you can
really mess things up if you are not careful

) Gdb is designed to mainly debug regular C code
= it’s not comfortable with switching contexts
Q single-step gdb command (i.e., "'next” and "step'') may not
work as expected when a context switch is involved
Q if you know that a context switch will happen, you should set
a breakpoint and use the "cont" gdb command to get there
= although if you switch to assembly level debugging, then gdb
will just be debugging machine code and it won’t worry about
context switching
Q why not?
Q context switching is just an abstraction / @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

ﬁ} How to get back to user space code?
= you heed to get back to where you made the open () system call
= open 1ls.c and see that you called open () on line 33

(gdb) delete
(gdb) symbol-file _1s
(gdb) list 1s.c:34

29 int £d;

30 struct dirent de;

31 struct stat st;

32

33 if((fd = open(path, 0)) < 0){

34 printf (2, "ls: cannot open %s\n", path);
35 return;

36 }

37

38 if (fstat (fd, &st) < 0){

= therefore, you should do:

(gdb) break 1ls.c:34
(gdb) break l1ls.c:38
(gdb) cont

= NnOw you are back in user space (AR

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q if you really want to know how context switching works from
user space to kernel space, you need to switch to debug
assembly code (you probably have seen this in CS 356)

& "Abandon all hope, ye who enter here".

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q if you really want to know how context switching works from
user space to kernel space, you need to switch to debug
assembly code (you probably have seen this in CS 356)

& "Abandon all hope, ye who enter here".
(gdb) layout asm

Q the window splits and the top panel would look like:

+ __

B+>|0x5c2 <open> mov $0xf, $ax
| 0x5¢5 <open+3> add %al, (3bx, $si)
| 0x5¢7 <open+5> int $0x40
| 0x5¢c9 <open+7> ret
| 0x5ca <mknod> mov $0x11, $ax
| 0x5¢d <mknod+3> add sal, (%bx, $si)
| 0x5¢c£ <mknod+5> int $0x40
| 0x5d1 <mknod+7> ret
+ __

Q single step at the assembly code level:
(gdb) si
(gdb) si |
)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q the top panel now looks like:

>|0x80105c£9
| 0x80105c£b
| 0x80105d00
| 0x80105c£9
| 0x80105c£b
| 0x80105d00
| 0x80105c£9
| 0x80105c£b
| 0x80105d00

$0x40
0x8010560a
$0x0

$0x41
0x8010560a
$0x0

$0x42
0x8010560a
$0x0

Q they correspond to the following in "usys.s":

20 SYSCALL (open)
21 SYSCALL (mknod)
22 SYSCALL (unlink)

Q set a breakpoint at virtual address 0x8010560a
(gdb) break *0x8010560a

(gdb) cont

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

QO what’s at 0x8010560a?
Q open kernel.txt and do a string search for 8010560a
8010560a <alltraps>:

8010560a: le push %ds

8010560b: 06 push ses

8010560c: Of aOl push Sfs

8010560e: Of a8 push %gs

80105610: 60 pusha

80105611: 66 b8 10 00 mov $0x10, $ax
80105615: 8e d8 mov %$eax, %ds
80105617: 8e c0 mov %eax, ses
80105619: 54 push sesp

8010561a: e8 el 00 00 00 call 80105700 <trap>

Q in kernel.txt, <trap> looks code generated by a C

compiler
80105700 <trap>:
80105700: 55 push %ebp
80105701: 89 e5 mov sesp, $ebp

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q to set a breakpoint there, you need to clear all breakpoints,
switch to debug the kernel, and set a breakpoint there

(gdb) delete
(gdb) symbol-file kernel
(gdb) break trap
(gdb) layout src
(gdb) cont
Q to get rid of the top panel:

(gdb) tui disable

ﬁ> The assembly code level debugging is optional for now
= hopefully, you won’t need to do that in this class
= onhe day, when you have a really tough bug and the only way to
debug your code is to debug context switching at the assembly
code level, then you need to come back here and review all this

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add A System Call

ﬁ} You need to read the xv6 book in the spec to understand how xv6
works
= Ch 3 contains details on traps and system calls (although most
of the low level details are not needed for you to complete this
assignment)

) Your job is to add a new system call called trace ()
= since you know the basic flow from open () t0 sys_open ()
and back to open (), you should be able to add a trace ()
system call to reach sys_trace () and get back to trace ()
Q of course, you need to implement sys_trace () according to
the spec

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add A System Call

> Which files do you need to modify?

= open a terminal and type the following:

pwd
cd cs350/pal/xv6-pal-src
make -n pal-submit

Q you should see:

tar cvzf pal-submit.tar.gz \
Makefile \

pal-README. txt \

proc.c \

proc.h \

syscall.c \

syscall.h \

sysproc.c \

user.h \

usys.S

= these are the only files are are supposed to submit
Q if you submit additional files, the grader will have to delete
them before grading

|
Q if you submit binary files, points will be deducted y @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add A System Call

ﬁ} test_projectl.c is atest program for part 1
= need to modify Makefile get it compiled so the grader can run it

ﬁ} Please take a look at the grading guidelines to see what the grader
will do to grade part 1
— grade_pal.c is another test program for part 1
Q need to include that in your Makefile

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 2: Add Another System Call

) Your job is to add a new system call called date ()
—= need to call cmostime () to get read the real time clock (which
is the current UTC time

_) date.cis a test program for part 2
—= nheed to modify Makefile get it compiled so the grader can run it

Copyright © William C. Cheng

