
CS 350

PA1: Add System Calls

To XV6

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Is Unix/Linux Still Relevant Today?

Apple Lisa & Mac

Darwin
Mac OS X

iOS

Mach

FreeBSD

Linux & Unix

Multics Unix BSD

AT&T

LinuxMinix

MS-DOS, Windows 3.xMicrosoft

Windows NT Vista
OS/2?

VMS?

Android

R.I.P.

R.I.P.

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is C?

developed at Cambridge University and University of

London

Early 1960s: CPL (Combined Programming Language)

intended for systems programming

1966: BCPL (Basic CPL): simplified CPL

used to implement earliest Unix

1969: B: simplified BCPL (stripped down so its compiler would

run on minicomputer)

motivation: they wanted to play "Space Travel" on minicomputer

Early 1970s: C: expanded from B

used to implement all subsequent Unix OSes

Unix has been written in C ever since

Unix/Linux system calls have a C functional interface

must use a system call to use hardware

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PA1

download xv6 and get familiar with xv6

Set up a standard 32-bit Ubuntu 16.04 system

trace()
Part 1 - add a new system call

date()
Part 2 - add a second system call

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Some Basic Linux Commands

ls
ls -a
ls -l
echo "hello"
echo -n "hello"
echo ‘date‘
echo ‘date +%m%d%y-%H%M%S‘
cat /etc/os-release
more /etc/os-release
mkdir tmp
pwd
cd tmp
pwd
ls
cd ..
cp /etc/os-release tmp
cp tmp/os-release tmp/abc
ls -aF tmp
mv tmp/os-release tmp/xyz
ls -aF tmp
diff tmp/abc tmp/xyz
man gcc
rm tmp/abc

touch tmp/defg
ls -alF tmp
ps -x
ps -auxw
pico tmp/xyz
rm tmp/defg tmp/xyz
ls -alF tmp
rmdir tmp
ls -alF tmp
df
top
exit

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Notes On gdb

list source code: (gdb) list
set breakpoint: (gdb) break foo.c:123

The debugger is your friend! Get to know it NOW!

start debugging: gdb

print field after every cmd: (gdb) display f.BlockType
assignment: (gdb) set f.BlockType=0

print field: (gdb) print f.BlockType
print in hex: (gdb) print/x f.BlockType

single-step at same level: (gdb) next
single-step into a function: (gdb) step

continue: (gdb) cont
clear breakpoint: (gdb) clear

quit: (gdb) quit

stack trace: (gdb) where

Start using the debugger with PA1!

list all breakpoints: (gdb) info breakpoints

get help from TAs and me

2)

1)

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Set Up A Standard System

Go to class home page, scroll all the way to the bottom and click on

the install a standard 32-bit Ubuntu 16.04 system link

You have two choices

install a virtual machine hypervisor, then install my virtual

appliance into the VM hypervisor to create a virtual machine

install VirtualBox if you have Intel/AMD CPU

install UTM if you have Apple CPU (M1/M2/M3)

create an VM instance from my AMI on AWS Free Tier

(free for one year if you don’t go over the usage limit)

if you like to do development on your host machine, you need to

figure out a way to transfer files between your host machine and

the "standard" system

my recommendation is to use FileZilla

some would like to use SSH in VScode

this would only work with (1) above and you need to give

4 GB RAM becuase VScode is memory hungry

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Download XV6

Follow the instructions on the PA1 spec

Open a terminal and type the following

cat /etc/os-release
pwd
mkdir cs350
cd cs350
mkdir pa1
cd pa1
wget --user=USERNAME --password=PASSWORD \
 http://merlot.usc.edu/cs350-m25/programming/pa1/xv6-pa1-src.tar.gz
tar xvf xv6-pa1-src.tar.gz
cd xv6-pa1-src
ls

1)

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Run XV6

Three ways to run xv6:

make qemu

run xv6 console in a separate window:

I do not recommend this way

2)

make qemu-nox
$ ls
$ echo Hello
$ cat README

run xv6 in commandline mode:

3)

make qemu-nox-gdb

debug xv6 commandline mode:

in a separate terminal, do:

gdb
(gdb) source .gdbinit
(gdb) list exec.c:11
(gdb) break exec
(gdb) break sys_open
(gdb) cont

by default, you are debugging the kernel

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

The last line in .gdbinit says to debug the kernel

(gdb) symbol-file kernel

sometimes, you may need the assembly listing of the kernel

objdump --disassemble --section=".text" kernel > kernel.txt
objdump --disassemble --section=".text" -S kernel > kernel.txt

you can open kernel.txt with your favorite text editor

switch to debug the "ls" user space program

(gdb) symbol-file _ls
(gdb) list 25
(gdb) break ls
(gdb) break open
(gdb) cont

in the first window, when you get the xv6 prompt, type "ls" to

run the "ls" program

you should break at the beginning of the ls() function

(gdb) c
Continuing.

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

[1b: 5c2] 0x772 <printf+162>: in (%dx),%al

Thread 1 hit Breakpoint 2, open () at usys.S:20
20 SYSCALL(open)
(gdb) list usys.S:20
15 SYSCALL(read)
16 SYSCALL(write)
17 SYSCALL(close)
18 SYSCALL(kill)
19 SYSCALL(exec)
20 SYSCALL(open)
...
(gdb) list usys.S:9
4 #define SYSCALL(name) \
5 .globl name; \
6 name: \
7 movl $SYS_ ## name, %eax; \
8 int $T_SYSCALL; \
9 ret
10
11 SYSCALL(fork)
...

you should break at the open() functionsystem call

since open() is a system call, things would look different

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

(gdb) delete
(gdb) symbol-file kernel
(gdb) break sys_open
(gdb) cont

why now?

An application program doesn’t know how to open a file

only the OS kernel knows how to do that

to ask the OS kernel for help, you make a system call

in xv6, the convention is that if foo() is a system call, the

corresponding OS kernel function is called sys_foo()

there are different types of context switches

To go from user space code to the kernel requires a context switch

here we switch from the user space context to the kernel

space context

we will talk more about this in class

for now, you need to switch to debug kernel code

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

The kernel versions of the system calls that are related to the file

system is in sysfile.c
sys_open() looks like regular C code

but remember, you are now in the all power kernel, you can

really mess things up if you are not careful

it’s not comfortable with switching contexts

Gdb is designed to mainly debug regular C code

single-step gdb command (i.e., "next" and "step") may not

work as expected when a context switch is involved

if you know that a context switch will happen, you should set

a breakpoint and use the "cont" gdb command to get there

although if you switch to assembly level debugging, then gdb

will just be debugging machine code and it won’t worry about

context switching

why not?

context switching is just an abstraction

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

How to get back to user space code?

(gdb) delete
(gdb) symbol-file _ls
(gdb) list ls.c:34
29 int fd;
30 struct dirent de;
31 struct stat st;
32
33 if((fd = open(path, 0)) < 0){
34 printf(2, "ls: cannot open %s\n", path);
35 return;
36 }
37
38 if(fstat(fd, &st) < 0){

(gdb) break ls.c:34
(gdb) break ls.c:38
(gdb) cont

you need to get back to where you made the open() system call

open ls.c and see that you called open() on line 33

therefore, you should do:

now you are back in user space

if you really want to know how context switching works from

user space to kernel space, you need to switch to debug

assembly code (you probably have seen this in CS 356)

"Abandon all hope, ye who enter here".

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

if you really want to know how context switching works from

user space to kernel space, you need to switch to debug

assembly code (you probably have seen this in CS 356)

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

(gdb) layout asm

 +--
B+>|0x5c2 <open> mov $0xf,%ax
 |0x5c5 <open+3> add %al,(%bx,%si)
 |0x5c7 <open+5> int $0x40
 |0x5c9 <open+7> ret
 |0x5ca <mknod> mov $0x11,%ax
 |0x5cd <mknod+3> add %al,(%bx,%si)
 |0x5cf <mknod+5> int $0x40
 |0x5d1 <mknod+7> ret
 +--

the window splits and the top panel would look like:

single step at the assembly code level:

(gdb) si
(gdb) si

"Abandon all hope, ye who enter here".

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

 +--
 >|0x80105cf9 push $0x40
 |0x80105cfb jmp 0x8010560a
 |0x80105d00 push $0x0
 |0x80105cf9 push $0x41
 |0x80105cfb jmp 0x8010560a
 |0x80105d00 push $0x0
 |0x80105cf9 push $0x42
 |0x80105cfb jmp 0x8010560a
 |0x80105d00 push $0x0
 +--

the top panel now looks like:

they correspond to the following in "usys.S":

20 SYSCALL(open)
21 SYSCALL(mknod)
22 SYSCALL(unlink)

set a breakpoint at virtual address 0x8010560a
(gdb) break *0x8010560a
(gdb) cont

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

what’s at 0x8010560a?

8010560a <alltraps>:
8010560a: 1e push %ds
8010560b: 06 push %es
8010560c: 0f a0 push %fs
8010560e: 0f a8 push %gs
80105610: 60 pusha
80105611: 66 b8 10 00 mov $0x10,%ax
80105615: 8e d8 mov %eax,%ds
80105617: 8e c0 mov %eax,%es
80105619: 54 push %esp
8010561a: e8 e1 00 00 00 call 80105700 <trap>

open kernel.txt and do a string search for 8010560a

in kernel.txt, <trap> looks code generated by a C

compiler

80105700 <trap>:
80105700: 55 push %ebp
80105701: 89 e5 mov %esp,%ebp
...

The assembly code level debugging is optional for now

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

to get rid of the top panel:

(gdb) tui disable

to set a breakpoint there, you need to clear all breakpoints,

switch to debug the kernel, and set a breakpoint there

(gdb) delete
(gdb) symbol-file kernel
(gdb) break trap
(gdb) layout src
(gdb) cont

one day, when you have a really tough bug and the only way to

debug your code is to debug context switching at the assembly

code level, then you need to come back here and review all this

hopefully, you won’t need to do that in this class

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add A System Call

Ch 3 contains details on traps and system calls (although most

of the low level details are not needed for you to complete this

assignment)

You need to read the xv6 book in the spec to understand how xv6

works

Your job is to add a new system call called trace()
since you know the basic flow from open() to sys_open()
and back to open(), you should be able to add a trace()
system call to reach sys_trace() and get back to trace()

of course, you need to implement sys_trace() according to

the spec

pwd
cd cs350/pa1/xv6-pa1-src
make -n pa1-submit

open a terminal and type the following:

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add A System Call

Which files do you need to modify?

you should see:

tar cvzf pa1-submit.tar.gz \
 Makefile \
 pa1-README.txt \
 proc.c \
 proc.h \
 syscall.c \
 syscall.h \
 sysproc.c \
 user.h \
 usys.S

these are the only files are are supposed to submit

if you submit additional files, the grader will have to delete

them before grading

if you submit binary files, points will be deducted

Please take a look at the grading guidelines to see what the grader

will do to grade part 1

need to modify Makefile get it compiled so the grader can run it

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add A System Call

test_project1.c is a test program for part 1

grade_pa1.c is another test program for part 1

need to include that in your Makefile

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Add Another System Call

Your job is to add a new system call called date()
need to call cmostime() to get read the real time clock (which

is the current UTC time

need to modify Makefile get it compiled so the grader can run it

date.c is a test program for part 2

