Introduction to Operating Systems - CSCI 350

Ch 14: Reliable Storage

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Main Points
) Problem posed by machine/disk failures

_, Transaction concept

) Reliability
= careful sequencing of file system operations
= copy-on-write (WAFL, ZFS)
= journalling (NTFS, linux ext4)
= log structure (flash storage)

) Availability
= RAID

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

File System Reliability

ﬁ} A file system is reliable if it can be trusted to store and maintain
data
= this is different from availability: data can be accessed

ﬁ> What can happen if disk loses power or machine software crashes?
—= some operations in progress may complete, but some operations
in progress may be lost
— overwrite of a block may only partially complete

) File system wants durability (as a minimum!)
— data previously stored can be retrieved (maybe after some
recovery step), regardless of failure
= if recovery takes too long and the system is not available during
recovery, customers are not going to be happy

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Storage Reliability Problem

ﬁ} Single logical file operation can involve updates to multiple
physical disk blocks
= Inode, indirect block, data block, bitmap, etc.
= with remapping, single update to physical disk block can
require multiple (even lower level) updates

ﬁ} At a physical level, operations complete one at a time
— want concurrent operations for performance

ﬁ} How do we guarantee consistency regardless of when crash
occurs?
= fransations for atomic updates (updates are all or nothing)
Q very popular in modern OSes
= redundancy for media failure
Q RAID (Redundant Array of Inexpensive Disks)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(14.1) Transactions:
Atomic Update

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Block/Buffer Cache With Write-back

read () write ()

—

\ v /

Buffer Cache .= _ FS

later

) Dirty/modified blocks in buffer cache

= disk blocks are read in and cached in the buffer cache
Q originally "clean/unmodified”

= a write operation would modify a disk block in the buffer cache
Q the block is labeled "dirty/modified"

= disk update: the file system periodically gathers all the dirty
blocks, update the disk, and clear the "dirty bits" |
Q update is done one disk block at a time 3 @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

N N
"~ "~
on disk on disk

CJ—V —— C_

N

1 4’
N~ N~
) How to go from 1 to 4 atomically?
= can we lock two disk updates in one atomic operation?
Q no way to ask the system not to crash in between updates

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

R e S
N— m/ N—
on disk d on disk
<
(_broek_ ?
disk N

) How to go from 1 to 4 atomically?
= release dirty blocks to disk update thread (which has a mind
of its own, unless you give it special instructions)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

N N N
N [N i N

not on
on disk disk on disk
N
not on hot on
disk N disk N
1 2 3

) How to go from 1 to 4 atomically?
= what if the disk update thread writes the top block to disk first

and crash happens before the new block gets written?
|
D

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

— N N N
N [N I NS i NS

not on
on disk d o on disk
N
&= ek ?
o | g <
1 2 3 4’

) How to go from 1 to 4 atomically?
= after reboot, you would end up with this inconsistent state

block gets written to disk first
Copyright © William C. Cheng

) lf something like SCAN is used, you cannot control which
2y

Introduction to Operating Systems - CSCI 350

Ad Hoc Approaches

ﬁ} Until the mid-1990°s, many file systems used ad hoc approaches to
solving the problem of consistently updating multiple on disk data
structures
= careful ordering: e.g., FFS would carefully control the order that

its updates were sent to disk
Q if a crash occurs in the middle of a group of updates, a scan of
the disk during recovery could identify and repair inconsistent
data structures
Q e.g., when creating a new file, FFS would:
1) first update the free-inode bitmap, update disk
2) initialize new file’s inode, update disk
3) update the directory that contains the new file
<& if crash happens, during reboot, run £sck (file system
check) to scan all of the file system’s metadata and repair
them if needed

& for ext2 file system, £sck would add discovered blocks
Ve

to /lost+found and invite user to inspect them

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Careful Ordering

) Problem with carful ordering:
= complex reasoning

— slow updates
Q to ensure that updates are stored in the order that allowed the

system’s state to be analyzed, file systems are forced to insert

sync operations or barriers between independent operations

& reducing amount of pipelining and parallelism in the
stream of requests to storage devices

& e.g., to perform 3 disk updates, you may end up waiting for
3 full disk rotations

— extremely slow recovery (may be okay for small disks in the
1970’s, by 1990’s, this can take minutes)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Application-level Approach

I:> POSIX’s rename (oldpath, newpath) system call
= if newpath already exists, newpath will be replaced atomically

ﬁ} Knowing the above, a text editor that’s editing "foo.txt" will do
the following when saving the file
= save the file as "#foo.txt#", then call:

rename ("#foo.txt#", "foo.txt")

_, This is not a general solution

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Transaction Abstraction

ﬁ} Transactions provide a way to atomically update multiple pieces of
persistent state

> Ex: updating a web site

= replace the current collection of documents in /servetr/live with a
new collection of documents in /dev/ready

= requirements:
Q you don’t want users to see intermediate steps when some of

the documents have been updated and others are not

= a transaction file system like Windows Vista’s TxF (Transactional
NTFS) provides an API that lets applications apply all updates
atomically like in the following pseudo-code:

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Transaction Abstraction

ResultCode publish () ({
transactionID = beginTransaction();
foreach file f in /dev/ready that is not in /server/live {
error = move f from /dev/ready to /server/live;
if (error) {
rollbackTransaction (transactionID);
return ROLLED_BACK;

}

foreach file f in /server/live that is not in /dev/ready {
error = delete £;
if (error) {
rollbackTransaction (transactionlID);
return ROLLED_BACK;

}

foreach file f in /dev/ready that differs from /server/live {
error = move f from /dev/ready to /server/live;
if (error) {
rollbackTransaction (transactionlID);
return ROLLED_BACK;

}

commitTransaction (transactionID);
return COMMITTED,

}
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Transaction Abstraction

) Atransaction can finish in one of two ways:
= commit: all of its updates occur
= roll back: none of its updates occur

ﬁ> If the transaction commits, we are guaranteed that all of the udpates
will be seen by all subsequent reads

ﬁ> If the transaction encounters errors and rolls back or crashes, no
reads outisde of the transaction will see any of the updates

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transaction Concept

ﬁ} Transaction is a way to perform a set of updates while providing the
following ACID properties
= atomic: operations appear to happen as a group, or not at all (at
logical level)
Q at physical level, only single disk/flash write is atomic
= consistency: sequential memory model
Q take the file system from one consistent state to another
= jsolation: other transactions do not see results of earlier
transactions until they are committed
Q if multiple transactions are executing concurrently, for each
pair of transactions T1 and T2, it either appears that T1
executed entirely before T2 or vice versa
= durable: operations that complete stay completed
Q future failures do not corrupt previously stored data
Q commitTransaction () Will not return until all of the
transaction’s updates have been safely stored in |
persistent storage y @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transactions vs. Critical Sections

ﬁ} Critical sections provide a way to update state that is atomic,
consistent, and isolated (but not durable)
= adding the durability requirement significantly changes how
we implement atomic updates

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Transactions

ﬁ} The basic idea is to persistently store all of a transaction’s

intentions in some separate location of persistent storage first

= only when all intentions are stored and the transaction commits
should the file system begin overwriting the target data
structures

= if the overwrites are interrupted in the middle, then on recovery,
the system can complete the transaction’s updates using the
persistently stored intentions

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging

ﬁ} Redo logging uses a persistent log for recording intentions and
executes a transaction in 4 stages:
= prepare: append all planned updates to log
= commit: append a single commit record to the log, indicating that
the transaction has committed
Q if a transaction is rolled back, a roll-back record may be
placed in the log to indicate that the transaction has been
abandoned
<& writing a roll-back record is optional
= Wwrite-back: copy changes to disk
= garbage collect: reclaim space in log

ﬁ> The moment the sector containing the commit record is successfully
stored is the atomic commit time
= before that moment, the transaction may safely be rolled back

= after that moment, the transaction must take effect
YN
S

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging

ﬁ} If the system crashes in the middle of a transaction, it must execute
a recovery routing before processing new requests
= scan sequentially through the log, taking the following actions
for each type of record in a transaction:
Q update record: add this record to a list of updates planned for
the specified transaction
Q commit record: write-back all of the transaction’s logged
updates to their target locations
Q roll-back record: discard the list of updates planned for
the specified transaction
= when the end of the log is reached, the recovery process
discards any update records for transactions that do not have
commit records in the log

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging: Before Transaction Start

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=%$200 Mike=$100
— T
~ I
Nonvolatile Tom=%$200 Mike=$100
Storage
Log:
~___ -

) Recall the 4 steps
= prepare: append all planned updates to log
= commit: append a single commit record to the log
= Wwrite-back: copy changes to disk
= garbage collect: reclaim space in lo 7NN
g g P g @,

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging: After Updates Are Logged

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache

Tom=$100 Mike=$200

_—
\

Nonvolatile

Tom=$200 Mike=$100

Storage

Log: Tom=$100, Mike=$200

\

) Recall the 4 steps

= = prepare: append all planned updates to log
= commit: append a single commit record to the log
= Wwrite-back: copy changes to disk

= garbage collect: reclaim space in log sl

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging: After Commit Logged

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=$100 Mike=%$200
— T
~ I
Nonvolatile Tom=%$200 Mike=$100
Storage
Log: Tom=$100, Mike=$200, COMMIT

~—___ -
) Recall the 4 steps
= prepare: append all planned updates to log
= = commit: append a single commit record to the log
= Wwrite-back: copy changes to disk
= garbage collect: reclaim space in log [@’_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging: After Write Back

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=$100 Mike=%$200
— T
~ I
Nonvolatile Tom=$100 Mike=$200
Storage
Log: Tom=$100, Mike=$200, COMMIT

~—___ -
) Recall the 4 steps
= prepare: append all planned updates to log
= commit: append a single commit record to the log
= = write-back: copy changes to disk
= garbage collect: reclaim space in log / @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Logging: After Garbage Collection

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=$100 Mike=%$200
— T
~ I
Nonvolatile Tom=%$100 Mike=$200
Storage
Log:
~___ -

) Recall the 4 steps
= prepare: append all planned updates to log
= commit: append a single commit record to the log
= Wwrite-back: copy changes to disk
= = garbage collect: reclaim space in lo 7NN
g g P g @,

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Questions

> What happens if machine crashes?
= before transaction start
— after transaction start, before operations are logged
after operations are logged, before commit
after commit, before write back
after write back before garbage collection

0 0 [

—, What happens if machine crashes during recovery?
= hote that updates are idempotent operations, i.e., performing the
operation twice has the safe effect as doing it once
Q account balance = $100 is idempotent
Q account balance += $100 is not idempotent

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Log Implementation

Volatile Memory
pending write-backs

Iog-head pointer D I:l D I:l I:l D R D Iog-tail pointer
log-head pointer [}~ i Persistent Storage
Log: ' y y
: : mixed: 5
writeback i WB complete
free : . free
complete : committed
uncommitted
older garbage eligible for in-use available for newer
collected garbage new records
~— collection -

ﬁ> Circular log implementation containing 3 regions
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redo Log Implementation

Volatile Memory
pending write-backs

Iog_head pointer D E D D D D D _ D Iog_tail pointer
_— = write-back process
— asynchronously writes
] pending write backs for
log-head pointer [} | Persistent Storage committed transactions
.......................... . : f—t garbage co"ect process
Log: Y J J periodically advances the
: mixed: ' persistent log-head pointe
writeback i WB complete N
free : . free
complete : committed
uncommitted
older garbage eligible for in-use available for newer
collected garbage new records
~— collection -

ﬁ> Circular log implementation containing 3 regions

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transaction Isoluation

Process A Process B
move file fromxtoy grep across xand y
mv x/file y/ grep foo x/* y/* > log

_) What if grep starts after
changes are logged, but
before commit?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Two Phase Locking

) Recall two phase locking

—= eXxpanding phase: locks may be acquired but not released
= contracting phase: locks may be released but not acquired

G> Common way to enforce isolution is to use two phase locking:
release locks only AFTER transaction commit

= prevents a process from seeing results of another transaction
that might not commit

ﬁ} Deadlock is possible for a set of transactions

= can force one of more transactions to rollback, release their locks,
and restart at some later time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transaction Isoluation

Process A Process B
lock X,y lock x, y, log
move file fromxtoy grep across xand y
mv x/file y/ grep foo x/* y/* > log
commit and release x, y commit and release x, y, log

) grep occurs either before
or after move

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Serializability

ﬁ} With two phase locking and redo logging, transactions appear
to occur in a sequential order (serializability)
= either: grep then move Or move then grep

G> Other implementations can also provide serializability
= optimistic concurrency control: abort any transaction that
would conflict with serializability

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Performance Of Redo Logging

ﬁ} One would expect redo logging to have poor performance since
each update is written to disk twice
= in practice, it can have good performance (often better than
update in place, especially for small writes)

ﬁ> Four factors allow efficient implementation of redo logging
= |log updates are sequential (append to the log is fast)
Q high performance systems use a separate disk for logging
(i.e., no seeks)
write-back is asynchronous (all write backs occur after commit)
compared to careful ordering, this has fewer barriers or
synchronous writes are required
= group commits: can combine a set of transaction commits into
one log write to improve performance

[

[

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Caveat

ﬁ} Most file systems implement a transactional model internally
= COpY onh write
= redo logging

ﬁ> Most file systems provide a transactional model for individual
system calls
= file rename, move, ...

ﬁ> Most file systems do NOT provide a transactional model for user
data
—= Wwhen you are downloading a 3.5 GB file (such as our virtual
appliance), do you want to automatically write all 3.5 GB of file
data into the log?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transactional File Systems

ﬁ} Most modern file systems use transactions to make changes to the
file system

ﬁ} Journaling file systems
= apply updates to the system’s metadata via transactions,
but update the contents of users’ files in place
Q first write metadata updates to a redo log, then commit
them, then perform write-backs, then garbage collect
Q if a program using a journaling file system requires atomic
multi-block updates to the content of a regular file, it needs to
provide them itself
= e.g., Microsoft NTFS, Apple HFS+, Linux ext3 and ext4

_, Logging file systems
= Include all updates to disk (both metadata and data) in
transactions
= e.g., Linux ext3 and ext4 can be configured to use either |
journaling or logging 3
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(14.2) Error Detection &
Correction

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Storage Availability

) Storage reliability: data fetched is what you stored
= transactions, redo logging, etc.

ﬁ} Storage availability: data is there when you want it
—= more disks — higher probability of some disk failing
— data available o< Prob(disk working)k
Q Iif failures are independent and data is spread across k disks
= for large k, probability that system works — 0

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

RAID

) Replicate data for availability
= RAID 0: no replication
= RAID 1: mirror data across two or more disks
Q Google File System replicated its data on three disks, spread

across multiple racks
= RAID 5: split data across disks, with redundancy to recover from

a single disk failure
= RAID 6: RAID 5, with extra redundancy to recover from two disk

failures

Copyright © William C. Cheng

RAID 1: Mirroring

_) Replicate writes to both disks
_, Reads can go to either disk

ﬁ> When the primary disk dies,
switch to the backup disk
= build a new disk by copying
data from the backup disk
Q extra workload on the
backup disk
<& degraded performance

Copyright © William C. Cheng

Y
S

Disk 0

data block 0
data block 1
data block 2
data block 3
data block 4
data block 5
data block 6
data block 7
data block 8
data block 9
data block 10
data block 11
data block 12
data block 13
data block 14
data block 15
data block 16
data block 17
data block 18
data block 19

AN
—

Disk 1

data block 0
data block 1
data block 2
data block 3
data block 4
data block 5
data block 6
data block 7
data block 8
data block 9
data block 10
data block 11
data block 12
data block 13
data block 14
data block 15
data block 16
data block 17
data block 18
data block 19

&E/

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Parity

_) Even Parity: parity block = block1 @ block2 @ block3 ® ...
= where @ is the XOR operator

block 1: 10001101
block2: 01101100
block3: 11000110

even parity block: 00100111

ﬁ> Odd Parity: parity block = ~(block1 © block2 @ block3 @ ...)
— Where ~ is the bit compliment operator

block 1: 10001101
block2: 01101100
block3: 11000110

odd parity block: 11011000

ﬁ} Can reconstruct any missing block from the others by XOR all
remaining blocks and flip all bits if odd parity is used 3

Copyright © William C. Cheng

E

41

Stripe 0
Stripe 1
Stripe 2
Stripe 3
Stripe 4

Disk 0

P0O-3
D4
D8

D12

D16

-

N
~

Disk 1

DO
P4-7
D9
D13
D17

"

AN
~

Disk 2

D1
D5
P8-11
D14
D18

—

AN
~

Disk 3

D2
D6
D10
P12-15
D19

—

Introduction to Operating Systems - CSCI 350

RAID 5: Rotating Parity

D11
D15
P16-19

-

ﬁ> If a parity disk is used instead, the parity disk can become a
performance bottleneck (hnumber of write requests to the parity disk
Is the sum of the humber of write requests to all other disks)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

RAID Update

_) Mirroring
= write every mirror

> RAID-5: to write one block
= read old data block
= read old parity block
= write new data block
= Wwrite new parity block
Q old data xor old parity xor new data

) RAID-5: to write entire stripe
= write data blocks and parity

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Non-Recoverable Read Errors

_ Disk devices can Iose data
= ohe sector per 10" bits read
= causes:
Q physical wear
Q repeated writes to nearby tracks

_, What impact does this have on RAID recovery?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Read Errors and RAID recovery

_) Example
= ten 1 TB disks, and 1 of them fails

= read remaining disks to reconstruct missing data
= cahnot tolerate a block failure on any of the remaining disks

- i 12 :
|:> Probability of recovery = (1] 10-1 5) (9 disks x 8 bits/byte x 10 '“ bytes/disk)
= 93%
= this failure rate is much higher than 2 random disk failures

ﬁ} Solutions:
= RAID-6: two redundant disk blocks
Q parity, linear feedback shift
= scrubbing: read disk sectors in background to find and fix latent
errors

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Stripe 0

Stripe 1

Stripe 2

Copyright © William C. Cheng

Y
S

Disk 0
strip (0,0)

parity (0,0,0)
parity (1,0,0)
parity (2,0,0)
parity (3,0,0)

strip (0,1)
data block 16
data block 17
data block 18
data block 19

strip (0,2)
data block 32
data block 33
data block 34
data block 35

RAID 5: Rotating Parity

AN
—

Disk 1

strip (1,0)
data block 0
data block 1
data block 2
data block 3

strip (1,1)
parity (0,1,1)
parity (1,1,1)
parity (2,1,1)
parity (3,1,1)

strip (1,2)
data block 36
data block 37
data block 38
data block 39

AN
—

Disk 2

strip (2,0)
data block 4
data block 5
data block 6
data block 7

strip (2,1)
data block 20
data block 21
data block 22
data block 23

strip (2,2)
parity (0,2,2)
parity (1,2,2)
parity (2,2,2)

parity (3,2,2)

AN
—

Disk 3

strip (3,0)
data block 8
data block 9
data block 10
data block 11

strip (3,1)
data block 24
data block 25
data block 26
data block 27

strip (3,2)
data block 40
data block 41
data block 42
data block 43

Introduction to Operating Systems - CSCI 350

AN
—

Disk 4

strip (4,0)
data block 12
data block 13
data block 14
data block 15

strip (4,1)
data block 28
data block 29
data block 30
data block 31

strip (4,2)
data block 44
data block 45
data block 46
data block 47

Introduction to Operating Systems - CSCI 350

Reliability Approach #1: Careful Ordering

) Sequence operations in a specific order
= careful design to allow sequence to be interrupted safely

) Post-crash recovery
= read data structures to see if there were any operations in
progress
= clean up/finish as needed

ﬁ> Approach taken in FAT, FFS (fsck), and many app-level recovery
schemes (e.g., Word)

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FAT: Append Data To File
_, Add data block

MFT Data Blocks
) Add pointer to data block 0
1
. - - 2
ﬁ> Update file tail to point to 2 - I
new MFT entry 4
5
ﬁ} Update access time at 6
head of file 8
9] file 9 block 0
10 =3 file 9 block 1
11 - file 9 block 2
12] file 12 block 0
13
14
16 | file 12 block 1
17 <
18 I file 9 block 4
19 >
20

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FAT: Append Data To File

> Normal operation:
—= add data block
= add pointer to data block
= update file tail to point to new MFT entry
= update access time at head of file

_) Recovery
= scan MFT

= [If entry is unlinked, delete data block
= if access time is incorrect, update

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FAT: Create New File

> Normal operation:
— allocate data block
= update MFT entry to point to data block
= Update directory with file name -> file number
Q what if directory spans multiple disk blocks?
—= update modify time for directory

_) Recovery
= scan MFT

= if any unlinked files (not in any directory), delete
= scan directories for missing update times

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FFS: Create A File

> Normal operation:
— allocate data block
write data block
allocate inode
write inode block
update bitmap of free blocks
update directory with file name -> file number
update modify time for directory

_) Recovery
= scah inode table

iIf any unlinked files (not in any directory), delete
compare free block bitmap against inode trees
scan directories for missing update/access times
time proportional to size of disk

[

I R [R |

[

0 0 [

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FFS: Move A File

> Normal operation:
= remove filename from old directory
— add filename to new directory

_) Recovery
= scan all directories to determine set of live files

= consider files with valid inodes and not in any directory
Q new file being created?
Q file move?
Q file deletion?

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FFS: Move And Grep

Process A Process B
move file from xtoy grep across xand y
mv x/£f1 y/ grep x/* y/*

Q: Will grep always see contents of £1?

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Application Level

> Normal operation:
= write name of each open file to app folder
= write changes to backup file
= rename backup file to be file (atomic operation provided by file
system)
= delete list in app folder on clean shutdown

_) Recovery
= oh startup, see if any files were left open

= |If so, look for backup file
= If so, ask user to compare versions

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Careful Ordering

_) Pros

= works with minimal support in the disk drive
— works for most multi-step operations

G> Cons

= can require time-consuming recovery after a failure

= difficult to reduce every operation to a safely interruptible
sequence of writes

= difficult to achieve consistency when multiple operations occur
concurrently

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Reliability Approach #2: Copy on Write File Layout

ﬁ} To update file system, write a hew version of the file system
containing the update
= nhever update in place
= reuse existing unchanged disk blocks

_) Seems expensive, but:
= Updates can be batched
— almost all disk writes can occur in paraliel

ﬁ} Approach taken in network file server appliances (WAFL, ZFS)

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

COW/Write Anywhere

root inode inode file’s inode array indirect data
slots indirect blocks (in inode file) blocks blocks

___________ - e R ETEAI R R

f1 s »

_____ - s P

------- o [Sl

_______ - e enenns P

f2 .. »
....... >

f3 s »

............................. > »

| | e

fixed location | anywhere

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

COW/Write Anywhere: Update Last Block Of F1

root inode inode file’s inode array indirect data
slots indirect blocks (in inode file) blocks blocks
___________ - e R ETEAI R R
f1 ::::::::::. .. k
-I'-'! b » P k
> i g [il
I e —P
_>
f2
....... >
f3
fixed location | anywhere

ﬁ> Intermediate states of an update are not observable

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

COW/Write Anywhere: Update Last Block Of F1

root inode
slots

version 0| e

version 1 1

fixed location

ﬁ> Intermediate states of an update are not observable

X

inode file’s inode array indirect data
indirect blocks (in inode file) blocks blocks
> R L L L L »
f1 :::::::::E. .. k
= P .
> i > :::::::E"";K
I e —P e .
_>
f2
....... >
f3
anywhere

= they atomically take effect when the root inode is updated ([
y y Y | @’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Copy on Write Garbage Collection

ﬁ} For write efficiency, want contiguous sequences of free blocks
— spread across all block groups

= Updates leave dead blocks scattered

ﬁ> For read efficiency, want data read together to be in the same
block group

= write anywhere leaves related data scattered

_ Background coalescing of live/dead blocks

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Copy-On-Write

_) Pros

= correct behavior regardless of failures
— fast recovery (root block array)
= high throughput (best if updates are batched)

ﬁ> Cons

= potential for high latency
—= small changes require many writes
= garbage collection essential for performance

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Logging File Systems

ﬁ} Instead of modifying data structures on disk directly, write changes
to a journal/log
= jntention list: set of changes we intend to make
= log/journal is append-only

ﬁ> Once changes are on log, safe to apply changes to data
structures on disk
— recovery can read log to see what changes were intended

ﬁ} Once changes are copied, safe to remove log

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Log Structure

ﬁ} Log is the data storage; no copy back
= storage split into contiguous fixed size segments
Q flash: size of erasure block
Q disk: efficient transfer size (e.g., 1TMB)
= log new blocks into empty segment
Q garbage collect dead blocks to create empty segments
— each segment contains extra level of indirection
Q which blocks are stored in that segment

_) Recovery
= find last successfully written segment

X

Copyright © William C. Cheng

