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Main Points
) Problem posed by machine/disk failures

_, Transaction concept

) Reliability
= careful sequencing of file system operations
= copy-on-write (WAFL, ZFS)
= journalling (NTFS, linux ext4)
= log structure (flash storage)

) Availability
= RAID
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File System Reliability

ﬁ} A file system is reliable if it can be trusted to store and maintain
data
= this is different from availability: data can be accessed

ﬁ> What can happen if disk loses power or machine software crashes?
—= some operations in progress may complete, but some operations
in progress may be lost
— overwrite of a block may only partially complete

) File system wants durability (as a minimum!)
— data previously stored can be retrieved (maybe after some
recovery step), regardless of failure
= if recovery takes too long and the system is not available during
recovery, customers are not going to be happy
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Storage Reliability Problem

ﬁ} Single logical file operation can involve updates to multiple
physical disk blocks
= Inode, indirect block, data block, bitmap, etc.
= with remapping, single update to physical disk block can
require multiple (even lower level) updates

ﬁ} At a physical level, operations complete one at a time
— want concurrent operations for performance

ﬁ} How do we guarantee consistency regardless of when crash
occurs?
= fransations for atomic updates (updates are all or nothing)
Q very popular in modern OSes
= redundancy for media failure
Q RAID (Redundant Array of Inexpensive Disks)
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(14.1) Transactions:
Atomic Update
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Block/Buffer Cache With Write-back

read () write ()

—

\ v /

Buffer Cache .= _ FS

later

) Dirty/modified blocks in buffer cache

= disk blocks are read in and cached in the buffer cache
Q originally "clean/unmodified”

= a write operation would modify a disk block in the buffer cache
Q the block is labeled "dirty/modified"

= disk update: the file system periodically gathers all the dirty
blocks, update the disk, and clear the "dirty bits" |
Q update is done one disk block at a time 3 @
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Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

N N
"~ "~
on disk on disk

CJ—V —— C_

N

1 4’
N~ N~
) How to go from 1 to 4 atomically?
= can we lock two disk updates in one atomic operation?
Q no way to ask the system not to crash in between updates
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Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

R e S
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on disk d on disk
<
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disk N

) How to go from 1 to 4 atomically?
= release dirty blocks to disk update thread (which has a mind
of its own, unless you give it special instructions)
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Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state

N N N
N [ N i N

not on
on disk disk on disk
N
not on hot on
disk N disk N
1 2 3

) How to go from 1 to 4 atomically?
= what if the disk update thread writes the top block to disk first

and crash happens before the new block gets written?
|
D
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Block/Buffer Cache With Write-back

) In the event of a crash
= file system can end up in an inconsistent state
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on disk d o on disk
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) How to go from 1 to 4 atomically?
= after reboot, you would end up with this inconsistent state

block gets written to disk first
Copyright © William C. Cheng
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Ad Hoc Approaches

ﬁ} Until the mid-1990°s, many file systems used ad hoc approaches to
solving the problem of consistently updating multiple on disk data
structures
= careful ordering: e.g., FFS would carefully control the order that

its updates were sent to disk
Q if a crash occurs in the middle of a group of updates, a scan of
the disk during recovery could identify and repair inconsistent
data structures
Q e.g., when creating a new file, FFS would:
1) first update the free-inode bitmap, update disk
2) initialize new file’s inode, update disk
3) update the directory that contains the new file
<& if crash happens, during reboot, run £sck (file system
check) to scan all of the file system’s metadata and repair
them if needed

& for ext2 file system, £sck would add discovered blocks
Ve

to /lost+found and invite user to inspect them
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Careful Ordering

) Problem with carful ordering:
= complex reasoning

— slow updates
Q to ensure that updates are stored in the order that allowed the

system’s state to be analyzed, file systems are forced to insert

sync operations or barriers between independent operations

& reducing amount of pipelining and parallelism in the
stream of requests to storage devices

& e.g., to perform 3 disk updates, you may end up waiting for
3 full disk rotations

— extremely slow recovery (may be okay for small disks in the
1970’s, by 1990’s, this can take minutes)
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Application-level Approach

I:> POSIX’s rename (oldpath, newpath) system call
= if newpath already exists, newpath will be replaced atomically

ﬁ} Knowing the above, a text editor that’s editing "foo.txt" will do
the following when saving the file
= save the file as "#foo.txt#", then call:

rename ("#foo.txt#", "foo.txt")

_, This is not a general solution

Copyright © William C. Cheng
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The Transaction Abstraction

ﬁ} Transactions provide a way to atomically update multiple pieces of
persistent state

> Ex: updating a web site

= replace the current collection of documents in /servetr/live with a
new collection of documents in /dev/ready

= requirements:
Q you don’t want users to see intermediate steps when some of

the documents have been updated and others are not

= a transaction file system like Windows Vista’s TxF (Transactional
NTFS) provides an API that lets applications apply all updates
atomically like in the following pseudo-code:

Copyright © William C. Cheng
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The Transaction Abstraction

ResultCode publish () ({
transactionID = beginTransaction();
foreach file f in /dev/ready that is not in /server/live {
error = move f from /dev/ready to /server/live;
if (error) {
rollbackTransaction (transactionID);
return ROLLED_BACK;

}

foreach file f in /server/live that is not in /dev/ready {
error = delete £;
if (error) {
rollbackTransaction (transactionlID);
return ROLLED_BACK;

}

foreach file f in /dev/ready that differs from /server/live {
error = move f from /dev/ready to /server/live;
if (error) {
rollbackTransaction (transactionlID);
return ROLLED_BACK;

}

commitTransaction (transactionID);
return COMMITTED,

}
Copyright © William C. Cheng
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The Transaction Abstraction

) Atransaction can finish in one of two ways:
= commit: all of its updates occur
= roll back: none of its updates occur

ﬁ> If the transaction commits, we are guaranteed that all of the udpates
will be seen by all subsequent reads

ﬁ> If the transaction encounters errors and rolls back or crashes, no
reads outisde of the transaction will see any of the updates

Copyright © William C. Cheng
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Transaction Concept

ﬁ} Transaction is a way to perform a set of updates while providing the
following ACID properties
= atomic: operations appear to happen as a group, or not at all (at
logical level)
Q at physical level, only single disk/flash write is atomic
= consistency: sequential memory model
Q take the file system from one consistent state to another
= jsolation: other transactions do not see results of earlier
transactions until they are committed
Q if multiple transactions are executing concurrently, for each
pair of transactions T1 and T2, it either appears that T1
executed entirely before T2 or vice versa
= durable: operations that complete stay completed
Q future failures do not corrupt previously stored data
Q commitTransaction () Will not return until all of the
transaction’s updates have been safely stored in |
persistent storage y @J
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Transactions vs. Critical Sections

ﬁ} Critical sections provide a way to update state that is atomic,
consistent, and isolated (but not durable)
= adding the durability requirement significantly changes how
we implement atomic updates

Copyright © William C. Cheng
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Implementing Transactions

ﬁ} The basic idea is to persistently store all of a transaction’s

intentions in some separate location of persistent storage first

= only when all intentions are stored and the transaction commits
should the file system begin overwriting the target data
structures

= if the overwrites are interrupted in the middle, then on recovery,
the system can complete the transaction’s updates using the
persistently stored intentions

Copyright © William C. Cheng
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Redo Logging

ﬁ} Redo logging uses a persistent log for recording intentions and
executes a transaction in 4 stages:
= prepare: append all planned updates to log
= commit: append a single commit record to the log, indicating that
the transaction has committed
Q if a transaction is rolled back, a roll-back record may be
placed in the log to indicate that the transaction has been
abandoned
<& writing a roll-back record is optional
= Wwrite-back: copy changes to disk
= garbage collect: reclaim space in log

ﬁ> The moment the sector containing the commit record is successfully
stored is the atomic commit time
= before that moment, the transaction may safely be rolled back

= after that moment, the transaction must take effect
YN
S
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Redo Logging

ﬁ} If the system crashes in the middle of a transaction, it must execute
a recovery routing before processing new requests
= scan sequentially through the log, taking the following actions
for each type of record in a transaction:
Q update record: add this record to a list of updates planned for
the specified transaction
Q commit record: write-back all of the transaction’s logged
updates to their target locations
Q roll-back record: discard the list of updates planned for
the specified transaction
= when the end of the log is reached, the recovery process
discards any update records for transactions that do not have
commit records in the log

Copyright © William C. Cheng
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Redo Logging: Before Transaction Start

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=%$200 Mike=$100
— T
~ I
Nonvolatile Tom=%$200 Mike=$100
Storage
Log:
~___ -

) Recall the 4 steps
= prepare: append all planned updates to log
= commit: append a single commit record to the log
= Wwrite-back: copy changes to disk
= garbage collect: reclaim space in lo 7NN
g g P g @,
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Redo Logging: After Updates Are Logged

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache

Tom=$100 Mike=$200

_—
\

Nonvolatile

Tom=$200 Mike=$100

Storage

Log: Tom=$100, Mike=$200

\

) Recall the 4 steps

= = prepare: append all planned updates to log
= commit: append a single commit record to the log
= Wwrite-back: copy changes to disk

= garbage collect: reclaim space in log sl
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Redo Logging: After Commit Logged

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=$100 Mike=%$200
— T
~ I
Nonvolatile Tom=%$200 Mike=$100
Storage
Log: Tom=$100, Mike=$200, COMMIT

~—___ -
) Recall the 4 steps
= prepare: append all planned updates to log
= = commit: append a single commit record to the log
= Wwrite-back: copy changes to disk
= garbage collect: reclaim space in log [ @’_
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Redo Logging: After Write Back

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=$100 Mike=%$200
— T
~ I
Nonvolatile Tom=$100 Mike=$200
Storage
Log: Tom=$100, Mike=$200, COMMIT

~—___ -
) Recall the 4 steps
= prepare: append all planned updates to log
= commit: append a single commit record to the log
= = write-back: copy changes to disk
= garbage collect: reclaim space in log / @J
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Redo Logging: After Garbage Collection

) Ex: transfer $100 from Tom’s account to Mike’s account
= initially, Tom’s account has $200 and Mike’s account has $100

Cache Tom=$100 Mike=%$200
— T
~ I
Nonvolatile Tom=%$100 Mike=$200
Storage
Log:
~___ -

) Recall the 4 steps
= prepare: append all planned updates to log
= commit: append a single commit record to the log
= Wwrite-back: copy changes to disk
= = garbage collect: reclaim space in lo 7NN
g g P g @,
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Questions

> What happens if machine crashes?
= before transaction start
— after transaction start, before operations are logged
after operations are logged, before commit
after commit, before write back
after write back before garbage collection

0 0 [

—, What happens if machine crashes during recovery?
= hote that updates are idempotent operations, i.e., performing the
operation twice has the safe effect as doing it once
Q account balance = $100 is idempotent
Q account balance += $100 is not idempotent

Copyright © William C. Cheng
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Redo Log Implementation

Volatile Memory
pending write-backs

Iog-head pointer D ............. I:l D I:l I:l D R D Iog-tail pointer
log-head pointer [}~ i Persistent Storage
Log: ' y y
: : mixed: 5
writeback i WB complete
free : . free
complete : committed
uncommitted
older garbage eligible for in-use available for newer
collected garbage new records
~— collection -

ﬁ> Circular log implementation containing 3 regions
Copyright © William C. Cheng
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Redo Log Implementation

Volatile Memory
pending write-backs

Iog_head pointer D ............. E D D D D D _ ............... D Iog_tail pointer
_— = write-back process
— asynchronously writes
] pending write backs for
log-head pointer [} | Persistent Storage committed transactions
.......................... . : f—t garbage co"ect process
Log: Y  J J periodically advances the
: mixed: ' persistent log-head pointe
writeback i WB complete N
free : . free
complete : committed
uncommitted
older garbage eligible for in-use available for newer
collected garbage new records
~— collection -

ﬁ> Circular log implementation containing 3 regions
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Transaction Isoluation

Process A Process B
move file fromxtoy grep across xand y
mv x/file y/ grep foo x/* y/* > log

_) What if grep starts after
changes are logged, but
before commit?

Copyright © William C. Cheng
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Two Phase Locking

) Recall two phase locking

—= eXxpanding phase: locks may be acquired but not released
= contracting phase: locks may be released but not acquired

G> Common way to enforce isolution is to use two phase locking:
release locks only AFTER transaction commit

= prevents a process from seeing results of another transaction
that might not commit

ﬁ} Deadlock is possible for a set of transactions

= can force one of more transactions to rollback, release their locks,
and restart at some later time

Copyright © William C. Cheng
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Transaction Isoluation

Process A Process B
lock X,y lock x, y, log
move file fromxtoy grep across xand y
mv x/file y/ grep foo x/* y/* > log
commit and release x, y commit and release x, y, log

) grep occurs either before
or after move

Copyright © William C. Cheng
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Serializability

ﬁ} With two phase locking and redo logging, transactions appear
to occur in a sequential order (serializability)
= either: grep then move Or move then grep

G> Other implementations can also provide serializability
= optimistic concurrency control: abort any transaction that
would conflict with serializability

Copyright © William C. Cheng
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Performance Of Redo Logging

ﬁ} One would expect redo logging to have poor performance since
each update is written to disk twice
= in practice, it can have good performance (often better than
update in place, especially for small writes)

ﬁ> Four factors allow efficient implementation of redo logging
= |log updates are sequential (append to the log is fast)
Q high performance systems use a separate disk for logging
(i.e., no seeks)
write-back is asynchronous (all write backs occur after commit)
compared to careful ordering, this has fewer barriers or
synchronous writes are required
= group commits: can combine a set of transaction commits into
one log write to improve performance

[

[
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Caveat

ﬁ} Most file systems implement a transactional model internally
= COpY onh write
= redo logging

ﬁ> Most file systems provide a transactional model for individual
system calls
= file rename, move, ...

ﬁ> Most file systems do NOT provide a transactional model for user
data
—= Wwhen you are downloading a 3.5 GB file (such as our virtual
appliance), do you want to automatically write all 3.5 GB of file
data into the log?

Copyright © William C. Cheng
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Transactional File Systems

ﬁ} Most modern file systems use transactions to make changes to the
file system

ﬁ} Journaling file systems
= apply updates to the system’s metadata via transactions,
but update the contents of users’ files in place
Q first write metadata updates to a redo log, then commit
them, then perform write-backs, then garbage collect
Q if a program using a journaling file system requires atomic
multi-block updates to the content of a regular file, it needs to
provide them itself
= e.g., Microsoft NTFS, Apple HFS+, Linux ext3 and ext4

_, Logging file systems
= Include all updates to disk (both metadata and data) in
transactions
= e.g., Linux ext3 and ext4 can be configured to use either |
journaling or logging 3
Copyright © William C. Cheng
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(14.2) Error Detection &
Correction

Copyright © William C. Cheng
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Storage Availability

) Storage reliability: data fetched is what you stored
= transactions, redo logging, etc.

ﬁ} Storage availability: data is there when you want it
—= more disks — higher probability of some disk failing
— data available o< Prob(disk working)k
Q Iif failures are independent and data is spread across k disks
= for large k, probability that system works — 0

Copyright © William C. Cheng
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RAID

) Replicate data for availability
= RAID 0: no replication
= RAID 1: mirror data across two or more disks
Q Google File System replicated its data on three disks, spread

across multiple racks
= RAID 5: split data across disks, with redundancy to recover from

a single disk failure
= RAID 6: RAID 5, with extra redundancy to recover from two disk

failures

Copyright © William C. Cheng



RAID 1: Mirroring

_) Replicate writes to both disks
_, Reads can go to either disk

ﬁ> When the primary disk dies,
switch to the backup disk
= build a new disk by copying
data from the backup disk
Q extra workload on the
backup disk
<& degraded performance

Copyright © William C. Cheng
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Parity

_) Even Parity: parity block = block1 @ block2 @ block3 ® ...
= where @ is the XOR operator

block 1: 10001101
block2: 01101100
block3: 11000110

even parity block: 00100111

ﬁ> Odd Parity: parity block = ~(block1 © block2 @ block3 @ ...)
— Where ~ is the bit compliment operator

block 1: 10001101
block2: 01101100
block3: 11000110

odd parity block: 11011000

ﬁ} Can reconstruct any missing block from the others by XOR all
remaining blocks and flip all bits if odd parity is used 3

Copyright © William C. Cheng
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Stripe 4
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Disk 3

D2
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D10
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D19
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RAID 5: Rotating Parity

D11
D15
P16-19

-

ﬁ> If a parity disk is used instead, the parity disk can become a
performance bottleneck (hnumber of write requests to the parity disk
Is the sum of the humber of write requests to all other disks)
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RAID Update

_) Mirroring
= write every mirror

> RAID-5: to write one block
= read old data block
= read old parity block
= write new data block
= Wwrite new parity block
Q old data xor old parity xor new data

) RAID-5: to write entire stripe
= write data blocks and parity

Copyright © William C. Cheng



Introduction to Operating Systems - CSCI 350

Non-Recoverable Read Errors

_ Disk devices can Iose data
= ohe sector per 10" bits read
= causes:
Q physical wear
Q repeated writes to nearby tracks

_, What impact does this have on RAID recovery?

Copyright © William C. Cheng
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Read Errors and RAID recovery

_) Example
= ten 1 TB disks, and 1 of them fails

= read remaining disks to reconstruct missing data
= cahnot tolerate a block failure on any of the remaining disks

- i 12 :
|:> Probability of recovery = (1 ] 10-1 5) (9 disks x 8 bits/byte x 10 '“ bytes/disk)
= 93%
= this failure rate is much higher than 2 random disk failures

ﬁ} Solutions:
= RAID-6: two redundant disk blocks
Q parity, linear feedback shift
= scrubbing: read disk sectors in background to find and fix latent
errors

X
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Extra Slides

X
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Reliability Approach #1: Careful Ordering

) Sequence operations in a specific order
= careful design to allow sequence to be interrupted safely

) Post-crash recovery
= read data structures to see if there were any operations in
progress
= clean up/finish as needed

ﬁ> Approach taken in FAT, FFS (fsck), and many app-level recovery
schemes (e.g., Word)

X
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FAT: Append Data To File
_, Add data block

MFT Data Blocks
) Add pointer to data block 0
1
. - - 2
ﬁ> Update file tail to point to 2 - I
new MFT entry 4
5
ﬁ} Update access time at 6
head of file 8
9 ] file 9 block 0
10 =3 file 9 block 1
11 - file 9 block 2
12 ] file 12 block 0
13
14
16 | file 12 block 1
17 <
18 I file 9 block 4
19 >
20

X
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FAT: Append Data To File

> Normal operation:
—= add data block
= add pointer to data block
= update file tail to point to new MFT entry
= update access time at head of file

_) Recovery
= scan MFT

= [If entry is unlinked, delete data block
= if access time is incorrect, update

X
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FAT: Create New File

> Normal operation:
— allocate data block
= update MFT entry to point to data block
= Update directory with file name -> file number
Q what if directory spans multiple disk blocks?
—= update modify time for directory

_) Recovery
= scan MFT

= if any unlinked files (not in any directory), delete
= scan directories for missing update times

X
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FFS: Create A File

> Normal operation:
— allocate data block
write data block
allocate inode
write inode block
update bitmap of free blocks
update directory with file name -> file number
update modify time for directory

_) Recovery
= scah inode table

iIf any unlinked files (not in any directory), delete
compare free block bitmap against inode trees
scan directories for missing update/access times
time proportional to size of disk

[

I R [ R |

[

0 0 [

X
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FFS: Move A File

> Normal operation:
= remove filename from old directory
— add filename to new directory

_) Recovery
= scan all directories to determine set of live files

= consider files with valid inodes and not in any directory
Q new file being created?
Q file move?
Q file deletion?

X
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FFS: Move And Grep

Process A Process B
move file from xtoy grep across xand y
mv x/£f1 y/ grep x/* y/*

Q: Will grep always see contents of £1?

X
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Application Level

> Normal operation:
= write name of each open file to app folder
= write changes to backup file
= rename backup file to be file (atomic operation provided by file
system)
= delete list in app folder on clean shutdown

_) Recovery
= oh startup, see if any files were left open

= |If so, look for backup file
= If so, ask user to compare versions

X
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Careful Ordering

_) Pros

= works with minimal support in the disk drive
— works for most multi-step operations

G> Cons

= can require time-consuming recovery after a failure

= difficult to reduce every operation to a safely interruptible
sequence of writes

= difficult to achieve consistency when multiple operations occur
concurrently

X
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Reliability Approach #2: Copy on Write File Layout

ﬁ} To update file system, write a hew version of the file system
containing the update
= nhever update in place
= reuse existing unchanged disk blocks

_) Seems expensive, but:
= Updates can be batched
— almost all disk writes can occur in paraliel

ﬁ} Approach taken in network file server appliances (WAFL, ZFS)

X
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COW/Write Anywhere

root inode inode file’s inode array indirect data
slots indirect blocks (in inode file) blocks blocks
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COW/Write Anywhere: Update Last Block Of F1

root inode inode file’s inode array indirect data
slots indirect blocks (in inode file) blocks blocks
___________ - e R ETEAI R R
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ﬁ> Intermediate states of an update are not observable

X
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COW/Write Anywhere: Update Last Block Of F1

root inode
slots

version 0| e

version 1 1

fixed location

ﬁ> Intermediate states of an update are not observable

X

inode file’s inode array indirect data
indirect blocks (in inode file) blocks blocks
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= they atomically take effect when the root inode is updated ([
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Copy on Write Garbage Collection

ﬁ} For write efficiency, want contiguous sequences of free blocks
— spread across all block groups

= Updates leave dead blocks scattered

ﬁ> For read efficiency, want data read together to be in the same
block group

= write anywhere leaves related data scattered

_ Background coalescing of live/dead blocks

X
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Copy-On-Write

_) Pros

= correct behavior regardless of failures
— fast recovery (root block array)
= high throughput (best if updates are batched)

ﬁ> Cons

= potential for high latency
—= small changes require many writes
= garbage collection essential for performance

X
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Logging File Systems

ﬁ} Instead of modifying data structures on disk directly, write changes
to a journal/log
= jntention list: set of changes we intend to make
= log/journal is append-only

ﬁ> Once changes are on log, safe to apply changes to data
structures on disk
— recovery can read log to see what changes were intended

ﬁ} Once changes are copied, safe to remove log

X
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Log Structure

ﬁ} Log is the data storage; no copy back
= storage split into contiguous fixed size segments
Q flash: size of erasure block
Q disk: efficient transfer size (e.g., 1TMB)
= log new blocks into empty segment
Q garbage collect dead blocks to create empty segments
— each segment contains extra level of indirection
Q which blocks are stored in that segment

_) Recovery
= find last successfully written segment

X
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