
Ch 14: Reliable Storage

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Main Points

Problem posed by machine/disk failures

Transaction concept

Reliability

Availability

careful sequencing of file system operations

copy-on-write (WAFL, ZFS)

journalling (NTFS, linux ext4)

log structure (flash storage)

RAID

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

File System Reliability

some operations in progress may complete, but some operations

in progress may be lost

What can happen if disk loses power or machine software crashes?

overwrite of a block may only partially complete

data previously stored can be retrieved (maybe after some

recovery step), regardless of failure

File system wants durability (as a minimum!)

A file system is reliable if it can be trusted to store and maintain

data

this is different from availability: data can be accessed

if recovery takes too long and the system is not available during

recovery, customers are not going to be happy

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Storage Reliability Problem

inode, indirect block, data block, bitmap, etc.

Single logical file operation can involve updates to multiple

physical disk blocks

with remapping, single update to physical disk block can

require multiple (even lower level) updates

want concurrent operations for performance

At a physical level, operations complete one at a time

How do we guarantee consistency regardless of when crash

occurs?

transations for atomic updates (updates are all or nothing)

redundancy for media failure

very popular in modern OSes

RAID (Redundant Array of Inexpensive Disks)

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(14.1) Transactions:

Atomic Update

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Block/Buffer Cache With Write-back

read()

OS

Buffer Cache

write()

FS

later

Dirty/modified blocks in buffer cache

disk blocks are read in and cached in the buffer cache

originally "clean/unmodified"

a write operation would modify a disk block in the buffer cache

the block is labeled "dirty/modified"

disk update: the file system periodically gathers all the dirty

blocks, update the disk, and clear the "dirty bits"

update is done one disk block at a time

can we lock two disk updates in one atomic operation?

no way to ask the system not to crash in between updates

on disk

1 4’

on disk

How to go from 1 to 4 atomically?

file system can end up in an inconsistent state

In the event of a crash

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Block/Buffer Cache With Write-back

new
block

new
block

not on
disk

not on
disk

on disk

1 2

?

4’

on disk

How to go from 1 to 4 atomically?

file system can end up in an inconsistent state

In the event of a crash

release dirty blocks to disk update thread (which has a mind

of its own, unless you give it special instructions)

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Block/Buffer Cache With Write-back

new
block

not on
disk

not on
disk

on disk

1 2

new
block

not on
disk

3

on disk

How to go from 1 to 4 atomically?

file system can end up in an inconsistent state

In the event of a crash

what if the disk update thread writes the top block to disk first

and crash happens before the new block gets written?

Crash

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Block/Buffer Cache With Write-back

How to go from 1 to 4 atomically?

file system can end up in an inconsistent state

In the event of a crash

after reboot, you would end up with this inconsistent state

If something like SCAN is used, you cannot control which

block gets written to disk first

new
block

not on
disk

not on
disk

on disk

1 2

new
block

not on
disk

3

on disk

?

4’

on disk

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Block/Buffer Cache With Write-back

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Ad Hoc Approaches

careful ordering: e.g., FFS would carefully control the order that

its updates were sent to disk

if a crash occurs in the middle of a group of updates, a scan of

the disk during recovery could identify and repair inconsistent

data structures

Until the mid-1990’s, many file systems used ad hoc approaches to

solving the problem of consistently updating multiple on disk data

structures

first update the free-inode bitmap, update disk

e.g., when creating a new file, FFS would:

initialize new file’s inode, update disk

update the directory that contains the new file

1)

2)

3)

if crash happens, during reboot, run fsck (file system

check) to scan all of the file system’s metadata and repair

them if needed

for ext2 file system, fsck would add discovered blocks

to /lost+found and invite user to inspect them

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Careful Ordering

complex reasoning

Problem with carful ordering:

slow updates

extremely slow recovery (may be okay for small disks in the

1970’s, by 1990’s, this can take minutes)

to ensure that updates are stored in the order that allowed the

system’s state to be analyzed, file systems are forced to insert

sync operations or barriers between independent operations

reducing amount of pipelining and parallelism in the

stream of requests to storage devices

e.g., to perform 3 disk updates, you may end up waiting for

3 full disk rotations

Knowing the above, a text editor that’s editing "foo.txt" will do

the following when saving the file

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Application-level Approach

if newpath already exists, newpath will be replaced atomically

POSIX’s rename(oldpath, newpath) system call

save the file as "#foo.txt#", then call:

rename("#foo.txt#", "foo.txt")

This is not a general solution

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Transaction Abstraction

Transactions provide a way to atomically update multiple pieces of

persistent state

replace the current collection of documents in /server/live with a

new collection of documents in /dev/ready

Ex: updating a web site

requirements:

you don’t want users to see intermediate steps when some of

the documents have been updated and others are not

a transaction file system like Windows Vista’s TxF (Transactional

NTFS) provides an API that lets applications apply all updates

atomically like in the following pseudo-code:

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Transaction Abstraction
ResultCode publish() {

 transactionID = beginTransaction();

 foreach file f in /dev/ready that is not in /server/live {

 error = move f from /dev/ready to /server/live;

 if (error) {

 rollbackTransaction(transactionID);

 return ROLLED_BACK;

 }

 }

 foreach file f in /server/live that is not in /dev/ready {

 error = delete f;

 if (error) {

 rollbackTransaction(transactionID);

 return ROLLED_BACK;

 }

 }

 foreach file f in /dev/ready that differs from /server/live {

 error = move f from /dev/ready to /server/live;

 if (error) {

 rollbackTransaction(transactionID);

 return ROLLED_BACK;

 }

 }

 commitTransaction(transactionID);

 return COMMITTED;

}

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Transaction Abstraction

commit: all of its updates occur

A transaction can finish in one of two ways:

roll back: none of its updates occur

If the transaction commits, we are guaranteed that all of the udpates

will be seen by all subsequent reads

If the transaction encounters errors and rolls back or crashes, no

reads outisde of the transaction will see any of the updates

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Transaction Concept

atomic: operations appear to happen as a group, or not at all (at

logical level)

at physical level, only single disk/flash write is atomic

Transaction is a way to perform a set of updates while providing the

following ACID properties

durable: operations that complete stay completed

future failures do not corrupt previously stored data

isolation: other transactions do not see results of earlier

transactions until they are committed

consistency: sequential memory model

take the file system from one consistent state to another

if multiple transactions are executing concurrently, for each

pair of transactions T1 and T2, it either appears that T1

executed entirely before T2 or vice versa

commitTransaction() will not return until all of the

transaction’s updates have been safely stored in

persistent storage

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Transactions vs. Critical Sections

Critical sections provide a way to update state that is atomic,

consistent, and isolated (but not durable)

adding the durability requirement significantly changes how

we implement atomic updates

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Transactions

only when all intentions are stored and the transaction commits

should the file system begin overwriting the target data

structures

The basic idea is to persistently store all of a transaction’s

intentions in some separate location of persistent storage first

if the overwrites are interrupted in the middle, then on recovery,

the system can complete the transaction’s updates using the

persistently stored intentions

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging

prepare: append all planned updates to log

commit: append a single commit record to the log, indicating that

the transaction has committed

write-back: copy changes to disk

garbage collect: reclaim space in log

Redo logging uses a persistent log for recording intentions and

executes a transaction in 4 stages:

if a transaction is rolled back, a roll-back record may be

placed in the log to indicate that the transaction has been

abandoned

before that moment, the transaction may safely be rolled back

The moment the sector containing the commit record is successfully

stored is the atomic commit time

after that moment, the transaction must take effect

writing a roll-back record is optional

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging

If the system crashes in the middle of a transaction, it must execute

a recovery routing before processing new requests

scan sequentially through the log, taking the following actions

for each type of record in a transaction:

update record: add this record to a list of updates planned for

the specified transaction

commit record: write-back all of the transaction’s logged

updates to their target locations

roll-back record: discard the list of updates planned for

the specified transaction

when the end of the log is reached, the recovery process

discards any update records for transactions that do not have

commit records in the log

Cache Tom=$200 Mike=$100

Log:

Tom=$200 Mike=$100Nonvolatile

Storage

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging: Before Transaction Start

Ex: transfer $100 from Tom’s account to Mike’s account

initially, Tom’s account has $200 and Mike’s account has $100

prepare: append all planned updates to log

Recall the 4 steps

commit: append a single commit record to the log

write-back: copy changes to disk

garbage collect: reclaim space in log

Recall the 4 steps

Cache Tom=$100 Mike=$200

Log: Tom=$100, Mike=$200

Tom=$200 Mike=$100Nonvolatile

Storage

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging: After Updates Are Logged

Ex: transfer $100 from Tom’s account to Mike’s account

initially, Tom’s account has $200 and Mike’s account has $100

prepare: append all planned updates to log

commit: append a single commit record to the log

write-back: copy changes to disk

garbage collect: reclaim space in log

Recall the 4 steps

Cache Tom=$100 Mike=$200

Log: Tom=$100, Mike=$200, COMMIT

Tom=$200 Mike=$100Nonvolatile

Storage

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging: After Commit Logged

Ex: transfer $100 from Tom’s account to Mike’s account

initially, Tom’s account has $200 and Mike’s account has $100

prepare: append all planned updates to log

commit: append a single commit record to the log

write-back: copy changes to disk

garbage collect: reclaim space in log

Recall the 4 steps

Cache Tom=$100 Mike=$200

Log: Tom=$100, Mike=$200, COMMIT

Tom=$100 Mike=$200Nonvolatile

Storage

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging: After Write Back

Ex: transfer $100 from Tom’s account to Mike’s account

initially, Tom’s account has $200 and Mike’s account has $100

prepare: append all planned updates to log

commit: append a single commit record to the log

write-back: copy changes to disk

garbage collect: reclaim space in log

Recall the 4 steps

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Logging: After Garbage Collection

Cache Tom=$100 Mike=$200

Log:

Tom=$100 Mike=$200Nonvolatile

Storage

Ex: transfer $100 from Tom’s account to Mike’s account

initially, Tom’s account has $200 and Mike’s account has $100

prepare: append all planned updates to log

commit: append a single commit record to the log

write-back: copy changes to disk

garbage collect: reclaim space in log

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Questions

before transaction start

What happens if machine crashes?

after transaction start, before operations are logged

after operations are logged, before commit

after commit, before write back

after write back before garbage collection

What happens if machine crashes during recovery?

note that updates are idempotent operations, i.e., performing the

operation twice has the safe effect as doing it once

account balance = $100 is idempotent

account balance += $100 is not idempotent

Circular log implementation containing 3 regions 0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Log Implementation

log-head pointer

pending write-backs

log-tail pointer

Persistent Storage

Volatile Memory

available for
new records

in-use newereligible for
garbage

collection

garbage
collected

older

log-head pointer

mixed:
WB complete

committed
uncommitted

free
writeback
complete

free

Log:

Circular log implementation containing 3 regions 0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redo Log Implementation

log-head pointer

pending write-backs

log-tail pointer

Persistent Storage

Volatile Memory

available for
new records

in-use newereligible for
garbage

collection

garbage
collected

older

log-head pointer

mixed:
WB complete

committed
uncommitted

free
writeback
complete

free

Log:

write-back process

asynchronously writes

pending write backs for

committed transactions

garbage collect process

periodically advances the

persistent log-head pointer

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Transaction Isoluation

move file from x to y

mv x/file y/

Process A

grep across x and y

grep foo x/* y/* > log

Process B

What if grep starts after

changes are logged, but

before commit?

prevents a process from seeing results of another transaction

that might not commit

Common way to enforce isolution is to use two phase locking:

release locks only AFTER transaction commit

expanding phase: locks may be acquired but not released

Recall two phase locking

contracting phase: locks may be released but not acquired

can force one of more transactions to rollback, release their locks,

and restart at some later time

Deadlock is possible for a set of transactions

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Phase Locking

grep occurs either before

or after move

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Transaction Isoluation

lock x, y

move file from x to y

mv x/file y/

Process A

lock x, y, log

grep across x and y

grep foo x/* y/* > log

Process B

commit and release x, y commit and release x, y, log

either: grep then move or move then grep

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Serializability

With two phase locking and redo logging, transactions appear

to occur in a sequential order (serializability)

optimistic concurrency control: abort any transaction that

would conflict with serializability

Other implementations can also provide serializability

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Performance Of Redo Logging

in practice, it can have good performance (often better than

update in place, especially for small writes)

One would expect redo logging to have poor performance since

each update is written to disk twice

Four factors allow efficient implementation of redo logging

log updates are sequential (append to the log is fast)

high performance systems use a separate disk for logging

(i.e., no seeks)

write-back is asynchronous (all write backs occur after commit)

compared to careful ordering, this has fewer barriers or

synchronous writes are required

group commits: can combine a set of transaction commits into

one log write to improve performance

Most file systems do NOT provide a transactional model for user

data

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Caveat

copy on write

Most file systems implement a transactional model internally

redo logging

file rename, move, ...

Most file systems provide a transactional model for individual

system calls

when you are downloading a 3.5 GB file (such as our virtual

appliance), do you want to automatically write all 3.5 GB of file

data into the log?

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Transactional File Systems

Most modern file systems use transactions to make changes to the

file system

apply updates to the system’s metadata via transactions,

but update the contents of users’ files in place

first write metadata updates to a redo log, then commit

them, then perform write-backs, then garbage collect

Journaling file systems

if a program using a journaling file system requires atomic

multi-block updates to the content of a regular file, it needs to

provide them itself

include all updates to disk (both metadata and data) in

transactions

Logging file systems

e.g., Microsoft NTFS, Apple HFS+, Linux ext3 and ext4

e.g., Linux ext3 and ext4 can be configured to use either

journaling or logging

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(14.2) Error Detection &

Correction

data available ∝ Prob(disk working)
k

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Storage Availability

transactions, redo logging, etc.

Storage reliability: data fetched is what you stored

more disks → higher probability of some disk failing

if failures are independent and data is spread across k disks

Storage availability: data is there when you want it

for large k, probability that system works → 0

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

RAID

RAID 1: mirror data across two or more disks

Google File System replicated its data on three disks, spread

across multiple racks

Replicate data for availability

RAID 0: no replication

RAID 5: split data across disks, with redundancy to recover from

a single disk failure

RAID 6: RAID 5, with extra redundancy to recover from two disk

failures

Replicate writes to both disks

Reads can go to either disk
data block 0

data block 1

data block 2

data block 3

data block 4

data block 5

data block 6

data block 7

data block 8

data block 9

data block 10

data block 11

data block 12

data block 13

data block 14

data block 15

data block 16

data block 17

data block 18

data block 19

Disk 0

data block 0

data block 1

data block 2

data block 3

data block 4

data block 5

data block 6

data block 7

data block 8

data block 9

data block 10

data block 11

data block 12

data block 13

data block 14

data block 15

data block 16

data block 17

data block 18

data block 19

Disk 1

When the primary disk dies,

switch to the backup disk

build a new disk by copying

data from the backup disk

extra workload on the

backup disk

degraded performance

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

RAID 1: Mirroring

Can reconstruct any missing block from the others by XOR all

remaining blocks and flip all bits if odd parity is used 0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Parity

block 1:

Even Parity: parity block = block1 ⊕ block2 ⊕ block3 ⊕ ...

10001101

block 2: 01101100

block 3: 11000110

even parity block: 00100111

where ⊕ is the XOR operator

Odd Parity: parity block = ~(block1 ⊕ block2 ⊕ block3 ⊕ ...)

where ~ is the bit compliment operator

block 1: 10001101

block 2: 01101100

block 3: 11000110

odd parity block: 11011000

If a parity disk is used instead, the parity disk can become a

performance bottleneck (number of write requests to the parity disk

is the sum of the number of write requests to all other disks)

D3

D7

D11

D15

P16-19

Disk 4

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

RAID 5: Rotating Parity

D2

D6

D10

D19

P12-15

Disk 3

D1

D5

D18

D14

P8-11

Disk 2

D0

D17

D9

D13

P4-7

Disk 1

D16

D4

D8

D12

P0-3

Disk 0

Stripe 0

Stripe 1

Stripe 2

Stripe 3

Stripe 4

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

RAID Update

write every mirror

Mirroring

read old data block

old data xor old parity xor new data

RAID-5: to write one block

read old parity block

write new data block

write new parity block

write data blocks and parity

RAID-5: to write entire stripe

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Non-Recoverable Read Errors

one sector per 10
15

 bits read

physical wear

Disk devices can lose data

causes:

repeated writes to nearby tracks

What impact does this have on RAID recovery?

Probability of recovery = (1 - 10
-15

)
 (9 disks × 8 bits/byte × 1012 bytes/disk)

ten 1 TB disks, and 1 of them fails

Example

RAID-6: two redundant disk blocks

parity, linear feedback shift

Solutions:

read remaining disks to reconstruct missing data

scrubbing: read disk sectors in background to find and fix latent

errors

= 93%

cannot tolerate a block failure on any of the remaining disks

this failure rate is much higher than 2 random disk failures

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Read Errors and RAID recovery

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

strip (0,1)

data block 16

data block 17

data block 18

data block 19

strip (0,2)

data block 32

data block 33

data block 34

data block 35

strip (0,0)

parity (0,0,0)

parity (1,0,0)

parity (2,0,0)

parity (3,0,0)

strip (1,1)

parity (0,1,1)

parity (1,1,1)

parity (2,1,1)

parity (3,1,1)

strip (1,0)

data block 0

data block 1

data block 2

data block 3

strip (2,0)

data block 4

data block 5

data block 6

data block 7

strip (3,0)

data block 8

data block 9

data block 10

data block 11

strip (4,0)

data block 12

data block 13

data block 14

data block 15

strip (2,1)

data block 20

data block 21

data block 22

data block 23

strip (3,1)

data block 24

data block 25

data block 26

data block 27

strip (4,1)

data block 28

data block 29

data block 30

data block 31

strip (2,2)

parity (0,2,2)

parity (1,2,2)

parity (2,2,2)

parity (3,2,2)

strip (1,2)

data block 36

data block 37

data block 38

data block 39

strip (3,2)

data block 40

data block 41

data block 42

data block 43

strip (4,2)

data block 44

data block 45

data block 46

data block 47

S
tr

ip
e

 0
S

tr
ip

e
 1

S
tr

ip
e

 2

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

RAID 5: Rotating Parity

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Reliability Approach #1: Careful Ordering

careful design to allow sequence to be interrupted safely

Sequence operations in a specific order

read data structures to see if there were any operations in

progress

Post-crash recovery

clean up/finish as needed

Approach taken in FAT, FFS (fsck), and many app-level recovery

schemes (e.g., Word)

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FAT: Append Data To File

Add data block

Add pointer to data block

Update file tail to point to

new MFT entry

Update access time at

head of file

MFT

3
2
1
0

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Data Blocks

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FAT: Append Data To File

add data block

Normal operation:

add pointer to data block

update file tail to point to new MFT entry

update access time at head of file

scan MFT

Recovery

if entry is unlinked, delete data block

if access time is incorrect, update

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FAT: Create New File

allocate data block

Normal operation:

update MFT entry to point to data block

update directory with file name -> file number

update modify time for directory

scan MFT

Recovery

if any unlinked files (not in any directory), delete

scan directories for missing update times

what if directory spans multiple disk blocks?

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FFS: Create A File

allocate data block

Normal operation:

write data block

allocate inode

write inode block

scan inode table

Recovery

if any unlinked files (not in any directory), delete

compare free block bitmap against inode trees

update bitmap of free blocks

update directory with file name -> file number

update modify time for directory

scan directories for missing update/access times

time proportional to size of disk

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FFS: Move A File

remove filename from old directory

Normal operation:

add filename to new directory

scan all directories to determine set of live files

Recovery

consider files with valid inodes and not in any directory

new file being created?

file move?

file deletion?

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FFS: Move And Grep

Process A

move file from x to y

mv x/f1 y/

Process B

grep across x and y

grep x/* y/*

Q: Will grep always see contents of f1?

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Application Level

write name of each open file to app folder

Normal operation:

write changes to backup file

on startup, see if any files were left open

Recovery

if so, look for backup file

rename backup file to be file (atomic operation provided by file

system)

delete list in app folder on clean shutdown

if so, ask user to compare versions

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Careful Ordering

works with minimal support in the disk drive

Pros

works for most multi-step operations

can require time-consuming recovery after a failure

Cons

difficult to reduce every operation to a safely interruptible

sequence of writes

difficult to achieve consistency when multiple operations occur

concurrently

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Reliability Approach #2: Copy on Write File Layout

never update in place

To update file system, write a new version of the file system

containing the update

reuse existing unchanged disk blocks

updates can be batched

Seems expensive, but:

almost all disk writes can occur in parallel

Approach taken in network file server appliances (WAFL, ZFS)

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

COW/Write Anywhere

inode file’s
indirect blocks

inode array
(in inode file)

indirect
blocks

data
blocks

root inode
slots

fixed location anywhere

f1

f2

f3

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

COW/Write Anywhere: Update Last Block Of F1

inode file’s
indirect blocks

inode array
(in inode file)

indirect
blocks

data
blocks

root inode
slots

fixed location anywhere

f1

f2

f3

f1’

Intermediate states of an update are not observable

they atomically take effect when the root inode is updated

Intermediate states of an update are not observable

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

COW/Write Anywhere: Update Last Block Of F1

inode file’s
indirect blocks

inode array
(in inode file)

indirect
blocks

data
blocks

root inode
slots

fixed location anywhere

f1

f2

f3

f1’

version 1

version 0

For read efficiency, want data read together to be in the same

block group

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy on Write Garbage Collection

spread across all block groups

For write efficiency, want contiguous sequences of free blocks

updates leave dead blocks scattered

write anywhere leaves related data scattered

Background coalescing of live/dead blocks

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy-On-Write

correct behavior regardless of failures

Pros

fast recovery (root block array)

high throughput (best if updates are batched)

potential for high latency

Cons

small changes require many writes

garbage collection essential for performance

Once changes are on log, safe to apply changes to data

structures on disk

intention list: set of changes we intend to make

Instead of modifying data structures on disk directly, write changes

to a journal/log

log/journal is append-only

recovery can read log to see what changes were intended

Once changes are copied, safe to remove log

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Logging File Systems

storage split into contiguous fixed size segments

flash: size of erasure block

Log is the data storage; no copy back

disk: efficient transfer size (e.g., 1MB)

log new blocks into empty segment

garbage collect dead blocks to create empty segments

each segment contains extra level of indirection

which blocks are stored in that segment

find last successfully written segment

Recovery

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Log Structure

