Introduction to Operating Systems - CSCI 350

Ch 10: Advanced
Memory Management

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Main Points

) Applications of memory management
= what can we do with the ability to trap on memory references to

individual pages?

_, File systems and persistent storage
= goals
= abstractions
= Interfaces

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Address Translation Uses

) Address translation is a powerful tool
= protection
= fill-on-demand/zero-on-demand
= COpy-on-write
= memory-mapped files
— demand paged virtual memory

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

More Address Translation Uses
ﬁ} Zero-copy I/0: directly from 1/O device into/out of user memory

ﬁ> Checkpoint/restart: transparently save a copy of a process, without
stopping the program while the save happens

ﬁ} Process migration: transparently move processes between
machines

ﬁ} Recoverable virtual memory: implement data structures that can
survive system reboots

ﬁ> Program debugging: data breakpoints when address is accessed

G> Cooperative Caching: demand page to memory on a different
machine

ﬁ> Distributed shared memory: illusion of memory that is shared
between machines

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(10.1) Zero-Copy 1/0

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Data Streaming

ﬁ} Many applications stream data between user-level programs and
physical devices (such as disks and network hardware)

web server (disk — application buffer — network)

web client (upload)

online video/music service

network file system

file sharing service (such as BitTorrent)

etc.

0 000 0 [

ﬁ> Problem: too much data copying from one buffer in kernel (or
user space) to another buffer in user space (or kernel)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Web Server

Server l request (4) parse reply
" | buffer R request , | buffer R > (9) formlat reply —
(1) network (3) kernel (5) file (8) kernel (10) socket write and
socket read copy read copy copy to kernel buffer

A - A

Y v v
Kernel
; g ;
(2) copy arriving (6) disk (7) disk (11) format outgoing
packet (DMA) request data (DMA) packet and DMA
Hardware : v : disk interface : I
network interface ;?)—

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Zero-Copy 1/O

ﬁ} When copying large amount of data across user-space / kernel
boundary, don’t copy data, copy pointers (in page table entry)
= [t’s fine to copy actual data when copying small amount of data

_) Requirements
= application must first align its user-level buffer to page boundary

ﬁ> When copying from user-space to kernel, the kernel must make the

page R/O to prevent the page being modified

= the kernel must also pin the page to prevent it from being
evicted by the virtual memory manager (since this page is
considered a kernel buffer now)

= |If the user-space writes to the page, it will trap into the kernel
and the kernel can make a copy of the page (and unpin the
original page and make the original page R/W)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Zero-Copy 1/O

ﬁ} When copying from kernel to user-space, the kernel can just simply
change the page table entry (and reclaim the physical memory
behind the empty buffer)

Before Zero-Copy After Zero-Copy
empty buffer free page
user page table > user page table
full user and
full kernel buffer kernel buffer
.

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(10.2) Virtual Machines

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How Do You Virtualize Virtual Memory?

) A user process running inside a
virtual machine thinks it’s
App accessing virtual memory
= but it’s really dealing with
Virtual virtual virtual virtual memory (i.e.,
memory guest virtual memory)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How Do You Virtualize Virtual Memory?

) A user process running inside a
virtual machine thinks it’s

App accessing virtual memory
Guest OS = but it’s really dealing with
Virtual virtual virtual virtual memory (i.e.,

memory guest virtual memory)

_, The guest OS thinks it’s
managing real memory
= but it’s really dealing with
virtual real memory (i.e.,
guest physical memory)

Virtual real memory

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How Do You Virtualize Virtual Memory?

App
Guest OS

Virtual virtual
memory

Virtual real memory

VMM

Real memory

Copyright © William C. Cheng

) A user process running inside a
virtual machine thinks it’s
accessing virtual memory
= but it’s really dealing with

virtual virtual memory (i.e.,
guest virtual memory)

_, The guest OS thinks it’s
managing real memory
= but it’s really dealing with
virtual real memory (i.e.,
guest physical memory)

) VMM needs to manage real
memory (host physical memory)
= how can we virtualize

virtual memory? (A
7

Introduction to Operating Systems - CSCI 350

How Do You Virtualize Virtual Memory?

| Virtual machine’s
page table

Virtual real memory

AN

translates virtual virtual addresses
to virtual real addresses

Real memory

0li
0 1 App 1 3 translates virtual real
11 i 2 1 addresses to
: physical addresses
2 | i : : 3 2
Virtual virtual
3 2 memory VMM’s page table
L

_, VMM cannot use either page tables directly

= must combine these two page tables into one shadow page
table and use that in VMM to perform address translation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shadow Page Table

0i
0 1 App 1 3 translates virtual real
1| i 2 1 addresses to
physical addresses
2 | i : : 3 2
Virtual virtual
3 2 memory VMM’s page table
L]
| Virtual machine’s
page table 0 3
Virtual real memory 1]
\ 211
3 1
translates virtual virtual addresses
to virtual real addresses Shadow page table
Real memory Qe e B

_, VMM cannot use either page tables directly
= must combine these two page tables into one shadow page
table and use that in VMM to perform address translation [@_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shadow Page Table

0i
0 1 App 1 3 translates virtual real
1| i 2 1 addresses to
physical addresses
2 | i : : 3 2
Virtual virtual
3 2 memory VMM’s page table
L]
| Virtual machine’s
page table 0 3
Virtual real memory 1]
\ 211
3 1
translates virtual virtual addresses
to virtual real addresses Shadow page table
Real memory Qe e B

_, When a VM changes its page table, VMM must update the
corresponding shadow page table
— - : |
main problem: poor performance / @’_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Hardware Support for Virtual Machines

ﬁ} x86 recently added hardware support for running virtual machines
at user level called Extended Page Table

ﬁ} Operating system kernel initializes two sets of translation
tables
= ohe for the guest OS
= one for the host OS

ﬁ> Hardware translates address in two steps
= first using guest OS tables, then host OS tables
= TLB holds composition

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extended Page Table

virtual
virtual
memory

W N = O

virtual
real
memory

N|[=]|W

real memory

) The processor traverses the
two tables in sequence and does the
page table combining all by itself

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

x86 Paging with EPT

10 bits 10 bits 12 bits
CR3
Page Directory Page Table
(pd) (pt)
Page
EPTP — R

y

l
these translates virtual real addresses 3 ;‘0}—
to physical addresses =

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

x86 Paging with EPT

10 bits 10 bits 12 bits

CR3

Page Directory Page Table
(pd) (pt)

Page
EPTP }——)

y

l
these translates virtual real addresses 3 ;‘0}—
to physical addresses =

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transparent Memory Compression

ﬁ} For VMs in a data center, pages from different VMs can be shared
= e.(g., zero pages
Q make page table entries invalid, on page fault, create a new
page of zeroes
= [t’s also possible to shared pages that are almost the same
Q can compute the difference (delta) between two pages then
compress and store the difference on disk and set the
corresponding page table entry to be invalid
<& on a page fault, bring the compressed delta from disk,
uncompress it and apply the difference
= if page size is big (such as 2MB), this trick can save a lot of
physical memory

ﬁ} Can run a scavenger task in the VMM to look for identical or similar
pages across different VMs to perform the compression

Copyright © William C. Cheng

Transparent Memory Compression

guest process,

VM #1 guest

page
table

guest
virtual

addr

-

Lo

guest physical

Introduction to Operating Systems - CSCI 350

host physical

guest process,

VM #2 guest

page
table

guest
virtual

addr

-

Lo

X

Copyright © William C. Cheng

addr space, VM #1 host memory
uest Page
ghysical table host
addr physical
— - addr
—| page A
Ly
—>| page B
guest physical
addr space, VM #2 host
guest Page
physical table
addr
— -
L
—1 invalid & f:g:;g';f“’e
3(2(1£0) o=
2y

22

Introduction to Operating Systems - CSCI 350

(10.3) Fault Tolerance

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fault Tolerance

ﬁ} For a long running program (that runs for days, weeks, months), it
would be nice to be able to recover from power glitches and
temporary hardware errors
= the likelihood of this happening in a data center is not negligible

ﬁ> Application should be doing checkpointing itself and write results
to disk periodically

= can the OS help?
—= we want to be able to restart a process whenever the power fails,

exactly where it left off, without the user’s knowledge

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transparent Checkpoint

Copy of Process Copy of Process
A
Process Checkpoint Restore Process
Execute) 4 Y Execute
Instructions Failure Instructions
: -
Time
ﬁ} First we need to suspend all threads executing in the process
and save its state (i.e., register values)
—= then save memory
= this is called a checkpoint or a shapshot NN
£y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Transparent Checkpoint

ﬁ} Can we perform checkpointing while the threads are running?
= after the registers are saved, we can do copy-on-write by setting
all valid page table entries to R/O
= When a page is saved on disk, change the page to R/W
= when copy-on-write kicks in, make a copy of the page
Q original page goes to disk
Q let the running program use the copy of the page

> We can check point the OS if the OS is running inside a virtual
machine using the same approach

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Process Migration

ﬁ} What if we checkpoint a process and then restart it on a different
machine?
= process migration: move a process from one machine to another
= this is often done inside a data center to migrate an entire virtual

machine for load balancing

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Recoverable Virtual Memory

ﬁ} Recoverable Virtual Memory: if there is a failure (e.g., power lost or
system crash), restore the contents of memory to a pointer not long

before the failure
= using the same copy-on-write trick as before, this can be done,

but can be quite slow to checkpoint the entire process every
time you write into memory

ﬁ} Solution: don’t checkpoint the entire process, instead, do it

incrementally
= ohly save copy of any pages that have been modified since the

last incremental checkpoint

= if there is a crash, we can recover the most recently memory by
reading in the first checkpoint, then applying each of the
incremental checkpoint

Copyright © William C. Cheng

Incremental Checkpoint

Introduction to Operating Systems - CSCI 350

Checkpoint 1 Checkpoint 2 Checkpoint 3 Restore
(Full) (Full)
A A
B P P
C R R
D Q Q
E S S

ﬁ} The idea here is very similiar to the idea of file system backup

where you can recover a lost file
= on Linux, level 0 backup is a full backup
= other levels are incremental backups

= if you set up a one-week daily backup schedule, you will start

with a level 0 full backup
Q next day is level 6, then level 5, etc.

to one week ago
Copyright © William C. Cheng

Q 1if you lose a file, you can only go back to any version up g\
3(2(1(0) o=
</

29

Introduction to Operating Systems - CSCI 350

Deterministic Debugging

ﬁ} Can we precisely replay the execution of a multi-threaded process
(or an OS kernel)?

= e.g., debug whether a process has a memory race or not

G> On a uniprocessor, the execution of an OS running in a virtual
machine can only be affected by three factors:
= [ts initial state
= input data provided by its I/O devices
= the precise timing of interrupts

G> Since host OS mediate each of the above factors for the virtual
machine, it can record them and play them back during debugging
= from a checkpoint, record:

Q all inputs and return values from system calls
Q all scheduling decisions
Q all synchronization operations
& e.d., which thread acquired lock in which order

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Cooperative Caching

ﬁ} Can we demand page to memory on a different machine?
= accessing remote memory over LAN is usually much faster than
accessing a local hard drive
= oh page fault, look in remote memory first before fetching from
disk

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Distributed Virtual Memory

ﬁ} Can we make a network of computers appear to be a shared-memory
multiprocessor?
= read-write: if page is cached only on one machine
= read-only: if page is cached on several machines
= invalid: if page is cached read-write on a different machine

) On read page fault:
— change remote copy to read-only
= copy remote version to local machine

> On write page fault (if cached):
= change remote copy to invalid
= change local copy to read-write

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(10.4) Security

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Security Through Virtual Machines

ﬁ} How can virtual machines be used to limit the scope of malicious
applications?
= Virtual Machine Honeypot: a virtual machine constructed for the
purpose of executing suspect code
Q used in commercial anti-virus software

ﬁ} Creating a virtual machine honeypot may seem extravagant
= reward is high if you can catch malicious applications before it
can do any harm to your real system

ﬁ> Virtual machine honeypot does not have to run as fast as the real
system
= can use these tricks to create a virtual machine honeypot:
Q shadow page tables
memory compression
efficient checkpoint and restart
copy-on-write

O O O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Security Through Virtual Machines

ﬁ} How do you know the virtual machine honeypot has been
corrupted?
= typically, a virus would immediately install logging software
or scan the disk for sensitive information
Q a smart virus may stay dormant for a while and do bad things
slowly to avoid detection

ﬁ} Some virus is designed to infect both the guest OS and the host
kernel implementing the virtual machine
= as a user, it’s super important to keep system software up to date
Q the system is vulnerable only if the virus is able to exploit
unknown weakness in the guest OS and a separate unknown
weakness in the host kernel

Q Defense In Depth: improving security through multiple layers
of protection

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(10.5) User-Level
Memory Management

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

User-Level Memory Management

ﬁ} How to let applications manage their own memory?
= the kernel is in still charge of allocating resource between
processes and in preventing access to privileged memory
Q once a page frame has been assignhed to a process, the kernel
can leave it up to the process to determine what to do with the

page

ﬁ} OS can provide applications the flexibility to decide:

— Where to get missing pages: e.g., from remote memory inside a
data center, remote disk, local disk, local non-volatile memory,
etc.

= Which page can be accessed: e.q., browsers and databases need
to set up their own application-level sandboxes to execute
untrusted code

= which page should be evicted: application often knows better

which page will be less likely to be referenced in the near future
|
@

37

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

User-Level Memory Management

ﬁ} Many applications can adapt the size of their working set to the
resources provided by the kernel: better match — better

performance
= garbage collected programs: some programs want to do its own

garbage collection
— databases and virtual machines: these applications work best if

they know how much physical memory is available to them

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

User-Level Memory Management

ﬁ} Two approaches to letting application have control over memory:
= pinned pages: application can pin virtual memory pages to
physical page frames, preventing these pages from being
evicted (unless absolutely necessary)
= user-level pagers: application can specify a user-level page
handler for a memory segment
Q on a page fault (or protection violation), kernel trap handler is
invoked
Q instead of handling the fault, the kernel passes control to
user-space handler to decide how to manage the trap, e.g.:
<& where to fetch the missing page
& what action to take if the application was a sandbox
<& which page to replace
Q user-level page handler must itself be stored in pinned
memory

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines & Virtual Memory

guest virtual guest physical host physical
addr space guest page addr space host page memory
guest directory directory
virtual table guest table
addr physical
- addr
—> -
guest host
page page host
table table Physical
addr
>

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shadow Page Table

guest virtual guest physical host physical
addr space guest page addr space host page memory
guest directory directory
virtual table guest table
addr physical
- addr
—> -
guest host
page page host
table table Physical
addr»
A
shadow
page table
_>
L
X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Recoverable Virtual Memory

_, Data structures that survive failures
= want a consistent version of the data structure

= user marks region of code as needing to be atomic
Q begin transaction, end transaction
= if crash, restore state before or after transaction

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Recoverable Virtual Memory

> On begin transaction:
= shapshot data structure to disk
= change page table permission to read-only

_) On page fault:
= mark page as modified by transaction

—= change page table permission to read-write

—, On end transaction:
= log changed pages to disk
= commit transaction when all mods are on disk

_) Recovery
= read last snapshot + logged changes, if committed

X

Copyright © William C. Cheng

