
Ch 10: Advanced

Memory Management

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 



0123

2

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Main Points

what can we do with the ability to trap on memory references to 

individual pages?

Applications of memory management

goals

File systems and persistent storage

abstractions

interfaces



0123

3

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Address Translation Uses

Address translation is a powerful tool

protection

fill-on-demand/zero-on-demand

copy-on-write

memory-mapped files

demand paged virtual memory



Process migration: transparently move processes between 

machines

0123

4

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

More Address Translation Uses

Program debugging: data breakpoints when address is accessed

Zero-copy I/O: directly from I/O device into/out of user memory

Checkpoint/restart: transparently save a copy of a process, without 

stopping the program while the save happens

Recoverable virtual memory: implement data structures that can 

survive system reboots

Cooperative Caching: demand page to memory on a different 

machine

Distributed shared memory: illusion of memory that is shared 

between machines



0123

5

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(10.1) Zero-Copy I/O



0123

6

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Data Streaming

web server (disk → application buffer → network)

Many applications stream data between user-level programs and

physical devices (such as disks and network hardware)

web client (upload)

Problem: too much data copying from one buffer in kernel (or

user space) to another buffer in user space (or kernel)

online video/music service

network file system

file sharing service (such as BitTorrent)

etc.



0123

7

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Web Server

Server

(5) file
read

(8) kernel
copy

reply
buffer

 (4) parse 
request

Kernel

Hardware

network interface

disk interface

(7) disk
data (DMA)

(6) disk
request

(2) copy arriving
packet (DMA)

(11) format outgoing
packet and DMA

(1) network
socket read

(3) kernel
copy

request
buffer

(10) socket write and 
copy to kernel buffer

(9) format reply



application must first align its user-level buffer to page boundary

Requirements

0123

8

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Zero-Copy I/O

When copying from user-space to kernel, the kernel must make the 

page R/O to prevent the page being modified

the kernel must also pin the page to prevent it from being 

evicted by the virtual memory manager (since this page is 

considered a kernel buffer now)

if the user-space writes to the page, it will trap into the kernel 

and the kernel can make a copy of the page (and unpin the 

original page and make the original page R/W)

When copying large amount of data across user-space / kernel 

boundary, don’t copy data, copy pointers (in page table entry)

it’s fine to copy actual data when copying small amount of data



Before Zero-Copy

user page table

empty buffer

full kernel buffer

After Zero-Copy

user page table

free page

full user and 

kernel buffer

0123

9

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Zero-Copy I/O

When copying from kernel to user-space, the kernel can just simply

change the page table entry (and reclaim the physical memory 

behind the empty buffer)



0123

10

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(10.2) Virtual Machines



0123

11

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

How Do You Virtualize Virtual Memory?

Virtual virtual
memory

App

A user process running inside a

virtual machine thinks it’s 

accessing virtual memory

but it’s really dealing with 

virtual virtual memory (i.e., 

guest virtual memory)



Virtual virtual
memory

Virtual real memory

App

Guest OS

0123

12

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

How Do You Virtualize Virtual Memory?

A user process running inside a

virtual machine thinks it’s 

accessing virtual memory

but it’s really dealing with 

virtual virtual memory (i.e., 

guest virtual memory)

The guest OS thinks it’s 

managing real memory

but it’s really dealing with 

virtual real memory (i.e.,

guest physical memory)



The guest OS thinks it’s 

managing real memory

A user process running inside a

virtual machine thinks it’s 

accessing virtual memory

but it’s really dealing with 

virtual virtual memory (i.e., 

guest virtual memory)
Virtual virtual

memory

Virtual real memory

Real memory

but it’s really dealing with 

virtual real memory (i.e.,

guest physical memory)

VMM needs to manage real 

memory (host physical memory)

how can we virtualize 

virtual memory?

App

Guest OS

VMM

0123

13

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

How Do You Virtualize Virtual Memory?



VMM’s page table

i0

1

2

3

3

2

1

Virtual machine’s
page table

i

i

0

1

2

3

1

2
Virtual virtual

memory

Virtual real memory

Real memory

VMM cannot use either page tables directly

translates virtual real 

addresses to 

physical addresses

translates virtual virtual addresses

to virtual real addresses

App

0123

14

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

How Do You Virtualize Virtual Memory?

must combine these two page tables into one shadow page 

table and use that in VMM to perform address translation



Shadow page table

(for each VM)

VMM’s page table

i

i

0

1

2

3

3

1

i0

1

2

3

3

2

1

Virtual machine’s
page table

i

i

0

1

2

3

1

2
Virtual virtual

memory

Virtual real memory

Real memory

translates virtual real 

addresses to 

physical addresses

translates virtual virtual addresses

to virtual real addresses

App

0123

15

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Shadow Page Table

VMM cannot use either page tables directly

must combine these two page tables into one shadow page 

table and use that in VMM to perform address translation



Shadow page table

(for each VM)

VMM’s page table

i

i

0

1

2

3

3

1

i0

1

2

3

3

2

1

Virtual machine’s
page table

i

i

0

1

2

3

1

2
Virtual virtual

memory

Virtual real memory

Real memory

When a VM changes its page table, VMM must update the

corresponding shadow page table

main problem: poor performance

translates virtual real 

addresses to 

physical addresses

translates virtual virtual addresses

to virtual real addresses

App

0123

16

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Shadow Page Table



x86 recently added hardware support for running virtual machines 

at user level called Extended Page Table

0123

17

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Hardware Support for Virtual Machines

Operating system kernel initializes two sets of translation 

tables

one for the guest OS

one for the host OS

Hardware translates address in two steps

first using guest OS tables, then host OS tables

TLB holds composition



0123

18

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Extended Page Table

real memory

virtual

virtual

memory

Extended Page Tables

virtual

real

memory

1

i1

0

i2

23

i

1

0

2

23

3

1

The processor traverses the

two tables in sequence and does the

page table combining all by itself



0123

19

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

x86 Paging with EPT

10 bits 10 bits 12 bits

Page Directory
(pd)

Page Table
(pt)

EPTP

CR3

Page

these translates virtual real addresses

to physical addresses



10 bits 10 bits 12 bits

Page Directory
(pd)

Page Table
(pt)

EPTP

CR3

Page

these translates virtual real addresses

to physical addresses

0123

20

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

x86 Paging with EPT



0123

21

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Transparent Memory Compression

e.g., zero pages

For VMs in a data center, pages from different VMs can be shared

it’s also possible to shared pages that are almost the same

can compute the difference (delta) between two pages then

compress and store the difference on disk and set the 

corresponding page table entry to be invalid

on a page fault, bring the compressed delta from disk, 

uncompress it and apply the difference

if page size is big (such as 2MB), this trick can save a lot of 

physical memory

Can run a scavenger task in the VMM to look for identical or similar 

pages across different VMs to perform the compression

make page table entries invalid, on page fault, create a new 

page of zeroes



0123

22

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Transparent Memory Compression

host

physical

addr

guest

physical

addr

guest process,

VM #1 guest

page

table

guest physical

addr space, VM #1 host

page

table

host physical

memory

guest

virtual

addr

page A

page B

guest

physical

addr

guest process,

VM #2 guest

page

table

guest physical

addr space, VM #2 host

page

table
guest

virtual

addr

delta relative

to page A
 invalid 



0123

23

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(10.3) Fault Tolerance



0123

24

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Fault Tolerance

the likelihood of this happening in a data center is not negligible

For a long running program (that runs for days, weeks, months), it 

would be nice to be able to recover from power glitches and 

temporary hardware errors

Application should be doing checkpointing itself and write results 

to disk periodically

can the OS help?

we want to be able to restart a process whenever the power fails, 

exactly where it left off, without the user’s knowledge



0123

25

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Transparent Checkpoint

Time

Process

...

Copy of Process

...

Execute

Instructions

Process

...

Copy of Process

...

Execute

Instructions

RestoreCheckpoint

Failure

then save memory

First we need to suspend all threads executing in the process 

and save its state (i.e., register values)

this is called a checkpoint or a snapshot



0123

26

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Transparent Checkpoint

after the registers are saved, we can do copy-on-write by setting

all valid page table entries to R/O

Can we perform checkpointing while the threads are running?

when a page is saved on disk, change the page to R/W

when copy-on-write kicks in, make a copy of the page

original page goes to disk

let the running program use the copy of the page

We can check point the OS if the OS is running inside a virtual 

machine using the same approach



process migration: move a process from one machine to another

What if we checkpoint a process and then restart it on a different 

machine?

this is often done inside a data center to migrate an entire virtual 

machine for load balancing

0123

27

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Process Migration



using the same copy-on-write trick as before, this can be done, 

but can be quite slow to checkpoint the entire process every 

time you write into memory

Recoverable Virtual Memory: if there is a failure (e.g., power lost or

system crash), restore the contents of memory to a pointer not long 

before the failure

0123

28

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Recoverable Virtual Memory

Solution: don’t checkpoint the entire process, instead, do it 

incrementally

only save copy of any pages that have been modified since the 

last incremental checkpoint

if there is a crash, we can recover the most recently memory by 

reading in the first checkpoint, then applying each of the 

incremental checkpoint



0123

29

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Incremental Checkpoint

Checkpoint 1

(Full)

on Linux, level 0 backup is a full backup

The idea here is very similiar to the idea of file system backup 

where you can recover a lost file

other levels are incremental backups

A

B

C

D

E

Checkpoint 2

P

Q

Checkpoint 3 Restore

(Full)

A

P

R

Q

S

R

S

if you set up a one-week daily backup schedule, you will start 

with a level 0 full backup

next day is level 6, then level 5, etc.

if you lose a file, you can only go back to any version up 

to one week ago



On a uniprocessor, the execution of an OS running in a virtual 

machine can only be affected by three factors:

0123

30

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Deterministic Debugging

e.g., debug whether a process has a memory race or not

Can we precisely replay the execution of a multi-threaded process

(or an OS kernel)?

its initial state

input data provided by its I/O devices

the precise timing of interrupts

Since host OS mediate each of the above factors for the virtual 

machine, it can record them and play them back during debugging

from a checkpoint, record:

all inputs and return values from system calls

all scheduling decisions

all synchronization operations

e.g., which thread acquired lock in which order



0123

31

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Cooperative Caching

accessing remote memory over LAN is usually much faster than 

accessing a local hard drive

Can we demand page to memory on a different machine?

on page fault, look in remote memory first before fetching from 

disk



0123

32

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Distributed Virtual Memory

read-write: if page is cached only on one machine

Can we make a network of computers appear to be a shared-memory 

multiprocessor?

read-only: if page is cached on several machines

invalid: if page is cached read-write on a different machine

change remote copy to read-only

On read page fault:

copy remote version to local machine

change remote copy to invalid

On write page fault (if cached):

change local copy to read-write



0123

33

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(10.4) Security



0123

34

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Security Through Virtual Machines

Virtual Machine Honeypot: a virtual machine constructed for the 

purpose of executing suspect code

How can virtual machines be used to limit the scope of malicious 

applications?

reward is high if you can catch malicious applications before it 

can do any harm to your real system

Creating a virtual machine honeypot may seem extravagant

can use these tricks to create a virtual machine honeypot:

Virtual machine honeypot does not have to run as fast as the real 

system

shadow page tables

memory compression

efficient checkpoint and restart

copy-on-write

used in commercial anti-virus software



0123

35

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Security Through Virtual Machines

How do you know the virtual machine honeypot has been 

corrupted?

typically, a virus would immediately install logging software 

or scan the disk for sensitive information

a smart virus may stay dormant for a while and do bad things 

slowly to avoid detection

Some virus is designed to infect both the guest OS and the host 

kernel implementing the virtual machine

as a user, it’s super important to keep system software up to date

the system is vulnerable only if the virus is able to exploit 

unknown weakness in the guest OS and a separate unknown 

weakness in the host kernel

Defense In Depth: improving security through multiple layers 

of protection



0123

36

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(10.5) User-Level

Memory Management



0123

37

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

User-Level Memory Management

the kernel is in still charge of allocating resource between 

processes and in preventing access to privileged memory

How to let applications manage their own memory?

once a page frame has been assigned to a process, the kernel 

can leave it up to the process to determine what to do with the 

page

where to get missing pages: e.g., from remote memory inside a 

data center, remote disk, local disk, local non-volatile memory, 

etc.

OS can provide applications the flexibility to decide:

which page can be accessed: e.g., browsers and databases need 

to set up their own application-level sandboxes to execute 

untrusted code

which page should be evicted: application often knows better 

which page will be less likely to be referenced in the near future



0123

38

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

User-Level Memory Management

garbage collected programs: some programs want to do its own 

garbage collection

Many applications can adapt the size of their working set to the 

resources provided by the kernel: better match → better 

performance

databases and virtual machines: these applications work best if 

they know how much physical memory is available to them



on a page fault (or protection violation), kernel trap handler is 

invoked

0123

39

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

User-Level Memory Management

pinned pages: application can pin virtual memory pages to 

physical page frames, preventing these pages from being 

evicted (unless absolutely necessary)

Two approaches to letting application have control over memory:

user-level pagers: application can specify a user-level page 

handler for a memory segment

where to fetch the missing page

instead of handling the fault, the kernel passes control to 

user-space handler to decide how to manage the trap, e.g.:

what action to take if the application was a sandbox

which page to replace

user-level page handler must itself be stored in pinned 

memory



0123

40

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Extra Slides



host

physical

addr

host

page

table

guest

physical

addr

guest virtual

addr space guest page 

directory

table

guest

page

table

guest physical

addr space host page 

directory

table

host physical

memory

guest

virtual

addr

0123

41

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Virtual Machines & Virtual Memory



guest

physical

addr

guest virtual

addr space guest page 

directory

table

guest

page

table

guest physical

addr space host page 

directory

table

host physical

memory

guest

virtual

addr

shadow

page table

host

page

table

host

physical

addr

0123

42

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Shadow Page Table



want a consistent version of the data structure

begin transaction, end transaction

Data structures that survive failures

user marks region of code as needing to be atomic

if crash, restore state before or after transaction

0123

43

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Recoverable Virtual Memory



snapshot data structure to disk

On begin transaction:

change page table permission to read-only

mark page as modified by transaction

On page fault:

change page table permission to read-write

log changed pages to disk

On end transaction:

commit transaction when all mods are on disk

read last snapshot + logged changes, if committed

Recovery

0123

44

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Recoverable Virtual Memory


