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Synchronization Motivation

two threads write to the same variable; which one should win?

does it matter which thread runs first?

When threads concurrently read/write shared memory, program 

behavior is undefined

when would it be considered the behavior wrong/incorrect?

behavior changes when re-run program

Thread schedule is non-deterministic

Compiler/hardware instruction reordering

Multi-word operations (such as memcmp()) are not atomic

programs need to work for any possible interleaving
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Compiler/Hardware Can Reorder Instructions

Modern compilers (and hardware) reorder instructions to 

improve performance

Thread 1

p = someComputation()
pInitialized = true;

Thread 2

while (!pInitialized)
    ;
q = anotherComputation(p)

can thread 2 use p before p is initialized?

doesn’t look like it’s possible, right?!

If you have optimization turned on when you compile, the compiler 

may decide to do the following (since it doesn’t understand that p
and pInitialized are semantically related):

Thread 1

pInitialized = true;
p = someComputation()

Thread 2

while (!pInitialized)
    ;
q = anotherComputation(p)

clearly, this is no good
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Why Reordering?

Why do compilers reorder instructions?

efficient code generation requires analyzing control/data 

dependency

Why do CPUs reorder instructions?

write buffering: allow next instruction to execute while write 

is being completed

Fix: memory barrier (a.k.a. membar or memory fence)

instruction to compiler/CPU

no operation after barrier starts until barrier returns

all operations before barrier complete before barrier returns
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(5.1) Challenges
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Race Condition

possible final values of x are 1 or 2

A race condition occurs when the behavior of a program depends 

on the interleaving of operations of different threads

Thread 1

x = 1;

Thread 2

x = 2;

possible final values of x are 13 or 25

Ex: y is initialized to 12

Thread 1

x = y + 1;

Thread 2

y = y * 2;

possible final values of x are 1, 2, and 3

Ex: x is initialized to 0

Thread 1

x = x + 1;

Thread 2

x = x + 2;



x = x + 2;
 /* 
  load  r1,x
  add   r2,r1,1
  store x,r2
  */

x = x + 1;
 /* 
  load  r1,x
  add   r2,r1,1
  store x,r2
  */
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Race Condition

Thread 1: Thread 2:

they execute machine instructions

Unfortunately, processors do not execute high-level language 

statements

if thread 1 executes the first (or two) machine instructions

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

x would end up to be 1

context switch can happen (to run a different thread)

Memory

memory bus

x

r1 and r2 are 
inside here

this can happen if you have a preemptive scheduler

0

Note: load and store are atomic (indivisible) operations
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Too Much Milk Problem

Two roommates want to make sure that the refrigerator is always 

well stocked with milk

what’s the algorithm for each roommate?

Correctness property

liveness: the program eventually enters a good state

safety: the program never enters a bad state

if there is no milk, eventually someone would buy milk

must not end up with more than one milk

Unless otherwise specified, we will always assume that neither the 

compiler nor the architecture reorders instructions



Q: Does the above solution guarantees safety and liveness?

the assumption here is that if a statement only access zero or

one memory location, it’s an atomic operation (because it 

cannot be preempted in the middle of that operation)

which statements are atomic?

// thread A or thread B
if(milk == 0){   // if no milk
  if(note == 0){ // if no noke
    note = 1;    // leave a note
    milk++;      // buy milk
    note = 0;    // remove note
  }
}

Algorithm:
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Too Much Milk Try #1: Leave A Note
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Too Much Milk Try #1: Leave A Note

This solution satisfies liveness but violates safety

// thread A
if(milk == 0){

  if(note == 0){
    note = 1;
    milk++;
    note = 0;
  }
}

// thread B

if(milk == 0){
  if(note == 0){
    note = 1;
    milk++;
    note = 0;
  }
}

time

in this scenario, milk is 2 at the end

Heisenbug!

occasionally fail in ways that may be difficult to reproduce



// thread A
noteA = 1;       // leave note
if(noteB == 0){  // if no note
  if(milk == 0){ // if no milk
    milk++;      // buy milk
  }
}
noteA = 0;       // remove note

// thread B
noteB = 1;       // leave note
if(noteA == 0){  // if no note
  if(milk == 0){ // if no milk
    milk++;      // buy milk
  }
}
noteB = 0;       // remove note

does this solution guarantees safety and liveness?
0123

11

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Too Much Milk Try #2: Two Notes

Algorithm:



proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

To prove safety, need to look at all possible 

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]

0123

12

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Too Much Milk Try #2: Two Notes

      // thread A
      noteA = 1;
[A1]  if(noteB == 0){
[A2]    if(milk == 0){
[A3]      milk++;
        }
      }
      noteA = 0;

      // thread B
      noteB = 1;
[B1]  if(noteA == 0){
[B2]    if(milk == 0){
[B3]      milk++;
[B4]    }
[B5]  }
      noteB = 0;

given the assumption, thread A will be

at [A3] and thread B will be at [B3]



contradiction, thread B will not reach [B3]  ¤

To prove safety, need to look at all possible 

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]
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Too Much Milk Try #2: Two Notes

      // thread A
      noteA = 1;
[A1]  if(noteB == 0){
[A2]    if(milk == 0){
[A3]      milk++;
        }
      }
      noteA = 0;

      // thread B
      noteB = 1;
[B1]  if(noteA == 0){
[B2]    if(milk == 0){
[B3]      milk++;
[B4]    }
[B5]  }
      noteB = 0;

proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

given the assumption, thread A will be

at [A3] and thread B will be at [B3]

Case 1: noteB = 1, milk = don’t care

contradiction, thread A will not reach [A3]

Case 2: noteB = 0, milk > 0

contradiction, thread A will not reach [A3]

Case 3: noteB = 0, milk = 0



Canno prove liveness
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Too Much Milk Try #2: Two Notes

      // thread A
[A0]  noteA = 1;
[A1]  if(noteB == 0){
[A2]    if(milk == 0){
[A3]      milk++;
        }
      }
      noteA = 0;

      // thread B
[B0]  noteB = 1;
[B1]  if(noteA == 0){
[B2]    if(milk == 0){
[B3]      milk++;
[B4]    }
[B5]  }
      noteB = 0;

if thread A executes [A0] and switch to

thread B to execute [B0], or vice versa,

both will not buy milk
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Too Much Milk Try #3: Waiting

// thread A
noteA = 1;         // leave noteA
while(noteB == 1){ // if no note from roommate
  ;                // spin
}
if(milk == 0){     // if no milk
  milk++;          // buy milk
}
noteA = 0;         // remove noteA

// thread B
noteB = 1;         // leave note
if(noteA == 0){    // if no note from roommate
  if(milk == 0){   // if no milk
    milk++;        // buy milk
  }
}
noteB = 0;         // remove note

does this solution guarantees safety and liveness?

Algorithm:



Can prove safety using a similar argument for 

solution 2
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Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 1){
  ;
}
if(milk == 0){
  milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
  if(milk == 0){
    milk++;
  }
}
noteB = 0;

Liveness: since thread B has no loop, noteB

will eventually be 0 and thread A will get to

decide to buy milk or not

Solution 3 has both safety and liveness using

only atomic load and store operations

case 1: noteB = 1, milk = don’t care

contradiction, B will not buy milk

case 2: noteB = 0, milk > 0

contradiction, A will not buy milk

case 3: noteB = 0, milk = 0

contradiction, B will not buy milk  ¤



Is solution 3 a "good" solution?
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Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 0){
  ;
}
if(milk == 0){
  milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
  if(milk == 0){
    milk++;
  }
}
noteB = 0;

issues:

solution is complex (why the asymmetry?)

solution is inefficient: thread A is doing

busy-waiting and consuming CPU resource

solution may fail if the compiler or hardware

reorders instructions (although this 

limitation can be addressed by using

memory barriers, which would increase

the implementation complexity of the

algorithm)

there is something called Peterson’s

algorithm that would work more generally



// thread A or thread B
Kitchen::buyIfNeeded() {
  mutex.lock();
  ...
  mutex.unlock();
}

Unless otherwise specified, we use the term lock and mutex 

interchangeably (although in general, a lock may allow multiple 

threads to have concurrent access to a resource)

Lock: a primitive that only one thread at a time can own

// thread A or thread B
Kitchen::buyIfNeeded() {
  lock.acquire();
  if (milk == 0) {
    milk++;
  }
  lock.release();
}
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Too Much Milk: Use Synchronization Objects

simple and symmetrical
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(5.2) Structuring

Shared Objects
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Threads And Shared Objects

shared objects contain both shared state and synchronization 

variables (for controlling concurrent access to shared state)

In a multi-threaded program, threads are separate from shared 

objects and operate concurrently on shared objects

Shared ObjectsThreads

P
u

b
li

c
 M

e
th

o
d

s

State

Variables

Synchronization

Variables

all shared state in a program should be encapsulated in

one or more shared objects

Shared objects: objects that can be accessed safely by multiple 

threads



today, Java supports monitors via the synchronized keyword

Early programming languages with monitors include Birnch 

Hansen’s Concurrent Pascal and Xerox PARC’s Mesa

a monitor is a synchronization construct that allows executing 

entities to have both mutual exclusion and the ability to 

wait/block for a certain condition to become true

When a programming language includes support for shared 

objects, a shared object is often called a monitor
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Monitors
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Shared Objects Are Implemented In Layers

Shared

Objects:

Synchronization

Variables:

Atomic

Instructions:

Hardware:

Bounded Buffer Barrier

Semaphores Locks Condition Variables

Interrupt Disable Test-and-Set

Multiple Processors Hardware Interrupts

Concurrent

Applications:

Readers/Writers
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(5.3) Locks:

Mutual Exclusion

Synchronization

Variables:
Semaphores Locks Condition Variables
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Locks

A lock is a synchronization variable that provides mutual exclusion 

(when one thread holds a lock, no other thread can hold it, i.e., 

other threads are excluded)

A program associates each lock with some subset of shared state 

and requires a thread to hold the lock when accessing that state

as a result, only one thread can access the shared state at a 

time

while holding a lock, a thread can perform an arbitrary set of 

operations

those operations appear to be atomic to other threads

no other thread can observe an intermediate state

other threads can only observe the state after the lock is 

released



seeing the state is FREE and setting the state to BUSY are 

together an atomic operation
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Locks: API and Properties

a lock can be in one of two states: BUSY or FREE

A lock enables mutual exclusion by providing two methods: 

Lock::acquite() and Lock::release()

a lock is initially in the FREE state

Lock::acquire() waits until the lock is FREE and then 

atomically makes the lock BUSY

Lock::release() makes the lock FREE

if there are pending acquire() operations, this state change 

causes one of them to proceed

if multiple threads try to acquire the lock, at most one thread 

will succeed

one thread observes that the lock is FREE and sets it to 

BUSY while other threads just see that the lock is BUSY
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Locks: API and Properties

mutual exclusion: at most one thread holds the lock

A lock implementation should ensure the following three properties

progress: if no thread holds the lock and any thread attempts to 

acquire the lock, then eveutually some thread succeeds in 

acquiring the lock

bounded waiting: if a thread T attempts to acquire a lock, then 

there exists a bound on the number of times other threads can 

successfully acquire the lock before T does

this is a safety property - locks prevent more than one thread 

from accessing shared state

this is a liveness property - if a lock is FREE, some thread 

must be able to acquire it

this is a liveness property - any particular thread that wants 

to acquire the lock must eventually succeed in doing so

Non-property: thread ordering

no promise that waiting threads acquire the lock in FIFO

order



tryget() {
  item = NULL;
  lock.acquire();
  if (front < tail) {
    item = buf[front % MAX];
    front++;
  }
  lock.release();
  return item;
}

Use a fixed size buffer to implement a FIFO queue
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Case Study: Thread-Safe Bounded Queue

tryput(item) {
  lock.acquire();
  if ((tail - front) < size) {
    buf[tail % MAX] = item;
    tail++;
  }
  lock.release();
}

initially, front=tail=0, lock=FREE, buf[MAX]
for simplicity, assume no wraparound/overflow on array index

front = total number of items removed

tail = total number of items inserted/appended

a thread cannot know the state of the bounded queue/buffer 

unless it’s holding the lock

if tryget() returns NULL, we can only conclude that the 

buffer was empty



A critical section is a sequence of code that atomically accesses 

shared state
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Critical Section

a critical section with respect to lock L is code executed when 

holding lock L (code between L.acquire() and L.release())
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(5.4) Condition Variables:

Waiting for a Change

Synchronization

Variables:
Semaphores Locks Condition Variables



get()
{
  while ((data = tryget()) == NULL) ;
  return data;
}

Wait: atomically release lock, placing the thread on the CV queue,

and suspend the execution of the calling thread

these threads are working together and helping each other

The right way to wait for a shared state variable to change value is 

to go sleep on a queue (i.e., a condition variable queue) and wait for 

a wake up call (i.e., a notification)

called only when holding a lock

Waiting inside a critical section

reacquire the lock when wakened

Signal: wake up a waiting thread, if any

Broadcast: wake up all waiting threads, if any

Busy waiting:
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Condition Variables (CV)
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Condition Variable Design Pattern

methodThatWaits() {
  lock.acquire();
  // read/write shared state
  while (!testSharedState()) {
    cv.wait(lock);
  }
  // read/write shared state
  lock.release();
}

methodThatSignals() {
  lock.acquire();
  // read/write shared state
  // if testSharedState() is true
  cv.signal(lock);
  // read/write shared state
  lock.release();
}
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Example: Bounded Queue/Buffer

get() {
  lock.acquire();
  while (front==tail){
    empty.wait(lock);
  }
  item = buf[front%MAX];
  front++;
  full.signal(lock);
  lock.release();
  return item;
}

put(item) {
  lock.acquire();
  while ((tail-front)==MAX){
    fullf.wait(lock);
  }
  buf[tail%MAX] = item;
  tail++;
  empty.signal(lock);
  lock.release();
}

empty: threads sleep here because the buffer is empty (nothing 

to get, nothing to work on)

Two CV queues

full: threads sleep here because the buffer is full (cannot add 

work, no space)

full.signal() if the buffer is no longer full

empty.signal() if the buffer is no longer empty



methodThatWaits() {
  lock.acquire();
  // pre-condition: State is consistent
  // read/write shared state
  while (!testSharedState()) {
    cv.wait(lock);
  }
  // WARNING: shared state may have changed,
  //     but testSharedState() is true and
  //     pre-condition is true
  // read/write shared state
  lock.release();
}

methodThatSignals() {
  lock.acquire();
  // pre-condition: State is consistent
  // read/write shared state
  // if testSharedState() is true
  cv.signal(lock);
  // NO WARNING: signal keeps lock
  // read/write shared state
  lock.release();
}
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Pre/Post Conditions
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Condition Variables

Always hold lock when calling wait(), signal(), broadcast()
always hold lock when accessing shared state

if signal when no one is waiting, it’s as if nothing has happened

Condition variable is memoryless

if wait before signal, waiting thread wakes up

wait() atomically releases lock

signal()/broadcast() put the thread on the ready list

When a thread is woken up from wait(), it may not run immediately

when lock is released, any waiting thread might acquire it

while (needToWait()) {
  cv.wait(lock);
}

wait() must be called in a loop since spurious wakeup can occur

lock is reacquired before wait() returns
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(5.5) Designing and 

Implementing

Shared Objects



Always leave shared state variables in a consistent state when lock 

is released, or when waiting

signal() or broadcast()
If do something that might wake someone up

do not assume when you wake up, signaller just ran

while (needToWait()) {
  cv.wait(lock);
}

If need to wait:

release lock on finish

grab lock on start to every method/procedure

Add locks to object/module

Identify objects or data structures that can be accessed by multiple 

threads concurrently
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Structured Synchronization
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Remember The Rules

Use consistent structure

Always use locks and condition variables

Always acquire lock at beginning of procedure, release at end

Always hold lock when using a condition variable

Always wait in while loop

Never spin in sleep()



message-passing is another way for synchronization

We generally use the term monitor to mean that we are using locks 

and CVs for synchronization

with Hoare semantics, liveness properties is easier to prove

In general, Mesa semantics makes it easier to write application 

code, and therefore, more widely used

nested signals possible

when waiting thread finishes, processor/lock given back to 

signaller

signal() gives processor and lock to waiting thread

Hoare

signaller keeps lock and processor

signal() puts waiting thread on the ready list

Mesa
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Mesa vs. Hoare Semantics
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Bounded Buffer (Mesa Semantics)

This is what we had before

get() {
  lock.acquire();
  while (front==tail){
    empty.wait(lock);
  }
  item = buf[front%MAX];
  front++;
  full.signal(lock);
  lock.release();
  return item;
}

put(item) {
  lock.acquire();
  while ((tail-front)==MAX){
    full.wait(lock);
  }
  buf[tail%MAX] = item;
  tail++;
  empty.signal(lock);
  lock.release();
}
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Bounded Buffer (Hoare Semantics)

get() {
  lock.acquire();
  if (front==tail){
    empty.wait(lock);
  }
  item = buf[front%MAX];
  front++;
  full.signal(lock);
  lock.release();
  return item;
}

put(item) {
  lock.acquire();
  if ((tail-front)==MAX){
    full.wait(lock);
  }
  buf[tail%MAX] = item;
  tail++;
  empty.signal(lock);
  lock.release();
}

No need to loop since the lock is transferred from the thread calling 

empty.signal() to the thread that was sleeping in empty.wait()
but we said before that wait() must be called in a loop since 

spurious wakeup is permitted to occur

under Hoare semantics, the implementation must make sure 

that spurious wakeup cannot occur (and this may be 

difficult to implement on some systems)



0123

41

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(5.6) Three

Case Studies
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Readers/Writers Lock

Readers/writers lock (RWLock): a lock which allows multiple reader 

threads to access shared data concurrently, but still provides 

mutual exclusion whenever a writer thread is reading or modifying 

the shared data

W

W

W

data

R R
R

R
R

R

R

R

R

R
R

R
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Readers/Writers Lock

reader() {
  lock.acquire();
  waitingReaders++;
  while (!(writers==0))
    readersCV.wait(lock);
  waitingReaders--;
  activeReaders++;
  lock.release();
  /* read data */
  lock.acquire();
  if (--activeReaders==0)
    writersCV.signal(lock);
  lock.release();
}

writer() {
  lock.acquire();
  waitingWriters++;
  while(!((readers==0)
      && (writers==0)))
    writersCV.wait(lock);
  waitingWriters--;
  activeWriters++;
  lock.release();
  /* write data */
  lock.acquire();
  activeWriters--;
  assert(activeWriters==0);
  writersCV.signal(lock);
  readersCV.broadcast(lock);
  lock.release();
}

readers read concurrently

a writer writes exclusively (no concurrent reading or writing 

by other threads)
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Synchronization Barriers

checkin() doesn’t return until all threads have checked in

When a thread is done with its work, it must call checkin()

Ex: MapReduce, signal processing

Synchronization barrier is differrent from a memory barrier

memory barrier is to synchronize memory operations for one 

thread
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MapReduce

MapReduce pseudo-code:

create N threads

create barrier to synchronize N threads

each thread executes map operation in parallel

barrier.checkin()
each thread sends data in parallel to reducers

barrier.checkin()
each thread executes reduce operation in parallel

barrier.checkin()
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Synchronization Barriers

int numEntered = 0;
void checkin() {
  lock.acquire();
  if (++numEntered < barrierN) {
    while(numEntered < barrierN)
      barrierCV.wait(lock);
  } else {
    barrierCV.broadcast(lock);
  }
  lock.release();
}

where can you reset numEntered to 0 so you can reuse this 

barrier?

The above implementation of checkin() results in a barrier that

can only be used once
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Synchronization Barriers

int numEntered = 0, numLeft = 0;
void checkin() {
  lock.acquire();
  if (++numEntered < barrierN) {
    while(numEntered < barrierN)
      checkinCV.wait(lock);
  } else {
    numLeft = 0;
    checkinCV.broadcast(lock);
  }
  if (++numLeft < barrierN) {
    while(numLeft < barrierN)
      checkoutCV.wait(lock);
  } else {
    numEntered = 0;
    checkoutCV.broadcast(lock);
  }
  lock.release();
}

One solution is to use two barriers, one for checking in and one for 

checking out
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Synchronization Barriers

int numEntered = 0, generation = 0;
void checkin() {
  lock.acquire();
  if (++numEntered < barrierN) {
    int my_generation = generation;
    while(my_generation == generation)
      barrierCV.wait(lock);
  } else {
    numEntered = 0;
    generation++;
    barrierCV.broadcast(lock);
  }
  lock.release();
}

A more efficient solution



starvation can happen if every time another thread calls put(), 

a 3rd thread that has called get() got the item and thread X 

always see an empty buffer
0123

49

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Starvation

Starvation: the possibility that a thread doesn’t get to run

the bounded buffer solution is not starvation-free

Let’s say that thread X calls get() and goes to sleep because the 

buffer is empty (and some other threads are doing the same thing)

get() {
  lock.acquire();
  while (front==tail){
    empty.wait(lock);
  }
  item = buf[front%MAX];
  front++;
  full.signal(lock);
  lock.release();
  return item;
}

put(item) {
  lock.acquire();
  while ((tail-front)==MAX){
    fullf.wait(lock);
  }
  buf[tail%MAX] = item;
  tail++;
  empty.signal(lock);
  lock.release();
}



put()

first-in-first-out (FIFO): the k
th

 thread to acquire the lock in

get() retrieves the item inserted by the k
th

 to acquire the lock in
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Starvation

The bounded buffer solution needs liveness constraints:

starvation-freedom: if a thread waits in get(), it is guaranteed 

to proceed after a bounded number of put() calls

this is a much stronger constraint than starvation-freedom

if the FIFO constraint is satisfied, starvation-freedom is 

guaranteed

you can build your own queue for the threads to sleep on 

(with a queue of CVs)
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get() for FIFO Bounded Buffer
queue<CV> getQueue, putQueue;
int numGetCalled=0, numPutCalled=0;
get() {
  lock.acquire();
  myGetPos = numGetCalled++;
  myGetCV = new CV;
  getQueue.push_back(myGetCV);
  while (front<myGetPos || front==tail){
    myGetCV.wait(lock);
  }
  getQueue.delete_front();
  item = buf[front%MAX];
  front++;
  // wake up the next thread waiting in put(), if any
  nextPutThreadCV = putQueue.front();
  if (nextPutThreadCV != NULL) {
    nextPutThreadCV.signal(lock);
  }
  lock.release();
  return item;
}

put() is similar
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(5.7) Implementing

Synchronization Objects
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Shared Objects Are Implemented In Layers

Shared

Objects:

Synchronization

Variables:

Atomic

Instructions:

Hardware:

Semaphores Locks Condition Variables

Interrupt Disable Test-and-Set

Multiple Processors Hardware Interrupts

Concurrent

Applications:

Bounded Buffer BarrierReaders/Writers



note that each of these primitives are also memory barriers, i.e., 

all prior instructions must complete before one of these 

instructions is executed

atomic read-modify-write instructions: globally atomic 

instructions on a multiprocessor system

disabling interrupts: on a uniprocessor, we can make any 

sequence of instructions atomic by disabling interrupts

Modern systems have hardware support for:

see too much milk solution - too complex

Use memory load/store

We will talk about kernel thread synchronization first (and will 

briefly talk about user thread synchronization)
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Implementing Synchronization



what if the thread calling acquite() doesn’t yield the processor 

after the lock is acquired?

malicious or buggy program can monopolize the processor

other threads do not get to run and make the system 

unresponsive to handling user inputs or other real-time tasks

some interrupt needs attention of the processor right away

it’s not a good idea to run the processor with interrupt disable 

for a long period of time

What else is wrong with the above implementation?

This implementation does not provide mutual inclusion even on a 

uniprocessor (if the thread calls yield())

Lock::release() {
  enableInterrupts();
}

Lock::acquire() {
  disableInterrupts();
}
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Implementing Locks By Disabling Interrupts



need to re-enable the interrupt before we put the thread to sleep

Still need to disable the interrupt briefly to protect the lock’s 

data structure

yield the processor (by calling thread_switch())

If the lock is BUSY, no point in running the acquiring thread until 

the lock is free
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Implementing Uniprocessor Queueing Locks
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Implementing Uniprocessor Queueing Locks
class Lock {
  private:
    int value = FREE;
    queue waiting; // hence the name "queueing lock"
  public:
    void acquire();
    void release();
};

Lock::acquire()
{
  disableInterrupts();
  if (value == BUSY) {
    waiting.add(runningThread);
    runningThread->state = WAITING;
    TCB *nextThread=readyList.remove();
    thread_switch(runningThread, nextThread);
    runningThread->state = RUNNING;
  } else {
    value = BUSY;
  }
  enable_interrupt();
}
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Implementing Uniprocessor Queueing Locks
class Lock {
  private:
    int value = FREE;
    queue waiting; // hence the name "queueing lock"
  public:
    void acquire();
    void release();
};

Lock::acquire()
{
  disableInterrupts();
  if (value == BUSY) {
    waiting.add(runningThread);
    runningThread->state = WAITING;
    TCB *nextThread=readyList.remove();
    thread_switch(runningThread, nextThread);
    runningThread->state = RUNNING;
  } else {
    value = BUSY;
  }
  enable_interrupt();
}

our convention is that 

thread_switch() must only be 

called when interrupt is disabled

if some code calls 

thread_switch(), it must disable 

interrupt first and enable interrupt 

when thread_switch()returns
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Implementing Uniprocessor Queueing Locks
Lock::release()
{
  disableInterrupts();
  if (!waiting.empty()) {
    TCB *nextThread=waiting.remove();
    nextThread->state = READY;
    readyList.add(nextThread);
  } else {
    value = FREE;
  }
  enable_interrupt();
}

Is it a bug that we don’t change value to FREE when lock is 

released and the waiting queue is not empty?
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Implementing Multiprocessor Spinlocks

When there are multiple processors, the difficulty lies in locking

if (value == FREE) {
  value = BUSY;
}

if both threads execute the above code concurrently in different 

processors, both threads think they got the lock

No way to implement this with only software

Memory

value
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Atomic Hardware Instructions

Most processor architectures provide atomic read-modify-write 

instructions to support synchronization

compare-and-swap and test-and-set are other names for such 

an instruction (two operations locked together as an atomic 

instruction over the bus)

Memory

value



Lock is represented as a bit, 0 if FREE, 1 if BUSY
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Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
  bool previous_value=*lock;
  *lock = BUSY;
  return previous_value;
}

if test_and_set() returns BUSY (i.e., 1), it means that the 

calling thread does not own the lock

if test_and_set() returns FREE (i.e., 0), it means that the 

calling thread is now the exclusive owner of the lock

Spinlock::acquire()
{
  // while BUSY
  while (test_and_set(&value))
    ; // spin
}

Spinlock::release()
{
  value = FREE;
  memory_barrier();
}



Lock is represented as a bit, 0 if FREE, 1 if BUSY
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Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
  bool previous_value=*lock;
  *lock = BUSY;
  return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is FREE, call test_and_set(&value)

Memory

lock



Lock is represented as a bit, 0 if FREE, 1 if BUSY
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Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
  bool previous_value=*lock;
  *lock = BUSY;
  return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is FREE, call test_and_set(&value)

&value

0

if LOCK signal is asserted on 

the bus, no otherprocessor 

can perform any operation 

over the bus



Lock is represented as a bit, 0 if FREE, 1 if BUSY
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Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
  bool previous_value=*lock;
  *lock = BUSY;
  return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is FREE, call test_and_set(&value)

&value

1

&value

0

if LOCK signal is asserted on 

the bus, no otherprocessor 

can perform any operation 

over the bus

read from the bus and 

write to the bus, together, 

is an atomic operation



Lock is represented as a bit, 0 if FREE, 1 if BUSY
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Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
  bool previous_value=*lock;
  *lock = BUSY;
  return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is BUSY, call test_and_set(&value)

&value

1

&value

1

if LOCK signal is asserted on 

the bus, no otherprocessor 

can perform any operation 

over the bus

read from the bus and 

write to the bus, together, 

is an atomic operation
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Better Spinlock

Spinlock::acquire()
{
  while (test_and_set(&value))
    ; // spin
}

Naive spinlock (lock out the bus way too much)

Spinlock::acquire()
{
  while (1) {
    if (value == FREE) {
      // lock was at least momentarily unlocked
      if (test_and_set(&value) == FREE) {
        // we have locked the spinlock
        break;
      }
      // some other thread beat us, try again
    }
  }
}

Better spinlock (try to minimize locking out the bus)
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Spinlocks

processor time wasted waiting for the lock to be released

Spinlocks are wasteful

barely acceptable if locks are held only briefly

in addition, before using a spinlock, must disable interrupts first

Interrupt service routine must run to completion without blocking

minimal work that must be done inside an interrupt handler are

Most OSes keep interrupt handlers extremely simple

must use a spinlock to access shared data (since interrupt 

handlers are not threads)

wake up a thread waiting for the I/O completion interrupt

start the next I/O operation (to keep the I/O device as busy as 

possible)

this would require accessing the ready list (access

protected by first disabling interrupts then lock a spinlock)
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How Many Spinlocks

need a queue of waiting threads on lock X

Various data structures need synchronized access

need a queue of waiting threads on lock Y

What’s wrong with one spinlock for the entire kernel?

one spinlock per lock

Instead:

bottleneck

per-processor ready list: one spinlock per processor/core

list of threads ready to run

one spinlock for the ready list



if stack sizes are fixed: can put a pointer to the TCB of the 

running thread at the bottom of its stack (assuming the base 

address of the stack is page-aligned)
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Which Thread Is Currently Running?

to suspend and switch to a new thread

Thread scheduler needs to find the TCB of the currently running 

thread

to check if the current thread holds a lock before acquiring or 

releasing it

On a uniprocessor, easy: use a global variable (currentThread)

compiler can dedicate a register: e.g., use r31 to point to the TCB 

of the running thread and every processor has its own r31

On a multiprocessor system, varioius methods:

find the address of this pointer by masking the current stack 

pointer (i.e., zeroing out the least-significant bits)
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Implementing Multiprocessor Queueing Locks
class Lock {
  private:
    int value = FREE;
    SpinLock spinLock; // need this for multiprocessor
    queue waiting; // queueing lock
  public:
    void acquire();
    void release();
};



Lock::acquire()
{
  spinLock.acquire();
  if (value == BUSY) {
    waiting.add(runningThread);
    // spinLock released inside suspend()
    scheduler.suspend(&spinLock);
  } else {
    value = BUSY;
    spinLock.release();
  }
}

Lock::release()
{
  spinLock.acquire();
  if (!waiting.empty()) {
    TCB *nextThread=waiting.remove();
    scheduler.makeReady(nextThread);
  } else {
    value = FREE;
  }
  spinLock.release();
}
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Implementing Multiprocessor Queueing Locks



class Scheduler {
  private:
    // access only when owning schedulerSpinLock
    queue readyList;
    // access only when interrupt is disabled
    SpinLock schedulerSpinLock;
  public:
    void suspend(SpinLock *lock);
    void makeReady(TCB *thread);
};
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Scheduler Implementing



Scheduler::suspend(SpinLock *lock)
{
  disableInterrupts();
  schedulerSpinLock.acquire();
  lock->release();
  runningThread->state = WAITING;
  TCB *nextThread=readyList.remove();
  thread_switch(runningThread, nextThread);
  runningThread->state = RUNNING;
  schedulerSpinLock.release();
  enableInterrupts();
}

Scheduler::makeReady(TCB *thread)
{
  disableInterrupts();
  schedulerSpinLock.acquire();
  nextThread->state = READY;
  readyList.add(thread);
  schedulerSpinLock.release();
  enable_interrupt();
}
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Scheduler Implementing



Scheduler::suspend(SpinLock *lock)
{
  disableInterrupts();
  schedulerSpinLock.acquire();
  lock->release();
  runningThread->state = WAITING;
  TCB *nextThread=readyList.remove();
  thread_switch(runningThread, nextThread);
  runningThread->state = RUNNING;
  schedulerSpinLock.release();
  enableInterrupts();
}

Scheduler::makeReady(TCB *thread)
{
  disableInterrupts();
  schedulerSpinLock.acquire();
  nextThread->state = READY;
  readyList.add(thread);
  schedulerSpinLock.release();
  enable_interrupt();
}
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Scheduler Implementing

1

2

without using 

schedulerSpinLock,

thread 1 can be 

running in two CPUs

simultaneously



cache affinity

After a thread has run on a particular processor, next time it 

runs, it would be cheaper to run it on the same processor

This means that if you use a shared ready list for multiple 

processors, you will not be able to take advantage of cache affinity

therefore, you should use one ready list per processor

0123

76

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Cache Affinity

scheduler may do load balancing occasionally
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Solaris: Processor Sets

Somewhere between the two extremes

reducing the frequency of requiring load balancing
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Case Study: Linux 2.6 Kernel Mutex Lock

common case (fast path): locks are in the FREE state

Linux kernel implementation is optimized for the common case

rare case (slow path): locks are in the BUSY state and lots of 

threads are waiting in a long queue to acquire it

use read-modify-write instruction to acquire the lock and be

optimistic that most of the time, it would be successful and 

be done with acquiring the lock

if the read-modify-write instruction failed to acquire the 

lock, then use the previous approach for multiprocessor 

queueing locks

x86 processor has atomic decrment/increment (return

previous value), atomic exchange (swap content of memory

location and CPU register), atomic test-and-set
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Fast Path Acquire
struct mutex {
  atomic_t count;
    // 1: unlocked
    // 0: locked with no waiting thread
    // <0: locked, with possible waiting threads
  spinlock_t wait_lock;
  struct list_head wait_list;
};

Use a macro for the fast path to save procedure call overhead:

    lock decl (%eax)
           // %eax contains the address of lock->count
    jns 1f // jump if result is >= 0, i.e., not signed
    call slowpath_acquire
1:



The slow path uses the previous approach for multiprocessor 

queueing locks (start by disabling preemption, acquiring spinlock, 

adding thread to wait list)

main difference is that count is no longer 1 or 0 and can go 

negative

also, when thread returns from scheduler.suspend(), it 

cannot not assume that it owns the lock and must try to acquire 

the lock again

for (;;) {
  if (atomic_xchg(&lock->count, -1) == 1)
    break;
  // go to sleep
}
// count is now -1
if (list_empty(&lock->wait_list)) {
  atomic_set(&lock->count, 0);
}

release spinlock and enable preemption
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Slow Path Acquire



Use a macro for the fast path to save procedure call overhead:

    lock incl (%eax)
           // %eax contains the address of lock->count
    jg 1f // jump if result is = 0, i.e., FREE
    call slowpath_release
1:
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Fast Path Release



lock->wait_lock.acquire();
// now unlock the lock
atomic_set(&lock->count, 1);
if (!list_empty(&lock->wait_list)) {
  // wake up one thread on lock->wait_list
}
lock->wait_lock.release();

The slow path code is similar to the previous approach for 

multiprocessor queueing locks
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Slow Path Release
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Linux 2.6 Kernel Mutex Lock

Acquiring and releasing a lock can be inexpensive

when there is little contention, avoiding locks is unlikely to 

significantly improve performance

Programmers sometimes go to great lengths to avoid acquiring a 

lock

it’s often better to just keep things simple and use locks to 

ensure mutual exclusion when accesing shared state



0123

84

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Implementing Condition Variables (Mesa Semantics)
void CV::wait(Lock *lock)
{
  assert(lock.isHeld());
  waiting.add(currentThread);
  scheduler.suspend(lock);
  lock->acquire();
}

void CV::signal()
{
  if (waiting.notEmpty()) {
    TCB *thread = waiting.remove();
    scheduler.makeReady(thread);
  }
}

void CV::broadcast()
{
  while (waiting.notEmpty()) {
    TCB *thread = waiting.remove();
    scheduler.makeReady(thread);
  }
}

class CV {
  private:
    queue waiting;
  public:
    void wait(Lock *lock);
    void signal();
    void broadcast();
};

since lock is already acquired, 

the code is simple
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Implementing Application-Level Synchronization

via system calls

Recall from Ch 4 that there are two ways to support 

application-level concurrency:

via user-level thread scheduler

can split the lock data structure:

Kernel-managed threads

lock data structure is kept completely in the address space of 

the user process

User-managed threads

count is kept in the address space of the user process

kernel holds the spinlock and waiting queue

what about disabling interrupts?

only need to disable upcalls from the OS kernel (upcalls in 

user space is analygous to interrupts in kernel)
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(5.8) Semaphores

Considered Harmful



a program using other paradigms can be mapped to threads and 

monitors using straight-forward transformations

None of these are more powerful than using locks and condition 

variables

communication sequential processes

Many different synchronization primitives have been proposed

event delivery

message passing

etc.

semaphores
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Synchronization Primitives
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Semaphores

a semaphore is a non-negative integer value

Semaphores are defined as follows:

when a semaphore is created, its value can be initialized to 

any non-negative integer

a semaphore has only two operations and no other operations 

are allowed to access the semaphore value

atomic decrement: Semaphore::P() waits until the 

semaphore value is positive, then atomically decrements the 

semaphore value by 1 and returns

atomic increment: Semaphore::V() atomically increments 

the semaphore value by 1

if some threads are waiting in P(), one of them is enabled

so that its call to P() succeeds at decrementing the 

semaphore value and returns



for general waiting, it’s more clean to use CV+lock/mutex and 

not a semaphore

If semaphore value is initialized to be > 0, it can be used for mutual 

exclusion
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Semaphores Considered Harmful

because it’s used in two different ways

Why are semaphores considered harmful?

e.g., can be used to solve the FIFO bounded buffer problem

If semaphore value is initialized to be 0, it can be used for general 

waiting

e.g., thread A calls P() to wait for thread B to call V()
thread B can call V() first, then when thread A calls P(), it 

would return right away

P() is like CV::wait() and V() is like CV::signal(), but 

not exactly the same because if CV::signal() is called 

first, CV::wait() can get stuck forever
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FIFO Bounded Buffer with Semaphores

one producer (I/O device) and one consumer (thread waiting 

for I/O completion)

Semaphores are often used to synchronize communication between 

an I/ O device and threads waiting for I/ O completion

Conveyor belt (in hardware)

perfect parallelism between producer and consumer

ProducerConsumer

Most of the time, no interference

A circular buffer is used in software implementation

if you use a single mutex to lock the entire array of buffers, 

it’s an overkill (i.e., too inefficient)



We will look at the solution for multiple producer and multiple 

consumer
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FIFO Bounded Buffer with Semaphores

one producer (I/O device) and one consumer (thread waiting 

for I/O completion)

Semaphores are often used to synchronize communication between 

an I/ O device and threads waiting for I/ O completion

ProducerConsumer

producer needs to be blocked when all slots are full

consumer needs to be blocked when all slots are empty

When does it require synchronization?

will use a semaphore as a mutex to atomically accessing 

some shared variables



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

mutex 1

tail 0
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FIFO Bounded Buffer with Semaphores

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

mutex 1

tail 0

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 1

tail 0

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 0

tail 0

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 0

tail 0

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 0

tail 1

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 1

tail 1

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 1 note: producer

continue to produce
mutex 1

tail 1

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 0

tail 1

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 0

tail 1

front 0



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 0

tail 1

front 1



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 1



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 1



Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 1



if produce and consume run at same rate and work at different

spots, no producer may ever wait for a consumer and vice versa

if producer is fast and consumer slow, producer may wait

if consumer is fast and producer slow, consumer may wait

although threads of same type must be synchronized

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}
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FIFO Bounded Buffer with Semaphores



you may use one mutex to control access to the number of

empty and occupied cells, front, and tail

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
  empty.P();
  mutex.P();
  buf[tail%MAX] = item;
  tail++;
  mutex.V();
  occupied.V();
}

char get( ) {
  occupied.P();
  mutex.P();
  item = buf[front%MAX];
  front++
  mutex.V();
  empty.V();
  return item;
}

0123

108

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

FIFO Bounded Buffer with Semaphores

Mutex by itself is more "coarse grain"

Semaphore gives more "fine grain parallelism"



Semaphore has limited use

pretty much the only place it’s really good for is 

producer-consumer

T2 T3 T4T1 T5

"pipelined parallelism"

although it’s a very important application of semaphores

the queues above are queues with bounded buffer

difficult to use perfectly due to semaphore’s memory property
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Semaphores Considered Harmful
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Communicating Sequential Processes
(CSP / Google Go)

only that thread is allowed to touch object’s data

One thread per shared object

to call a method on the object, send thread a message with 

method name and arguments

thread waits in a loop, get message and perform operation

No memory race conditions!

since data access is sequential/serialized



void put(item) {
  lock.acquire();
  while((tail-front)==MAX){
    full.wait(&lock);
  }
  buf[tail%MAX] = item;
  tail++;
  empty.signal(&lock);
  lock.release();
}

get() {
  lock.acquire();
  while(front==tail){
    empty.wait(&lock);
  }
  item = buf[front%MAX];
  front++
  full.signal(lock);
  lock.release();
  return item;
}

CV empty, full;
int front=0, tail=0;

producer thread sleeps in the full CV queue to wait for an

empty spot to appear in the buffer

consumer thread sleeps in the empty CV queue to wait for a 

data item to appear in the buffer
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CSP Example: FIFO Bounded Buffer
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CSP Example: FIFO Bounded Buffer

while (cmd = getNext()){
  if (cmd == GET) {
    if (front < tail) {
      // do get()
      // send reply
      // if pending put, do it and send reply
    } else {
      // queue get operation
    }
  } else { // cmd == PUT
    if ((tail-front) < MAX) {
      // do put()
      // send reply
      // if pending get, do it and send reply
    } else {
      // queue put operation
    }
  }
}
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Locks/CVs vs. CSP

Create a lock on shared data = create a single thread to operate on 

data

Create a method on a shared object = send a message and wait for 

reply

Wait on a CV = queue an operation that cannot be completed just 

yet

Signal a condition = perform a queued operation that has been 

enabled to proceed
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Message-Passing vs. Shared Memory

Which approach is better for programming concurrency, 

message-passing or shared memory?

as it turns out, any program using monitors can be recast into 

CSP using a simple transmation, and vice versa

executing a procedure while holding a monitor lock is 

equivalent to processing a message in CSP

a monitor is single-threaded while it’s holding the lock

It’s just a matter of style!
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Review: Remember The Rules

Use consistent structure

Always use locks and condition variables

Always acquire lock at beginning of procedure, release at end

Always hold lock when using a condition variable

Always wait in while loop

Never spin in sleep()
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Extra Slides


