Introduction to Operating Systems - CSCI 350

Ch 5: Synchronizing
Access to Shared Objects

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Motivation

ﬁ} When threads concurrently read/write shared memory, program
behavior is undefined
= two threads write to the same variable; which one should win?

) Thread schedule is non-deterministic
= behavior changes when re-run program
Q does it matter which thread runs first?
Q when would it be considered the behavior wrong/incorrect?
Q programs need to work for any possible interleaving

) Compiler/hardware instruction reordering

ﬁ> Multi-word operations (such as memcmp ()) are not atomic

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Compiler/Hardware Can Reorder Instructions

ﬁ} Modern compilers (and hardware) reorder instructions to
improve performance

Thread 1 Thread 2

p = someComputation () while (!'pInitialized)
pInitialized = true; ;

14

q = anotherComputation (p)

= can thread 2 use p before p is initialized?
Q doesn’t look like it’s possible, right?!

ﬁ> If you have optimization turned on when you compile, the compiler
may decide to do the following (since it doesn’t understand that p
and pInitialized are semantically related):

Thread 1 Thread 2
pInitialized = true; while (!pInitialized)
p = someComputation () ;

14

q = anotherComputation (p)

|
= clearly, this is no good y @;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Why Reordering?

> Why do compilers reorder instructions?
= efficient code generation requires analyzing control/data

dependency
> Why do CPUs reorder instructions?
— write buffering: allow next instruction to execute while write
is being completed

ﬁ> Fix: memory barrier (a.k.a. membar or memory fence)

= [nstruction to compiler/CPU
= all operations before barrier complete before barrier returns

= no operation after barrier starts until barrier returns

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.1) Challenges

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Race Condition

ﬁ} A race condition occurs when the behavior of a program depends
on the interleaving of operations of different threads

Thread 1 Thread 2

x =1; x = 2;

— possible final values of x are 1 or 2

_, Ex:yis initialized to 12

Thread 1 Thread 2
x =y +1; y =y * 2;

= possible final values of x are 13 or 25

_, Ex:xis initialized to 0

Thread 1 Thread 2

x=x+ 1; X =x + 2;

.)y
= possible final values of x are 1, 2, and 3 SN/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Race Condition | r1 and r2 are
- inside here
Thread 1: Thread 2:
x =x + 1; x =x + 2 memory bus
/* /*
load rl1,x load rl1,x
add r2,rl,1 add r2,rl,1 x[0
store x,r2 store x,r2 Memory
*/ */
ﬁ} Unfortunately, processors do not execute high-level language
statements

—= they execute machine instructions

= if thread 1 executes the first (or two) machine instructions

= context switch can happen (to run a different thread)

Q this can happen if you have a preemptive scheduler

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

= x would end up to be 1
AN
LD

[

[

ﬁ> Note: load and store are atomic (indivisible) operations
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Problem

ﬁ} Two roommates want to make sure that the refrigerator is always
well stocked with milk
= what’s the algorithm for each roommate?

G> Correctness property
= liveness: the program eventually enters a good state
Q if there is no milk, eventually someone would buy milk
= safety: the program never enters a bad state
Q must not end up with more than one milk

G> Unless otherwise specified, we will always assume that neither the
compiler nor the architecture reorders instructions

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #1: Leave A Note

) Algorithm:
// thread A or thread B
if(milk == 0){ // if no milk
if(note == 0){ // if no noke
note = 1; // leave a note
milk++; // buy milk
note = 0; // remove note

}
}

= which statements are atomic?
Q the assumption here is that if a statement only access zero or
one memory location, it’'s an atomic operation (because it
cannot be preempted in the middle of that operation)

ﬁ> Q: Does the above solution guarantees safety and liveness?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #1: Leave A Note

ﬁ} This solution satisfies liveness but violates safety

// thread A // thread B
if(milk == 0) {
if(milk == 0) {
if (note == 0) {
note = 1;
milk++;
note = 0;
}
}
if (note == 0) {
note = 1;
milk++;
note = 0;
time }
Y }
= in this scenario, milk is 2 at the end

) Heisenbug!
= occasionally fail in ways that may be difficult to reproduce [///A\
y y y P | @,

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #2: Two Notes

) Algorithm:

// thread A

noteA = 1; // leave note

if(noteB == 0){ // if no note
if(milk == 0){ // if no milk

milk++; // buy milk

}

}

noteA = 0; // remowve note

// thread B

noteB = 1; // leave note
if(noteA == 0){ // if no note
if(milk == 0){ // if no milk
milk++; // buy milk
}
}
noteB = 0; // remove note

= does this solution guarantees safety and liveness?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Too Much Milk Try #2: Two Notes 1

) To prove safety, need to look at all possible /) tnresd B
interleaving noteA = 1;
L. i = [Al] if(noteB == 0) {
= proof by contradiction: assuming that [A2] if (milk == 0){
the algorithm is not safe, i.e., both A and RSl e
B will buy milk }
noteA = 0;
) Consider the state of the two variables 7)) o) i
. . noteB = 1;
noteB and milk when thread A is at [A1] T Pt fe 0
= given the assumption, thread A will be Egg if(r_nillck == 0){
milk++;
at [A3] and thread B will be at [B3] [B4] }
[B5] }
noteB = 0;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Too Much Milk Try #2: Two Notes 1

) To prove safety, need to look at all possible
interleaving

=i [Al]

= proof by contradiction: assuming that
the algorithm is not safe, i.e., both A and
B will buy milk

) Consider the state of the two variables
noteB and milk when thread A is at [A1]
= given the assumption, thread A will be

at [A3] and thread B will be at [B3]

_) Case 1: noteB = 1, milk = don’t care
= contradiction, thread A will not reach [A3]

) Case 2: noteB = 0, milk > 0
= contradiction, thread A will not reach [A3]

) Case 3: noteB = 0, milk = 0

= contradiction, thread B will not reach [B3] »

Copyright © William C. Cheng

[A2]
[A3]

// thread A
noteA = 1;

if (noteB == 0) {
if(milk == 0) {
milk++;

}

}
noteA = 0;

// thread B

noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0) {
[B3] milk++;
[B4] }
[BS] }
noteB = 0O;
N
Sy

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #2: Two Notes

) Canno prove liveness

(

= if thread A executes [A0] and switch to =¥ [20]

thread B to execute [B0], or vice versa,
both will not buy milk

Copyright © William C. Cheng

[Al]
[A2]
[A3]

[BO]
[B1]
[B2]
[B3]
[B4]
[B3]

// thread A
noteA = 1;

if (noteB == 0) {
if(milk == 0){
milk++;

}

}
noteA = 0;

// thread B
noteB = 1;

if (noteA == 0) {
if(milk == 0) {
milk++;

}

}
noteB = 0O;

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #3: Waiting

) Algorithm:

// thread A
noteA = 1;
while (noteB == 1) {

4

}

if(milk == 0) {
milk++;

}

noteA = 0;

// thread B

noteB = 1;
if (noteA == 0) {
if(milk == 0) {
milk++;

}
}
noteB = 0;

= does this solution guarantees safety and liveness?

Copyright © William C. Cheng

//
//
//

//
//

//
//
//

//
//

//

leave noteA
if no note from roommate
spin

if no milk
buy milk

remove notelA
leave note
if no note from roommate

if no milk
buy milk

remove note

Too Much Milk Try #3: Waltlng

ﬁ} Can prove safety using a similar argument for

solution 2
= case 1: noteB =1, milk = don’t care

Q contradiction, B will not buy milk
= case 2: hoteB =0, milk >0

Q contradiction, A will not buy milk
= case 3:noteB=0,milk=0

Q contradiction, B will not buy milk

_) Liveness: since thread B has no loop, noteB
will eventually be 0 and thread A will get to
decide to buy milk or not

G> Solution 3 has both safety and liveness using
only atomic load and store operations

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350 1

// thread A
noteA = 1;
while (noteB == 1)

}

= if (milk == 0) {

milk++;

}
noteA = 0;

// thread B

noteB = 1;
if (noteA == 0) {
if(milk == 0) {
milk++;
}
}
noteB = 0;

) Is solution 3 a "good" solution?
= issues:

Q

Q

Q

Copyright © William C. Cheng

solution is complex (why the asymmetry?)
& there is something called Peterson’s
algorithm that would work more generally
solution is inefficient: thread A is doing
busy-waiting and consuming CPU resource
solution may fail if the compiler or hardware
reorders instructions (although this
limitation can be addressed by using
memory barriers, which would increase
the implementation complexity of the
algorithm)

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #3: Waltlng

// thread A

noteA = 1;

while (noteB == 0)

}

if(milk == 0) {
milk++;

}
noteA = 0;

// thread B
noteB = 1;

if (noteA == 0) {
if(milk == 0){
milk++;

}

}
noteB = 0;

Introduction to Operating Systems - CSCI 350

Too Much Milk: Use Synchronization Objects

ﬁ} Lock: a primitive that only one thread at a time can own

// thread A or thread B
Kitchen: :buyIfNeeded () {
lock.acquire();
if (milk == 0) {
milk++;
}

lock.release();

}
= simple and symmetrical

G> Unless otherwise specified, we use the term Jock and mutex

interchangeably (although in general, a lock may allow multiple
threads to have concurrent access to a resource)

// thread A or thread B

Kitchen: :buyIfNeeded () {
mutex.lock () ;

mutex.unlock () ;

} 02

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.2) Structuring
Shared Objects

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Threads And Shared Objects

Threads Shared Objects

N
> 5
>

State
Variables

Synchronization
Variables

H Public Methods I

ﬁ> In a multi-threaded program, threads are separate from shared
objects and operate concurrently on shared objects
— shared objects contain both shared state and synchronization
variables (for controlling concurrent access to shared state)

ﬁ} Shared objects: objects that can be accessed safely by multiple
threads
= all shared state in a program should be encapsulated in / @’_

onhe or more shared objects
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Monitors

ﬁ} When a programming language includes support for shared
objects, a shared object is often called a monitor

= a monitor is a synchronization construct that allows executing
entities to have both mutual exclusion and the ability to
wait/block for a certain condition to become true

ﬁ} Early programming languages with monitors include Birnch
Hansen’s Concurrent Pascal and Xerox PARC’s Mesa

= today, Java supports monitors via the synchronized keyword

Copyright © William C. Cheng

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shared Objects Are Implemented In Layers

Concurrent
Applications:

She_:red Bounded Buffer Readers/Writers Barrier

Objects:

Synchronization . :
: Semaphores Locks Condition Variables

Variables:

Atomic : Interrupt Disable Test-and-Set

Instructions:

Hardware: Multiple Processors Hardware Interrupts

Introduction to Operating Systems - CSCI 350

(5.3) Locks:
Mutual Exclusion

Synchronization

. Semaphores Locks Condition Variables
Variables:

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks

ﬁ} A lock is a synchronization variable that provides mutual exclusion
(when one thread holds a lock, no other thread can hold it, i.e.,
other threads are excluded)
= while holding a lock, a thread can perform an arbitrary set of

operations
Q those operations appear to be atomic to other threads
<& no other thread can observe an intermediate state
& other threads can only observe the state after the lock is
released

ﬁ} A program associates each lock with some subset of shared state
and requires a thread to hold the lock when accessing that state
= as a result, only one thread can access the shared state at a
time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks: APl and Properties

ﬁ} A lock enables mutual exclusion by providing two methods:
Lock: :acquite () and Lock: : release ()
= a lock can be in one of two states: BUSY or FREE
= a lock is initially in the FREE state
= Lock: :acquire () waits until the lock is FREE and then
atomically makes the lock BUSY
Q seeing the state is FREE and setting the state to BUSY are
together an atomic operation
Q 1f multiple threads try to acquire the lock, at most one thread
will succeed
& one thread observes that the lock is FREE and sets it to
BUSY while other threads just see that the lock is BUSY
= Lock: :release () makes the lock FREE
Q Iif there are pending acquire () operations, this state change
causes one of them to proceed

)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks: APl and Properties

ﬁ} A lock implementation should ensure the following three properties
= mutual exclusion: at most one thread holds the lock

Q this is a safety property - locks prevent more than one thread
from accessing shared state

progress: if no thread holds the lock and any thread attempts to

acquire the lock, then eveutually some thread succeeds in

acquiring the lock

Q this is a liveness property - if a lock is FREE, some thread
must be able to acquire it

bounded waiting: if a thread T attempts to acquire a lock, then

there exists a bound on the number of times other threads can

successfully acquire the lock before T does

Q this is a liveness property - any particular thread that wants
to acquire the lock must eventually succeed in doing so

_, Non-property: thread ordering
= no promise that waiting threads acquire the lock in FIFO / @’_

Copyright © William C. Cheng

e

order 26

Case Study: Thread-Safe Bounded Queue

ﬁ} Use a fixed size buffer to implement a FIFO queue

0 00 0 [

Copyright © William C. Cheng

tryget () { tryput (item) {
item = NULL; lock.acquire();
lock.acquire(); if ((tail - front) < size) {
if (front < tail) { buf[tail % MAX] = item;
item = buf[front % MAX]; tail++;
front++; }
} lock.release();
lock.release(); }

return item;

}

initially, front=tail=0, lock=FREE, buf [MAX]

for simplicity, assume no wraparound/overflow on array index

front = total number of items removed

tail = total number of items inserted/appended

a thread cannot know the state of the bounded queue/buffer

unless it’s holding the lock

Q If tryget () returns NULL, we can only conclude that the
buffer was empty

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Critical Section

ﬁ} A critical section is a sequence of code that atomically accesses
shared state
= a critical section with respect to lock L is code executed when
holding lock L (code between L. acquire () and L. release())

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.4) Condition Variables:
Waiting for a Change

Synchronization

. Semaphores Locks Condition Variables
Variables:

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Condition Variables (CV)

_) Busywaiting: get)
{
while ((data = tryget()) == NULL) ;
return data;

}

ﬁ} The right way to wait for a shared state variable to change value is
to go sleep on a queue (i.e., a condition variable queue) and wait for
a wake up call (i.e., a notification)
— these threads are working together and helping each other

> Waiting inside a critical section
= called only when holding a lock

ﬁ} Wait: atomically release lock, placing the thread on the CV queue,
and suspend the execution of the calling thread
= reacquire the lock when wakened

) Signal: wake up a waiting thread, if any
) Broadcast: wake up all waiting threads, if any

Copyright © William C. Cheng

methodThatWaits () {

}

lock.acquire();

// read/write shared state

while ('testSharedState())
cv.wait (lock);

}

// read/write shared state

lock.release();

methodThatSignals () {

Copyright © William C. Cheng

lock.acquire();
// read/write shared state
// if testSharedState () is
cv.signal (lock);
// read/write shared state
lock.release();

true

Introduction to Operating Systems - CSCI 350

Condition Variable Design Pattern

Introduction to Operating Systems - CSCI 350

Example: Bounded Queue/Buffer

get () { put (item) {
lock.acquire(); lock.acquire();
while (front==tail) { while ((tail-front)==MAX) {

empty.wait (lock); fullf.wait (lock);

} }
item = buf[front$MAX],; buf[tail$MAX] = item;
front++; tail++;
full.signal (lock); empty.signal (lock);
lock.release () ; lock.release();
return item; }

}

> Two CV queues
—= empty: threads sleep here because the buffer is empty (nothing

to get, nothing to work on)
Q empty.signal () if the buffer is no longer empty
—= full: threads sleep here because the buffer is full (cannot add

work, no space)

O full.signal () if the buffer is no longer full 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Pre/Post Conditions

methodThatWaits () {
lock.acquire();
// pre—condition: State is consistent
// read/write shared state
while (!'testSharedState()) {
cv.wait (lock) ;

}
// WARNING: shared state may have changed,
// but testSharedState () is true and
// pre—-condition is true

// read/write shared state

lock.release();

}

methodThatSignals () {
lock.acquire();
// pre—condition: State is consistent
// read/write shared state
// if testSharedState () is true
cv.signal (lock);
// NO WARNING: signal keeps lock
// read/write shared state

lock.release(); |
} 82

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Condition Variables

I:> Always hold lock when calling wait (), signal (), broadcast ()
= always hold lock when accessing shared state

ﬁ} Condition variable is memoryless
= if signal when no one is waiting, it’s as if nothing has happened
= [f wait before signal, waiting thread wakes up

) wait () atomically releases lock

ﬁ> When a thread is woken up from wait (), it may not run immediately
= signal () /broadcast () put the thread on the ready list
= when lock is released, any waiting thread might acquire it
= lock is reacquired before wait () returns

ﬁ> wait () must be called in a loop since spurious wakeup can occur

while (needToWait ()) {
cv.wait (lock);

}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.5) Designing and
Implementing
Shared Objects

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Structured Synchronization

ﬁ} Identify objects or data structures that can be accessed by multiple
threads concurrently

> Add locks to object/module
= grab lock on start to every method/procedure
— release lock on finish

ﬁ> If need to wait:

while (needToWait ()) {
cv.wait (lock);

}
= do not assume when you wake up, signaller just ran

) If do something that might wake someone up
= signal () OrF broadcast ()

ﬁ> Always leave shared state variables in a consistent state when lock

is released, or when waiting
(‘\
363 @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Remember The Rules

_) Use consistent structure

> Always use locks and condition variables

ﬁ> Always acquire lock at beginning of procedure, release at end
ﬁ> Always hold lock when using a condition variable

_) Always wait in while loop

_, Never spin in sleep ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mesa vs. Hoare Semantics

) Mesa

= signal () puts waiting thread on the ready list
= signaller keeps lock and processor

ﬁ> Hoare

— signal () gives processor and lock to waiting thread

= when waiting thread finishes, processor/lock given back to
signaller

= nested signals possible

ﬁ> In general, Mesa semantics makes it easier to write application
code, and therefore, more widely used

= with Hoare semantics, liveness properties is easier to prove

ﬁ} We generally use the term monitor to mean that we are using /ocks

and CVs for synchronization
(‘\
383 @J

—= message-passing is another way for synchronization

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Bounded Buffer (Mesa Semantics)

get () { put (item) {
lock.acquire(); lock.acquire();
while (front==tail) { while ((tail-front)==MAX) {

empty.wait (lock); full .wait (lock);

} }
item = buf[front$MAX],; buf[tail$MAX] = item;
front++; tail++;
full.signal (lock); empty.signal (lock);
lock.release () ; lock.release();
return item; }

}
ﬁ} This is what we had before

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Bounded Buffer (Hoare Semantics)

get () { put (item) {
lock.acquire(); lock.acquire();
if (front==tail) { if ((tail—-front)==MAX) {

empty.wait (lock); full .wait (lock);

} }
item = buf[front$MAX],; buf[tail$MAX] = item;
front++; tail++;
full.signal (lock); empty.signal (lock);
lock.release () ; lock.release();
return item; }

}

ﬁ} No need to loop since the lock is transferred from the thread calling
empty.signal () to the thread that was sleeping in empty.wait ()
= but we said before that wait () must be called in a loop since

spurious wakeup is permitted to occur
Q under Hoare semantics, the implementation must make sure

that spurious wakeup cannot occur (and this may be

difficult to implement on some systems (AR
p y) i (\

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.6) Three
Case Studies

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Readers/Writers Lock

ﬁ} Readers/writers lock (RWLock): a lock which allows multiple reader
threads to access shared data concurrently, but still provides
mutual exclusion whenever a writer thread is reading or modifying

the shared data

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Readers/Writers Lock

reader () { writer () {
lock.acquire(); lock.acquire();
waitingReaders++; waitingWriters++;
while (! (writers==0)) while (! ((readers==0)
readersCV.wait (lock) ; && (writers==0)))
waitingReaders——; writersCV.wait (lock) ;
activeReaders++; waitingWriters——;
lock.release(); activeWriters++;
/* read data */ lock.release();
lock.acquire(); /* write data */
if (——activeReaders==0) lock.acquire();
writersCV.signal (lock); activeWriters—;
lock.release(); assert (activeWriters==0);
} writersCV.signal (lock);

readersCV.broadcast (lock) ;
lock.release();

— readers read concurrently
= a writer writes exclusively (no concurrent reading or writing
g
by other threads) Y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Barriers

/

\
/ \

(VAVAVY,

—, When a thread is done with its work, it must call checkin ()
= checkin () doesn’t return until all threads have checked in

_, Ex: MapReduce, signal processing

ﬁ> Synchronization barrier is differrent from a memory barrier
= memory barrier is to synchronize memory operations for one
thread

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

MapReduce

) MapReduce pseudo-code:

= create N threads
create barrier to synchronize N threads
each thread executes map operation in parallel
barrier.checkin ()
each thread sends data in parallel to reducers
barrier.checkin ()
each thread executes reduce operation in parallel
barrier.checkin ()

[

0 000 [0 [

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Barriers

int numEntered = 0;
void checkin() {
lock.acquire();
if (++numEntered < barrierN) {
while (numEntered < barrierN)
barrierCV.wait (lock);
} else {
barrierCV.broadcast (lock);

}

lock.release();

}

ﬁ} The above implementation of checkin () results in a barrier that
can only be used once
= where can you reset numEntered to 0 so you can reuse this
barrier?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Barriers

ﬁ} One solution is to use two barriers, one for checking in and one for
checking out

int numEntered = 0, numLeft = 0O;
void checkin () {
lock.acquire();
if (++numEntered < barrierN) {
while (numEntered < barrierN)
checkinCV.wait (lock) ;
} else {
numLeft = 0;
checkinCV.broadcast (lock) ;
}
if (++numlLeft < barrierN) {
while (numLeft < barrierN)
checkoutCV.wait (lock) ;
} else {
numEntered = 0;
checkoutCV.broadcast (lock) ;
}

lock.release();

}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Barriers

ﬁ} A more efficient solution

int numEntered = 0, generation = 0;
void checkin() {
lock.acquire();
if (++numEntered < barrierN) {
int my_generation = generation;
while (my_generation == generation)
barrierCV.wait (lock) ;
} else {
numEntered = 0;
generation++;
barrierCV.broadcast (lock);

}

lock.release();
}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Starvation

_) Starvation: the possibility that a thread doesn’t get to run
= the bounded buffer solution is not starvation-free

get () { put (item) ({
lock.acquire(); lock.acquire();
while (front==tail) { while ((tail—-front)==MAX) {
= empty.wait (lock); fullf.wait (lock);
} }
item = buf[front$MAX]; buf[tail$MAX] = item;
front++; tail++;
full.signal (lock); empty.signal (lock) ;
lock.release(); lock.release();
return item; }

}

ﬁ> Let’s say that thread X calls get () and goes to sleep because the
buffer is empty (and some other threads are doing the same thing)
— starvation can happen if every time another thread calls put (),

a 3rd thread that has called get () got the item and thread X

always see an empty buffer (AR
y pty B (‘

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Starvation

ﬁ} The bounded buffer solution needs liveness constraints:
= starvation-freedom: if a thread waits in get (), it is guaranteed
to proceed after a bounded number of put () calls
= first-in-first-out (FIFO): the k'™ thread to acquire the lock in
get () retrieves the item inserted by the k" to acquire the lock in
put ()
Q this is a much stronger constraint than starvation-freedom
Q if the FIFO constraint is satisfied, starvation-freedom is
guaranteed
Q you can build your own queue for the threads to sleep on
(with a queue of CVs)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

get () for FIFO Bounded Buffer

queue<CV> getQueue, putQueue;
int numGetCalled=0, numPutCalled=0;

get () {
lock.acquire();

while (front==tail) {
.wait (lock);
}

item = buf[front$MAX];
front++;
// wake up the next thread waiting in put (), if any

lock.release();
return item;

I
= put () is similar 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.7) Implementing
Synchronization Objects

Copyright © William C. Cheng

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shared Objects Are Implemented In Layers

nchronization .. :
Sy .c onizatio Semaphores Locks Condition Variables
Variables:
Atomic : Interrupt Disable Test-and-Set
Instructions:
Hardware: Multiple Processors Hardware Interrupts

Introduction to Operating Systems - CSCI 350

Implementing Synchronization

ﬁ} We will talk about kernel thread synchronization first (and will
briefly talk about user thread synchronization)

) Use memory load/store
= see too much milk solution - too complex

ﬁ> Modern systems have hardware support for:

= disabling interrupts: on a uniprocessor, we can make any
sequence of instructions atomic by disabling interrupts

= atomic read-modify-write instructions: globally atomic
instructions on a multiprocessor system

= hote that each of these primitives are also memory barriers, i.e.,
all prior instructions must complete before one of these
instructions is executed

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Locks By Disabling Interrupts

Lock: :acquire () { Lock: :release () {
disableInterrupts(); enableInterrupts () ;

} }

ﬁ> This implementation does not provide mutual inclusion even on a
uniprocessor (if the thread calls yield())

_, What else is wrong with the above implementation?
= what if the thread calling acquite () doesn’t yield the processor

after the lock is acquired?

Q it’s not a good idea to run the processor with interrupt disable
for a long period of time
& some interrupt needs attention of the processor right away

Q other threads do not get to run and make the system
unresponsive to handling user inputs or other real-time tasks

Q malicious or buggy program can monopolize the processor

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Uniprocessor Queueing Locks

) lf the lock is BUSY, no point in running the acquiring thread until
the lock is free

— Yyield the processor (by calling thread_switch())

) Still need to disable the interrupt briefly to protect the lock’s
data structure

= heed to re-enable the interrupt before we put the thread to sleep

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Uniprocessor Queueing Locks

class Lock {
private:
int value = FREE,;
queue waiting; // hence the name "queueing lock"
public:
void acquire();
void release();

};

Lock: :acquire ()
{
disableInterrupts();
if (value == BUSY) {
waiting.add (runningThread);
runningThread->state = WAITING,;
TCB *nextThread=readyList.remove();
thread_switch (runningThread, nextThread);
runningThread->state = RUNNING,;
} else {
value = BUSY;
}

enable_interrupt () ; AR
\ 2y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Uniprocessor Queueing Locks

class Lock { r
private: = our convention is that
int value = FREE,; thread_switch () must only be
queue waiting; // hence the nai called when interrupt is disabled
public: = if some code calls
void acquire(); thread_switch (), it must disable
void release(); interrupt first and enable interrupt
}; when thread_switch () returns
_

Lock: :acquire ()

{
disableInterrupts();
if (value == BUSY) {
waiting.add (runningThread);
runningThread->state = WAITING,;
TCB *nextThread=readyList.remove();
thread_switch (runningThread, nextThread);
runningThread->state = RUNNING,;
} else {
value = BUSY;
}
enable_interrupt () ; SN\
\ — pt () @’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Uniprocessor Queueing Locks

Lock: :release ()
{
disableInterrupts();
if (!'waiting.empty()) {
TCB *nextThread=waiting.remove (),
nextThread—->state = READY;
readylList .add (nextThread);
} else {
value = FREE;
}

enable_interrupt () ;

}

_) Isitabug that we don’t change value to FREE when lock is
released and the waiting queue is not empty?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Multiprocessor Spinlocks

v v

l’_l—

value

Memory

ﬁ} When there are multiple processors, the difficulty lies in locking

if (value == FREE) {
value = BUSY;
}

= if both threads execute the above code concurrently in different
processors, both threads think they got the lock

ﬁ} No way to implement this with only software N
waga;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Atomic Hardware Instructions

v v

l’_l—

value

Memory

ﬁ} Most processor architectures provide atomic read-modify-write
instructions to support synchronization
= compare-and-swap and test-and-set are other names for such
an instruction (two operations locked together as an atomic
instruction over the bus)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Atomic Test-And-Set Machine Instruction

_) Lock is represented as a bit, 0 if FREE, 1 if BUSY

bool test_and_set (int *lock)
{

bool previous_value=*lock;
*lock = BUSY;
return previous_value;

}

= if test_and_set () returns BUSY (i.e., 1), it means that the

calling thread does not own the lock
= if test_and_set () returns FREE (i.e., 0), it means that the

calling thread is now the exclusive owner of the lock

Spinlock: :acquire () Spinlock: :release ()
{ {
// while BUSY value = FREE;
while (test_and_set (&value)) memory_barrier();
; // spin }

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Atomic Test-And-Set Machine Instruction

_) Lock is represented as a bit, 0 if FREE, 1 if BUSY

= bool test_and_set (int *lock)
{

bool previous_value=*lock;
*lock = BUSY;
return previous_value;

}

= e.(g., value is FREE, call test_and_set (&value)

A[0..311 —)
D[0..31] —
RD _
WR _
LOCK _

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Atomic Test-And-Set Machine Instruction

_) Lock is represented as a bit, 0 if FREE, 1 if BUSY

bool test_and_set (int *lock)
{

= bool previous_value=*lock;
*lock = BUSY;
return previous_value;

}

= e.(g., value is FREE, call test_and_set (&value)

Q if LOCK signal is asserted on
A[0.31] — &value - the bus, no otherprocessor

D[0..31] 4@_ can perform any operation

over the bus

RD [L__

WR

LOCK _|

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Atomic Test-And-Set Machine Instruction

_) Lock is represented as a bit, 0 if FREE, 1 if BUSY

bool test_and_set (int *lock)
{

bool previous_value=*lock;
= *lock = BUSY;
return previous_value;

}

= e.(g., value is FREE, call test_and_set (&value)

Q if LOCK signal is asserted on
A[0.31] — &value)}~ svalue }— the bus, no otherprocessor

po.31] —< o —~ 1 »— can perform any operation
I

over the bus

RD % read from the bus and

WR 1 write to the bus, together,
is an atomic operation

B

LOCK _J L

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Atomic Test-And-Set Machine Instruction

_) Lock is represented as a bit, 0 if FREE, 1 if BUSY

bool test_and_set (int *lock)
{

= bool previous_value=*lock;
= *lock = BUSY;
return previous_value;

}

= e.g., value is BUSY, call test_and_set (&value)
Q if LOCK signal is asserted on

A[0..31] —< §value H fvalue >_ the bus, no otherprocessor

D[0..31] 1 — can perform any operation
I

over the bus

RD % read from the bus and

WR 1 write to the bus, together,
is an atomic operation

B

LOCK _J L

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Better Spinlock

> Naive spinlock (lock out the bus way too much)

Spinlock: :acquire ()
{
while (test_and_set (&value))
; // spin
}

) Better spinlock (try to minimize locking out the bus)

Spinlock: :acquire ()

{
while (1) {

if (value == FREE) {
// lock was at least momentarily unlocked
if (test_and_set (&value) == FREE) {
// we have locked the spinlock
break;

}

// some other thread beat us, try again

}
}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Spinlocks

) Spinlocks are wasteful
— processor time wasted waiting for the lock to be released
= barely acceptable if locks are held only briefly

ﬁ> Interrupt service routine must run to completion without blocking
= must use a spinlock to access shared data (since interrupt
handlers are not threads)
= in addition, before using a spinlock, must disable interrupts first

ﬁ} Most OSes keep interrupt handlers extremely simple
= minimal work that must be done inside an interrupt handler are
Q wake up a thread waiting for the I/0 completion interrupt
& this would require accessing the ready list (access
protected by first disabling interrupts then lock a spinlock)
Q start the next I/0O operation (to keep the I/O device as busy as
possible)

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How Many Spinlocks

ﬁ} Various data structures need synchronized access
= nheed a queue of waiting threads on lock X
= heed a queue of waiting threads on lock Y
= list of threads ready to run

ﬁ> What’s wrong with one spinlock for the entire kernel?
= bottleneck

_) Instead:

= ohe spinlock per lock
= ohe spinlock for the ready list
Q per-processor ready list: one spinlock per processor/core

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Which Thread Is Currently Running?

ﬁ} Thread scheduler needs to find the TCB of the currently running
thread
= to suspend and switch to a new thread
= to check if the current thread holds a lock before acquiring or
releasing it

ﬁ} On a uniprocessor, easy: use a global variable (currentThread)

ﬁ> On a multiprocessor system, varioius methods:

= compiler can dedicate a register: e.g., use r31 to point to the TCB
of the running thread and every processor has its own r31

= [f stack sizes are fixed: can put a pointer to the TCB of the
running thread at the bottom of its stack (assuming the base
address of the stack is page-aligned)
Q find the address of this pointer by masking the current stack

pointer (i.e., zeroing out the least-significant bits)

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Multiprocessor Queueing Locks

class Lock {

private:
int value = FREE,;
SpinLock spinlock; // need this for multiprocessor
queue waiting; // queueing lock

public:
void acquire();
void release();

};

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Multiprocessor Queueing Locks

Lock: :acquire ()
{
spinLock.acquire () ;
if (value == BUSY) {
waiting.add (runningThread);
// spinlLock released inside suspend()
scheduler. suspend (&spinLock) ;
} else {
value = BUSY;
spinLock.release();

Lock: :release ()
{
spinLock.acquire();
if (!'waiting.empty()) {
TCB *nextThread=waiting.remove () ;
scheduler.makeReady (nextThread) ;
} else {
value = FREE;
}

inL k. 1 ’ 3 I—
\ spinLock.release () 2@&

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Scheduler Implementing

class Scheduler {

private:
// access only when owning schedulerSpinLock
queue readyList;
// access only when interrupt is disabled
SpinLock schedulerSpinLock;

public:
void suspend (SpinLock *lock);
void makeReady (TCB *thread);

};

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Scheduler Implementing

Scheduler: : suspend (SpinLock *lock)

{
disableInterrupts();
schedulerSpinlLock.acquire() ;
lock—>release () ;
runningThread—->state = WAITING;
TCB *nextThread=readyList.remove();
thread_switch (runningThread, nextThread);
runningThread—->state = RUNNING;
schedulerSpinLock.release();
enableInterrupts () ;

}

Scheduler: :makeReady (TCB *thread)

{
disableInterrupts();
schedulerSpinlLock.acquire();
nextThread->state = READY;
readyList.add (thread);
schedulerSpinlLock.release();
enable_interrupt () ;

}

Copyright © William C. Cheng

Scheduler Implementing

Introduction to Operating Systems - CSCI 350

Scheduler: : suspend (SpinLock *lock) r

{ = without using

disableInterrupts();
schedulerSpinlLock.acquire() ;
lock—>release () ;
runningThread—->state = WAITING;
1 TCB *nextThread=readyList.remove(); q

schedulerSpinLock,
thread 1 can be
running in two CPUs
simultaneously

=P thread_switch (runningThread, nextThread);
runningThread—->state = RUNNING;
schedulerSpinLock.release();
enableInterrupts () ;

Scheduler: :makeReady (TCB *thread)

disableInterrupts();
schedulerSpinlLock.acquire();
o nextThread->state = READY;
= readyList.add(thread);
schedulerSpinlLock.release();
enable_interrupt () ;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Cache Affinity

ﬁ} After a thread has run on a particular processor, next time it
runs, it would be cheaper to run it on the same processor

= cache affinity @ @ @ @

ﬁ} This means that if you use a shared ready list for multiple
processors, you will not be able to take advantage of cache affinity
= therefore, you should use one ready list per processor
= scheduler may do /oad balancing occasionally

SISOV

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Solaris: Processor Sets
S S

> 5 > 5
>

) Somewhere between the two extremes
= reducing the frequency of requiring load balancin (A
g q y q g g @’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Case Study: Linux 2.6 Kernel Mutex Lock

ﬁ} Linux kernel implementation is optimized for the common case
= common case (fast path): locks are in the FREE state
Q use read-modify-write instruction to acquire the lock and be
optimistic that most of the time, it would be successful and
be done with acquiring the lock
& x86 processor has atomic decrment/increment (return
previous value), atomic exchange (swap content of memory
location and CPU register), atomic test-and-set
= rare case (slow path): locks are in the BUSY state and lots of
threads are waiting in a long queue to acquire it
Q if the read-modify-write instruction failed to acquire the
lock, then use the previous approach for multiprocessor

queueing locks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fast Path Acquire

struct mutex {
atomic_t count;
// 1l: unlocked
// 0: locked with no waiting thread
// <0: locked, with possible waiting threads
spinlock_t wait_lock;
struct list_head wait_list;

};
ﬁ} Use a macro for the fast path to save procedure call overhead:

lock decl (%eax)

// %eax contains the address of lock->count
jns 1f // jump if result is >= 0, i.e., not signed
call slowpath_acquire

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Slow Path Acquire

ﬁ} The slow path uses the previous approach for multiprocessor
queueing locks (start by disabling preemption, acquiring spinlock,
adding thread to wait list)
= main difference is that count is no longer 1 or 0 and can go

negative
= also, when thread returns from scheduler. suspend(), it
cannot not assume that it owns the lock and must try to acquire

the lock again

for (;;) {
if (atomic_xchg(&lock->count, -1) == 1)
break;
// go to sleep

}

// count is now -1
if (list_empty(&lock—-—>wait_list)) ({
atomic_set (&lock—>count, 0);

}

= release spinlock and enable preemption (A
» p p p @’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fast Path Release

ﬁ} Use a macro for the fast path to save procedure call overhead:

lock incl (%eax)

// %eax contains the address of lock->count
jg 1f // jump if result is = 0, i.e., FREE
call slowpath_release

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Slow Path Release

ﬁ} The slow path code is similar to the previous approach for
multiprocessor queueing locks

lock—>wait_lock.acquire();
// now unlock the lock
atomic_set (&lock—>count, 1);
if (!'list_empty(&lock->wait_list)) {
// wake up one thread on lock->wait_list

}

lock—->wait_lock.release();

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Linux 2.6 Kernel Mutex Lock
ﬁ} Acquiring and releasing a lock can be inexpensive

ﬁ> Programmers sometimes go to great lengths to avoid acquiring a

lock

= when there is little contention, avoiding locks is unlikely to
significantly improve performance

= [t’s often better to just keep things simple and use locks to
ensure mutual exclusion when accesing shared state

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Condition Variables (Mesa Semantics)

void CV::wait (Lock *lock) class CV {

{ private:
assert (lock.isHeld()); queue waiting;
waiting.add (currentThread); public:
scheduler. suspend (lock); void wait (Lock *lock);
lock—>acquire(); void signal();

} void broadcast () ;

};

void CV::signal ()
{ = since lock is already acquired,
if (waiting.notEmpty()) { the code is simple
TCB *thread = waiting.remove();
scheduler.makeReady (thread);

}

}

void CV: :broadcast ()
{
while (waiting.notEmpty()) {
TCB *thread = waiting.remove();
scheduler.makeReady (thread) ;

}
}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Application-Level Synchronization

) Recall from Ch 4 that there are two ways to support
application-level concurrency:
= Via system calls
= Via user-level thread scheduler

_) Kernel-managed threads
= cah split the lock data structure:
Q count is kept in the address space of the user process
Q kernel holds the spinlock and waiting queue

G> User-managed threads
= lock data structure is kept completely in the address space of
the user process
= what about disabling interrupts?
Q only need to disable upcalls from the OS kernel (upcalls in
user space is analygous to interrupts in kernel)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.8) Semaphores
Considered Harmful

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Primitives

ﬁ} Many different synchronization primitives have been proposed
= semaphores
= communication sequential processes
= event delivery
= message passing
= etc.

ﬁ} None of these are more powerful than using locks and condition
variables
= a program using other paradigms can be mapped to threads and
monitors using straight-forward transformations

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Semaphores

) Semaphores are defined as follows:
= a semaphore is a non-negative integer value
= when a semaphore is created, its value can be initialized to
any non-negative integer
= a semaphore has only two operations and no other operations
are allowed to access the semaphore value
Q atomic decrement: semaphore: :P () waits until the
semaphore value is positive, then atomically decrements the
semaphore value by 1 and returns
Q atomic increment: Semaphore: :V () atomically increments
the semaphore value by 1
& if some threads are waiting in P (), one of them is enabled
so that its call to P () succeeds at decrementing the
semaphore value and returns

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Semaphores Considered Harmful

_, Why are semaphores considered harmful?
= because it’s used in two different ways

ﬁ} If semaphore value is initialized to be > 0, it can be used for mutual
exclusion
= e.g., can be used to solve the FIFO bounded buffer problem

ﬁ> If semaphore value is initialized to be 0, it can be used for general
waiting
= e.g., thread A calls p () to wait for thread B to call v ()
Q thread B can call v () first, then when thread A calls p (), it
would return right away
& P()islikecv::wait () and v () is like cv: :signal (), but
not exactly the same because if Cv: : signal () is called
first, cv: :wait () can get stuck forever
= for general waiting, it’s more clean to use CV+lock/mutex and
not a semaphore

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

ﬁ} Semaphores are often used to synchronize communication between
an I/ O device and threads waiting for I/ O completion
= ohe producer (I/O device) and one consumer (thread waiting
for I/O completion)

Consumer 4\ / Producer

Y

> Conveyor belt (in hardware)
= perfect parallelism between producer and consumer

ﬁ} A circular buffer is used in software implementation

) Most of the time, no interference
= if you use a single mutex to lock the entire array of buffers, (\
0 —

it’s an overkill (i.e., too inefficient) =,

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

ﬁ} Semaphores are often used to synchronize communication between
an I/ O device and threads waiting for I/ O completion
= ohe producer (I/O device) and one consumer (thread waiting
for I/O completion)

Consumer 4\ / Producer

Y

_> When does it require synchronization?
= producer needs to be blocked when all slots are full
= consumer needs to be blocked when all slots are empty

ﬁ} We will look at the solution for multiple producer and multiple

consumer
= will use a semaphore as a mutex to atomically accessing [%!,}_

some shared variables
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty.V();

} return item;

empty | 8)

occupied| O

Consumer 4\ /‘ Producer
i

mutex | 1
tail| O
front| O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
= empty.P(); =P} occupied.P () ;

mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty.V();

} return item;

empty | 8)

occupied| O

Consumer 4\ /‘ Producer
i

mutex | 1
tail| O
front| O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {

empty.P () ; =P} occupied.P () ;
=P mutex.P () ; mutex.P () ;

buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty.V();

} return item;

empty | 7 ¥

occupied| O

Consumer 4\ /‘ Producer
i

mutex | 1
tail| O
front| O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {

empty.P () ;
mutex.P () ;
= buf[tail$MAX]
tail++;
mutex.V () ;
occupied.V();

}

empty

occupied

mutex

tail

Ol|CO||IO||O]||IN

front

Copyright © William C. Cheng

=¥ occupied.P () ;
mutex.P () ;

= item; item = buf[front$MAX];
front++
mutex.V () ;
empty.V();

return item;

Consumer 4\ /‘ Producer
i

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; =P} occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
=P tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty.V();

}

empty

occupied

mutex

tail

Ol|l|lC]|OC||Oo]||N

front

Copyright © William C. Cheng

Consumer

return item;

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) ({ char get() {
empty.P () ; =¥ occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
=P mutex.V () ; mutex.V () ;
occupied.V(); empty.V();
} return item;
empty | 7)
occupied | 0 Consumer /‘ Producer
mutex | 0 y

tail | 1

front| O
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; =¥ occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
=P occupied.V(); empty .V () ;
} return item;
empty | 7 ¥
occupied | 0 Consumer /‘ Producer
mutex | 1 y
tail | 1
front| 0

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; == occupied.P();
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty .V (),
} return item;
empty | 7 b
occupied [1 Consumer /‘ Producer - nOte.: producer
continue to produce
mutex | 1 y

tail | 1

(N
front| 0 993 2?"_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; = mutex.P();
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty .V (),
} return item;
empty | 7 ¥
: = note: producer
occupied| 0 | consumer ~— Producer . P
continue to produce
mutex | 1 Y
tail | 1
front| O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail%MAX] = item; = jtem = buf[front$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty .V (),
} return item;
empty | 7 ¥
: = note: producer
occupied| 0 | consumer ~— Producer . P
continue to produce
mutex | 0 y
tail | 1
front| O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; = front++
mutex.V () ; mutex.V() ;
occupied.V(); empty.V();
} return item;
empty | 7 ¥
: = note: producer
occupied| 0 | consumer ~— Producer . P
4\ continue to produce
mutex | 0 y
tail | 1
front| O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front$MAX];
tail++; front++
mutex.V () ; = mutex.V () ;
occupied.V(); empty .V (),
} return item;
empty | 7 b
occupied | 0 Consumer /‘ Producer - nOte.: producer
4\ continue to produce
mutex | 0 Y

tail

front

Copyright © William C. Cheng

1

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); =P empty.V();
} return item;
empty | 7 b
occupied | 0 Consumer /‘ Producer - nOte.: producer
4\ continue to produce
mutex | 1 y

tail

front

Copyright © William C. Cheng

1

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty .V (),
} = return item;
empty | 8 b
occupied | 0 Consumer /‘ Producer - nOte.: producer
4\ continue to produce
mutex | 1 y

tail

front

Copyright © William C. Cheng

1

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty .V (),
} return item;
empty | 8 b
occupied | 0 Consumer /‘ Producer - nOte.: producer
4\ continue to produce
mutex | 1 y

tail

front

Copyright © William C. Cheng

1

Introduction to Operating Systems - CSCI 350
FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
mutex.V () ; mutex.V() ;
occupied.V(); empty.V();

} return item;

}

= if produce and consume run at same rate and work at different
spots, no producer may ever wait for a consumer and vice versa
Q although threads of same type must be synchronized
= if producer is fast and consumer slow, producer may wait |
&

= if consumer is fast and producer slow, consumer may waitm
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

FIFO Bounded Buffer with Semaphores

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put (item) { char get() {
empty.P () ; occupied.P () ;
mutex.P () ; mutex.P () ;
buf[tail$MAX] = item; item = buf[front%$MAX];
tail++; front++
mutex.V () ; mutex.V () ;
occupied.V(); empty.V();

} return item;

}

) Mutex by itself is more "coarse grain”
= you may use one mutex to control access to the number of
empty and occupied cells, front, and tail

ﬁ} Semaphore gives more "fine grain parallelism"

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Semaphores Considered Harmful

) Semaphore has limited use
= difficult to use perfectly due to semaphore’s memory property
= pretty much the only place it’s really good for is
producer-consumer
Q although it’s a very important application of semaphores

IR

— |llll[— >|IIII >~ >||=|| - >|IIII—>

Q the queues above are queues with bounded buffer
= "pipelined parallelism”

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Communicating Sequential Processes
(CSP / Google Go)

G> One thread per shared object
= only that thread is allowed to touch object’s data
= to call a method on the object, send thread a message with
method nhame and arguments
= thread waits in a loop, get message and perform operation

ﬁ> No memory race conditions!
= since data access is sequential/serialized

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

CSP Example: FIFO Bounded Buffer

CV empty, full;
int front=0, tail=0;

get () { void put (item) {
lock.acquire(); lock.acquire();
while (front==tail) { while ((tail—-front)==MAX) {

empty.wait (&lock) ; full .wait (&lock);

} }
item = buf[front$MAX]; buf[tail$MAX] = item;
front++ tail++;
full.signal (lock); empty.signal (&lock);
lock.release(); lock.release();
return item; }

= producer thread sleeps in the £ull CV queue to wait for an
empty spot to appear in the buffer

= consumer thread sleeps in the empty CV queue to wait for a
data item to appear in the buffer

% ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

CSP Example: FIFO Bounded Buffer

while (cmd = getNext ()) {
if (cmd == GET) {
if (front < tail) {
// do get ()
// send reply
// if pending put, do it and send reply
} else {
// queue get operation
}
} else { // cmd == PUT
if ((tail-front) < MAX) {
// do put ()
// send reply
// if pending get, do it and send reply
} else {
// queue put operation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks/CVs vs. CSP

ﬁ} Create a lock on shared data = create a single thread to operate on

data

ﬁ} Create a method on a shared object = send a message and wait for
reply

ﬁ> Wait on a CV = queue an operation that cannot be completed just
yet

ﬁ> Signal a condition = perform a queued operation that has been
enabled to proceed

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Message-Passing vs. Shared Memory

ﬁ} Which approach is better for programming concurrency,
message-passing or shared memory?
= as it turns out, any program using monitors can be recast into
CSP using a simple transmation, and vice versa
Q executing a procedure while holding a monitor lock is
equivalent to processing a message in CSP
Q a monitor is single-threaded while it’s holding the lock

_) It's just a matter of style!

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Review: Remember The Rules

_) Use consistent structure

> Always use locks and condition variables

ﬁ> Always acquire lock at beginning of procedure, release at end
ﬁ> Always hold lock when using a condition variable

_) Always wait in while loop

_, Never spin in sleep ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

