
Ch 5: Synchronizing

Access to Shared Objects

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Motivation

two threads write to the same variable; which one should win?

does it matter which thread runs first?

When threads concurrently read/write shared memory, program

behavior is undefined

when would it be considered the behavior wrong/incorrect?

behavior changes when re-run program

Thread schedule is non-deterministic

Compiler/hardware instruction reordering

Multi-word operations (such as memcmp()) are not atomic

programs need to work for any possible interleaving

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Compiler/Hardware Can Reorder Instructions

Modern compilers (and hardware) reorder instructions to

improve performance

Thread 1

p = someComputation()
pInitialized = true;

Thread 2

while (!pInitialized)
 ;
q = anotherComputation(p)

can thread 2 use p before p is initialized?

doesn’t look like it’s possible, right?!

If you have optimization turned on when you compile, the compiler

may decide to do the following (since it doesn’t understand that p
and pInitialized are semantically related):

Thread 1

pInitialized = true;
p = someComputation()

Thread 2

while (!pInitialized)
 ;
q = anotherComputation(p)

clearly, this is no good

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Why Reordering?

Why do compilers reorder instructions?

efficient code generation requires analyzing control/data

dependency

Why do CPUs reorder instructions?

write buffering: allow next instruction to execute while write

is being completed

Fix: memory barrier (a.k.a. membar or memory fence)

instruction to compiler/CPU

no operation after barrier starts until barrier returns

all operations before barrier complete before barrier returns

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.1) Challenges

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Race Condition

possible final values of x are 1 or 2

A race condition occurs when the behavior of a program depends

on the interleaving of operations of different threads

Thread 1

x = 1;

Thread 2

x = 2;

possible final values of x are 13 or 25

Ex: y is initialized to 12

Thread 1

x = y + 1;

Thread 2

y = y * 2;

possible final values of x are 1, 2, and 3

Ex: x is initialized to 0

Thread 1

x = x + 1;

Thread 2

x = x + 2;

x = x + 2;
 /*
 load r1,x
 add r2,r1,1
 store x,r2
 */

x = x + 1;
 /*
 load r1,x
 add r2,r1,1
 store x,r2
 */

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Race Condition

Thread 1: Thread 2:

they execute machine instructions

Unfortunately, processors do not execute high-level language

statements

if thread 1 executes the first (or two) machine instructions

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

x would end up to be 1

context switch can happen (to run a different thread)

Memory

memory bus

x

r1 and r2 are
inside here

this can happen if you have a preemptive scheduler

0

Note: load and store are atomic (indivisible) operations

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Problem

Two roommates want to make sure that the refrigerator is always

well stocked with milk

what’s the algorithm for each roommate?

Correctness property

liveness: the program eventually enters a good state

safety: the program never enters a bad state

if there is no milk, eventually someone would buy milk

must not end up with more than one milk

Unless otherwise specified, we will always assume that neither the

compiler nor the architecture reorders instructions

Q: Does the above solution guarantees safety and liveness?

the assumption here is that if a statement only access zero or

one memory location, it’s an atomic operation (because it

cannot be preempted in the middle of that operation)

which statements are atomic?

// thread A or thread B
if(milk == 0){ // if no milk
 if(note == 0){ // if no noke
 note = 1; // leave a note
 milk++; // buy milk
 note = 0; // remove note
 }
}

Algorithm:

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #1: Leave A Note

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #1: Leave A Note

This solution satisfies liveness but violates safety

// thread A
if(milk == 0){

 if(note == 0){
 note = 1;
 milk++;
 note = 0;
 }
}

// thread B

if(milk == 0){
 if(note == 0){
 note = 1;
 milk++;
 note = 0;
 }
}

time

in this scenario, milk is 2 at the end

Heisenbug!

occasionally fail in ways that may be difficult to reproduce

// thread A
noteA = 1; // leave note
if(noteB == 0){ // if no note
 if(milk == 0){ // if no milk
 milk++; // buy milk
 }
}
noteA = 0; // remove note

// thread B
noteB = 1; // leave note
if(noteA == 0){ // if no note
 if(milk == 0){ // if no milk
 milk++; // buy milk
 }
}
noteB = 0; // remove note

does this solution guarantees safety and liveness?
0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

Algorithm:

proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

To prove safety, need to look at all possible

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

 // thread A
 noteA = 1;
[A1] if(noteB == 0){
[A2] if(milk == 0){
[A3] milk++;
 }
 }
 noteA = 0;

 // thread B
 noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0){
[B3] milk++;
[B4] }
[B5] }
 noteB = 0;

given the assumption, thread A will be

at [A3] and thread B will be at [B3]

contradiction, thread B will not reach [B3] ¤

To prove safety, need to look at all possible

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

 // thread A
 noteA = 1;
[A1] if(noteB == 0){
[A2] if(milk == 0){
[A3] milk++;
 }
 }
 noteA = 0;

 // thread B
 noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0){
[B3] milk++;
[B4] }
[B5] }
 noteB = 0;

proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

given the assumption, thread A will be

at [A3] and thread B will be at [B3]

Case 1: noteB = 1, milk = don’t care

contradiction, thread A will not reach [A3]

Case 2: noteB = 0, milk > 0

contradiction, thread A will not reach [A3]

Case 3: noteB = 0, milk = 0

Canno prove liveness

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

 // thread A
[A0] noteA = 1;
[A1] if(noteB == 0){
[A2] if(milk == 0){
[A3] milk++;
 }
 }
 noteA = 0;

 // thread B
[B0] noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0){
[B3] milk++;
[B4] }
[B5] }
 noteB = 0;

if thread A executes [A0] and switch to

thread B to execute [B0], or vice versa,

both will not buy milk

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #3: Waiting

// thread A
noteA = 1; // leave noteA
while(noteB == 1){ // if no note from roommate
 ; // spin
}
if(milk == 0){ // if no milk
 milk++; // buy milk
}
noteA = 0; // remove noteA

// thread B
noteB = 1; // leave note
if(noteA == 0){ // if no note from roommate
 if(milk == 0){ // if no milk
 milk++; // buy milk
 }
}
noteB = 0; // remove note

does this solution guarantees safety and liveness?

Algorithm:

Can prove safety using a similar argument for

solution 2

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 1){
 ;
}
if(milk == 0){
 milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
 if(milk == 0){
 milk++;
 }
}
noteB = 0;

Liveness: since thread B has no loop, noteB

will eventually be 0 and thread A will get to

decide to buy milk or not

Solution 3 has both safety and liveness using

only atomic load and store operations

case 1: noteB = 1, milk = don’t care

contradiction, B will not buy milk

case 2: noteB = 0, milk > 0

contradiction, A will not buy milk

case 3: noteB = 0, milk = 0

contradiction, B will not buy milk ¤

Is solution 3 a "good" solution?

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 0){
 ;
}
if(milk == 0){
 milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
 if(milk == 0){
 milk++;
 }
}
noteB = 0;

issues:

solution is complex (why the asymmetry?)

solution is inefficient: thread A is doing

busy-waiting and consuming CPU resource

solution may fail if the compiler or hardware

reorders instructions (although this

limitation can be addressed by using

memory barriers, which would increase

the implementation complexity of the

algorithm)

there is something called Peterson’s

algorithm that would work more generally

// thread A or thread B
Kitchen::buyIfNeeded() {
 mutex.lock();
 ...
 mutex.unlock();
}

Unless otherwise specified, we use the term lock and mutex

interchangeably (although in general, a lock may allow multiple

threads to have concurrent access to a resource)

Lock: a primitive that only one thread at a time can own

// thread A or thread B
Kitchen::buyIfNeeded() {
 lock.acquire();
 if (milk == 0) {
 milk++;
 }
 lock.release();
}

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk: Use Synchronization Objects

simple and symmetrical

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.2) Structuring

Shared Objects

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Threads And Shared Objects

shared objects contain both shared state and synchronization

variables (for controlling concurrent access to shared state)

In a multi-threaded program, threads are separate from shared

objects and operate concurrently on shared objects

Shared ObjectsThreads

P
u

b
li

c
 M

e
th

o
d

s

State

Variables

Synchronization

Variables

all shared state in a program should be encapsulated in

one or more shared objects

Shared objects: objects that can be accessed safely by multiple

threads

today, Java supports monitors via the synchronized keyword

Early programming languages with monitors include Birnch

Hansen’s Concurrent Pascal and Xerox PARC’s Mesa

a monitor is a synchronization construct that allows executing

entities to have both mutual exclusion and the ability to

wait/block for a certain condition to become true

When a programming language includes support for shared

objects, a shared object is often called a monitor

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Monitors

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Shared Objects Are Implemented In Layers

Shared

Objects:

Synchronization

Variables:

Atomic

Instructions:

Hardware:

Bounded Buffer Barrier

Semaphores Locks Condition Variables

Interrupt Disable Test-and-Set

Multiple Processors Hardware Interrupts

Concurrent

Applications:

Readers/Writers

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.3) Locks:

Mutual Exclusion

Synchronization

Variables:
Semaphores Locks Condition Variables

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks

A lock is a synchronization variable that provides mutual exclusion

(when one thread holds a lock, no other thread can hold it, i.e.,

other threads are excluded)

A program associates each lock with some subset of shared state

and requires a thread to hold the lock when accessing that state

as a result, only one thread can access the shared state at a

time

while holding a lock, a thread can perform an arbitrary set of

operations

those operations appear to be atomic to other threads

no other thread can observe an intermediate state

other threads can only observe the state after the lock is

released

seeing the state is FREE and setting the state to BUSY are

together an atomic operation

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks: API and Properties

a lock can be in one of two states: BUSY or FREE

A lock enables mutual exclusion by providing two methods:

Lock::acquite() and Lock::release()

a lock is initially in the FREE state

Lock::acquire() waits until the lock is FREE and then

atomically makes the lock BUSY

Lock::release() makes the lock FREE

if there are pending acquire() operations, this state change

causes one of them to proceed

if multiple threads try to acquire the lock, at most one thread

will succeed

one thread observes that the lock is FREE and sets it to

BUSY while other threads just see that the lock is BUSY

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks: API and Properties

mutual exclusion: at most one thread holds the lock

A lock implementation should ensure the following three properties

progress: if no thread holds the lock and any thread attempts to

acquire the lock, then eveutually some thread succeeds in

acquiring the lock

bounded waiting: if a thread T attempts to acquire a lock, then

there exists a bound on the number of times other threads can

successfully acquire the lock before T does

this is a safety property - locks prevent more than one thread

from accessing shared state

this is a liveness property - if a lock is FREE, some thread

must be able to acquire it

this is a liveness property - any particular thread that wants

to acquire the lock must eventually succeed in doing so

Non-property: thread ordering

no promise that waiting threads acquire the lock in FIFO

order

tryget() {
 item = NULL;
 lock.acquire();
 if (front < tail) {
 item = buf[front % MAX];
 front++;
 }
 lock.release();
 return item;
}

Use a fixed size buffer to implement a FIFO queue

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Thread-Safe Bounded Queue

tryput(item) {
 lock.acquire();
 if ((tail - front) < size) {
 buf[tail % MAX] = item;
 tail++;
 }
 lock.release();
}

initially, front=tail=0, lock=FREE, buf[MAX]
for simplicity, assume no wraparound/overflow on array index

front = total number of items removed

tail = total number of items inserted/appended

a thread cannot know the state of the bounded queue/buffer

unless it’s holding the lock

if tryget() returns NULL, we can only conclude that the

buffer was empty

A critical section is a sequence of code that atomically accesses

shared state

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Critical Section

a critical section with respect to lock L is code executed when

holding lock L (code between L.acquire() and L.release())

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.4) Condition Variables:

Waiting for a Change

Synchronization

Variables:
Semaphores Locks Condition Variables

get()
{
 while ((data = tryget()) == NULL) ;
 return data;
}

Wait: atomically release lock, placing the thread on the CV queue,

and suspend the execution of the calling thread

these threads are working together and helping each other

The right way to wait for a shared state variable to change value is

to go sleep on a queue (i.e., a condition variable queue) and wait for

a wake up call (i.e., a notification)

called only when holding a lock

Waiting inside a critical section

reacquire the lock when wakened

Signal: wake up a waiting thread, if any

Broadcast: wake up all waiting threads, if any

Busy waiting:

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Condition Variables (CV)

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Condition Variable Design Pattern

methodThatWaits() {
 lock.acquire();
 // read/write shared state
 while (!testSharedState()) {
 cv.wait(lock);
 }
 // read/write shared state
 lock.release();
}

methodThatSignals() {
 lock.acquire();
 // read/write shared state
 // if testSharedState() is true
 cv.signal(lock);
 // read/write shared state
 lock.release();
}

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Bounded Queue/Buffer

get() {
 lock.acquire();
 while (front==tail){
 empty.wait(lock);
 }
 item = buf[front%MAX];
 front++;
 full.signal(lock);
 lock.release();
 return item;
}

put(item) {
 lock.acquire();
 while ((tail-front)==MAX){
 fullf.wait(lock);
 }
 buf[tail%MAX] = item;
 tail++;
 empty.signal(lock);
 lock.release();
}

empty: threads sleep here because the buffer is empty (nothing

to get, nothing to work on)

Two CV queues

full: threads sleep here because the buffer is full (cannot add

work, no space)

full.signal() if the buffer is no longer full

empty.signal() if the buffer is no longer empty

methodThatWaits() {
 lock.acquire();
 // pre-condition: State is consistent
 // read/write shared state
 while (!testSharedState()) {
 cv.wait(lock);
 }
 // WARNING: shared state may have changed,
 // but testSharedState() is true and
 // pre-condition is true
 // read/write shared state
 lock.release();
}

methodThatSignals() {
 lock.acquire();
 // pre-condition: State is consistent
 // read/write shared state
 // if testSharedState() is true
 cv.signal(lock);
 // NO WARNING: signal keeps lock
 // read/write shared state
 lock.release();
}

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pre/Post Conditions

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Condition Variables

Always hold lock when calling wait(), signal(), broadcast()
always hold lock when accessing shared state

if signal when no one is waiting, it’s as if nothing has happened

Condition variable is memoryless

if wait before signal, waiting thread wakes up

wait() atomically releases lock

signal()/broadcast() put the thread on the ready list

When a thread is woken up from wait(), it may not run immediately

when lock is released, any waiting thread might acquire it

while (needToWait()) {
 cv.wait(lock);
}

wait() must be called in a loop since spurious wakeup can occur

lock is reacquired before wait() returns

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.5) Designing and

Implementing

Shared Objects

Always leave shared state variables in a consistent state when lock

is released, or when waiting

signal() or broadcast()
If do something that might wake someone up

do not assume when you wake up, signaller just ran

while (needToWait()) {
 cv.wait(lock);
}

If need to wait:

release lock on finish

grab lock on start to every method/procedure

Add locks to object/module

Identify objects or data structures that can be accessed by multiple

threads concurrently

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Structured Synchronization

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Remember The Rules

Use consistent structure

Always use locks and condition variables

Always acquire lock at beginning of procedure, release at end

Always hold lock when using a condition variable

Always wait in while loop

Never spin in sleep()

message-passing is another way for synchronization

We generally use the term monitor to mean that we are using locks

and CVs for synchronization

with Hoare semantics, liveness properties is easier to prove

In general, Mesa semantics makes it easier to write application

code, and therefore, more widely used

nested signals possible

when waiting thread finishes, processor/lock given back to

signaller

signal() gives processor and lock to waiting thread

Hoare

signaller keeps lock and processor

signal() puts waiting thread on the ready list

Mesa

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mesa vs. Hoare Semantics

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Bounded Buffer (Mesa Semantics)

This is what we had before

get() {
 lock.acquire();
 while (front==tail){
 empty.wait(lock);
 }
 item = buf[front%MAX];
 front++;
 full.signal(lock);
 lock.release();
 return item;
}

put(item) {
 lock.acquire();
 while ((tail-front)==MAX){
 full.wait(lock);
 }
 buf[tail%MAX] = item;
 tail++;
 empty.signal(lock);
 lock.release();
}

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Bounded Buffer (Hoare Semantics)

get() {
 lock.acquire();
 if (front==tail){
 empty.wait(lock);
 }
 item = buf[front%MAX];
 front++;
 full.signal(lock);
 lock.release();
 return item;
}

put(item) {
 lock.acquire();
 if ((tail-front)==MAX){
 full.wait(lock);
 }
 buf[tail%MAX] = item;
 tail++;
 empty.signal(lock);
 lock.release();
}

No need to loop since the lock is transferred from the thread calling

empty.signal() to the thread that was sleeping in empty.wait()
but we said before that wait() must be called in a loop since

spurious wakeup is permitted to occur

under Hoare semantics, the implementation must make sure

that spurious wakeup cannot occur (and this may be

difficult to implement on some systems)

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.6) Three

Case Studies

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Readers/Writers Lock

Readers/writers lock (RWLock): a lock which allows multiple reader

threads to access shared data concurrently, but still provides

mutual exclusion whenever a writer thread is reading or modifying

the shared data

W

W

W

data

R R
R

R
R

R

R

R

R

R
R

R

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Readers/Writers Lock

reader() {
 lock.acquire();
 waitingReaders++;
 while (!(writers==0))
 readersCV.wait(lock);
 waitingReaders--;
 activeReaders++;
 lock.release();
 /* read data */
 lock.acquire();
 if (--activeReaders==0)
 writersCV.signal(lock);
 lock.release();
}

writer() {
 lock.acquire();
 waitingWriters++;
 while(!((readers==0)
 && (writers==0)))
 writersCV.wait(lock);
 waitingWriters--;
 activeWriters++;
 lock.release();
 /* write data */
 lock.acquire();
 activeWriters--;
 assert(activeWriters==0);
 writersCV.signal(lock);
 readersCV.broadcast(lock);
 lock.release();
}

readers read concurrently

a writer writes exclusively (no concurrent reading or writing

by other threads)

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Barriers

checkin() doesn’t return until all threads have checked in

When a thread is done with its work, it must call checkin()

Ex: MapReduce, signal processing

Synchronization barrier is differrent from a memory barrier

memory barrier is to synchronize memory operations for one

thread

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

MapReduce

MapReduce pseudo-code:

create N threads

create barrier to synchronize N threads

each thread executes map operation in parallel

barrier.checkin()
each thread sends data in parallel to reducers

barrier.checkin()
each thread executes reduce operation in parallel

barrier.checkin()

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Barriers

int numEntered = 0;
void checkin() {
 lock.acquire();
 if (++numEntered < barrierN) {
 while(numEntered < barrierN)
 barrierCV.wait(lock);
 } else {
 barrierCV.broadcast(lock);
 }
 lock.release();
}

where can you reset numEntered to 0 so you can reuse this

barrier?

The above implementation of checkin() results in a barrier that

can only be used once

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Barriers

int numEntered = 0, numLeft = 0;
void checkin() {
 lock.acquire();
 if (++numEntered < barrierN) {
 while(numEntered < barrierN)
 checkinCV.wait(lock);
 } else {
 numLeft = 0;
 checkinCV.broadcast(lock);
 }
 if (++numLeft < barrierN) {
 while(numLeft < barrierN)
 checkoutCV.wait(lock);
 } else {
 numEntered = 0;
 checkoutCV.broadcast(lock);
 }
 lock.release();
}

One solution is to use two barriers, one for checking in and one for

checking out

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Barriers

int numEntered = 0, generation = 0;
void checkin() {
 lock.acquire();
 if (++numEntered < barrierN) {
 int my_generation = generation;
 while(my_generation == generation)
 barrierCV.wait(lock);
 } else {
 numEntered = 0;
 generation++;
 barrierCV.broadcast(lock);
 }
 lock.release();
}

A more efficient solution

starvation can happen if every time another thread calls put(),

a 3rd thread that has called get() got the item and thread X

always see an empty buffer
0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Starvation

Starvation: the possibility that a thread doesn’t get to run

the bounded buffer solution is not starvation-free

Let’s say that thread X calls get() and goes to sleep because the

buffer is empty (and some other threads are doing the same thing)

get() {
 lock.acquire();
 while (front==tail){
 empty.wait(lock);
 }
 item = buf[front%MAX];
 front++;
 full.signal(lock);
 lock.release();
 return item;
}

put(item) {
 lock.acquire();
 while ((tail-front)==MAX){
 fullf.wait(lock);
 }
 buf[tail%MAX] = item;
 tail++;
 empty.signal(lock);
 lock.release();
}

put()

first-in-first-out (FIFO): the k
th

 thread to acquire the lock in

get() retrieves the item inserted by the k
th

 to acquire the lock in

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Starvation

The bounded buffer solution needs liveness constraints:

starvation-freedom: if a thread waits in get(), it is guaranteed

to proceed after a bounded number of put() calls

this is a much stronger constraint than starvation-freedom

if the FIFO constraint is satisfied, starvation-freedom is

guaranteed

you can build your own queue for the threads to sleep on

(with a queue of CVs)

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

get() for FIFO Bounded Buffer
queue<CV> getQueue, putQueue;
int numGetCalled=0, numPutCalled=0;
get() {
 lock.acquire();
 myGetPos = numGetCalled++;
 myGetCV = new CV;
 getQueue.push_back(myGetCV);
 while (front<myGetPos || front==tail){
 myGetCV.wait(lock);
 }
 getQueue.delete_front();
 item = buf[front%MAX];
 front++;
 // wake up the next thread waiting in put(), if any
 nextPutThreadCV = putQueue.front();
 if (nextPutThreadCV != NULL) {
 nextPutThreadCV.signal(lock);
 }
 lock.release();
 return item;
}

put() is similar

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.7) Implementing

Synchronization Objects

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Shared Objects Are Implemented In Layers

Shared

Objects:

Synchronization

Variables:

Atomic

Instructions:

Hardware:

Semaphores Locks Condition Variables

Interrupt Disable Test-and-Set

Multiple Processors Hardware Interrupts

Concurrent

Applications:

Bounded Buffer BarrierReaders/Writers

note that each of these primitives are also memory barriers, i.e.,

all prior instructions must complete before one of these

instructions is executed

atomic read-modify-write instructions: globally atomic

instructions on a multiprocessor system

disabling interrupts: on a uniprocessor, we can make any

sequence of instructions atomic by disabling interrupts

Modern systems have hardware support for:

see too much milk solution - too complex

Use memory load/store

We will talk about kernel thread synchronization first (and will

briefly talk about user thread synchronization)

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Synchronization

what if the thread calling acquite() doesn’t yield the processor

after the lock is acquired?

malicious or buggy program can monopolize the processor

other threads do not get to run and make the system

unresponsive to handling user inputs or other real-time tasks

some interrupt needs attention of the processor right away

it’s not a good idea to run the processor with interrupt disable

for a long period of time

What else is wrong with the above implementation?

This implementation does not provide mutual inclusion even on a

uniprocessor (if the thread calls yield())

Lock::release() {
 enableInterrupts();
}

Lock::acquire() {
 disableInterrupts();
}

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Locks By Disabling Interrupts

need to re-enable the interrupt before we put the thread to sleep

Still need to disable the interrupt briefly to protect the lock’s

data structure

yield the processor (by calling thread_switch())

If the lock is BUSY, no point in running the acquiring thread until

the lock is free

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Uniprocessor Queueing Locks

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Uniprocessor Queueing Locks
class Lock {
 private:
 int value = FREE;
 queue waiting; // hence the name "queueing lock"
 public:
 void acquire();
 void release();
};

Lock::acquire()
{
 disableInterrupts();
 if (value == BUSY) {
 waiting.add(runningThread);
 runningThread->state = WAITING;
 TCB *nextThread=readyList.remove();
 thread_switch(runningThread, nextThread);
 runningThread->state = RUNNING;
 } else {
 value = BUSY;
 }
 enable_interrupt();
}

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Uniprocessor Queueing Locks
class Lock {
 private:
 int value = FREE;
 queue waiting; // hence the name "queueing lock"
 public:
 void acquire();
 void release();
};

Lock::acquire()
{
 disableInterrupts();
 if (value == BUSY) {
 waiting.add(runningThread);
 runningThread->state = WAITING;
 TCB *nextThread=readyList.remove();
 thread_switch(runningThread, nextThread);
 runningThread->state = RUNNING;
 } else {
 value = BUSY;
 }
 enable_interrupt();
}

our convention is that

thread_switch() must only be

called when interrupt is disabled

if some code calls

thread_switch(), it must disable

interrupt first and enable interrupt

when thread_switch()returns

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Uniprocessor Queueing Locks
Lock::release()
{
 disableInterrupts();
 if (!waiting.empty()) {
 TCB *nextThread=waiting.remove();
 nextThread->state = READY;
 readyList.add(nextThread);
 } else {
 value = FREE;
 }
 enable_interrupt();
}

Is it a bug that we don’t change value to FREE when lock is

released and the waiting queue is not empty?

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Multiprocessor Spinlocks

When there are multiple processors, the difficulty lies in locking

if (value == FREE) {
 value = BUSY;
}

if both threads execute the above code concurrently in different

processors, both threads think they got the lock

No way to implement this with only software

Memory

value

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Atomic Hardware Instructions

Most processor architectures provide atomic read-modify-write

instructions to support synchronization

compare-and-swap and test-and-set are other names for such

an instruction (two operations locked together as an atomic

instruction over the bus)

Memory

value

Lock is represented as a bit, 0 if FREE, 1 if BUSY

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
 bool previous_value=*lock;
 *lock = BUSY;
 return previous_value;
}

if test_and_set() returns BUSY (i.e., 1), it means that the

calling thread does not own the lock

if test_and_set() returns FREE (i.e., 0), it means that the

calling thread is now the exclusive owner of the lock

Spinlock::acquire()
{
 // while BUSY
 while (test_and_set(&value))
 ; // spin
}

Spinlock::release()
{
 value = FREE;
 memory_barrier();
}

Lock is represented as a bit, 0 if FREE, 1 if BUSY

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
 bool previous_value=*lock;
 *lock = BUSY;
 return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is FREE, call test_and_set(&value)

Memory

lock

Lock is represented as a bit, 0 if FREE, 1 if BUSY

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
 bool previous_value=*lock;
 *lock = BUSY;
 return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is FREE, call test_and_set(&value)

&value

0

if LOCK signal is asserted on

the bus, no otherprocessor

can perform any operation

over the bus

Lock is represented as a bit, 0 if FREE, 1 if BUSY

0123

65

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
 bool previous_value=*lock;
 *lock = BUSY;
 return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is FREE, call test_and_set(&value)

&value

1

&value

0

if LOCK signal is asserted on

the bus, no otherprocessor

can perform any operation

over the bus

read from the bus and

write to the bus, together,

is an atomic operation

Lock is represented as a bit, 0 if FREE, 1 if BUSY

0123

66

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Atomic Test-And-Set Machine Instruction

bool test_and_set(int *lock)
{
 bool previous_value=*lock;
 *lock = BUSY;
 return previous_value;
}

A[0..31]

D[0..31]

RD

WR

LOCK

e.g., value is BUSY, call test_and_set(&value)

&value

1

&value

1

if LOCK signal is asserted on

the bus, no otherprocessor

can perform any operation

over the bus

read from the bus and

write to the bus, together,

is an atomic operation

0123

67

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Better Spinlock

Spinlock::acquire()
{
 while (test_and_set(&value))
 ; // spin
}

Naive spinlock (lock out the bus way too much)

Spinlock::acquire()
{
 while (1) {
 if (value == FREE) {
 // lock was at least momentarily unlocked
 if (test_and_set(&value) == FREE) {
 // we have locked the spinlock
 break;
 }
 // some other thread beat us, try again
 }
 }
}

Better spinlock (try to minimize locking out the bus)

0123

68

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Spinlocks

processor time wasted waiting for the lock to be released

Spinlocks are wasteful

barely acceptable if locks are held only briefly

in addition, before using a spinlock, must disable interrupts first

Interrupt service routine must run to completion without blocking

minimal work that must be done inside an interrupt handler are

Most OSes keep interrupt handlers extremely simple

must use a spinlock to access shared data (since interrupt

handlers are not threads)

wake up a thread waiting for the I/O completion interrupt

start the next I/O operation (to keep the I/O device as busy as

possible)

this would require accessing the ready list (access

protected by first disabling interrupts then lock a spinlock)

0123

69

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How Many Spinlocks

need a queue of waiting threads on lock X

Various data structures need synchronized access

need a queue of waiting threads on lock Y

What’s wrong with one spinlock for the entire kernel?

one spinlock per lock

Instead:

bottleneck

per-processor ready list: one spinlock per processor/core

list of threads ready to run

one spinlock for the ready list

if stack sizes are fixed: can put a pointer to the TCB of the

running thread at the bottom of its stack (assuming the base

address of the stack is page-aligned)

0123

70

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Which Thread Is Currently Running?

to suspend and switch to a new thread

Thread scheduler needs to find the TCB of the currently running

thread

to check if the current thread holds a lock before acquiring or

releasing it

On a uniprocessor, easy: use a global variable (currentThread)

compiler can dedicate a register: e.g., use r31 to point to the TCB

of the running thread and every processor has its own r31

On a multiprocessor system, varioius methods:

find the address of this pointer by masking the current stack

pointer (i.e., zeroing out the least-significant bits)

0123

71

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Multiprocessor Queueing Locks
class Lock {
 private:
 int value = FREE;
 SpinLock spinLock; // need this for multiprocessor
 queue waiting; // queueing lock
 public:
 void acquire();
 void release();
};

Lock::acquire()
{
 spinLock.acquire();
 if (value == BUSY) {
 waiting.add(runningThread);
 // spinLock released inside suspend()
 scheduler.suspend(&spinLock);
 } else {
 value = BUSY;
 spinLock.release();
 }
}

Lock::release()
{
 spinLock.acquire();
 if (!waiting.empty()) {
 TCB *nextThread=waiting.remove();
 scheduler.makeReady(nextThread);
 } else {
 value = FREE;
 }
 spinLock.release();
}

0123

72

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Multiprocessor Queueing Locks

class Scheduler {
 private:
 // access only when owning schedulerSpinLock
 queue readyList;
 // access only when interrupt is disabled
 SpinLock schedulerSpinLock;
 public:
 void suspend(SpinLock *lock);
 void makeReady(TCB *thread);
};

0123

73

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Scheduler Implementing

Scheduler::suspend(SpinLock *lock)
{
 disableInterrupts();
 schedulerSpinLock.acquire();
 lock->release();
 runningThread->state = WAITING;
 TCB *nextThread=readyList.remove();
 thread_switch(runningThread, nextThread);
 runningThread->state = RUNNING;
 schedulerSpinLock.release();
 enableInterrupts();
}

Scheduler::makeReady(TCB *thread)
{
 disableInterrupts();
 schedulerSpinLock.acquire();
 nextThread->state = READY;
 readyList.add(thread);
 schedulerSpinLock.release();
 enable_interrupt();
}

0123

74

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Scheduler Implementing

Scheduler::suspend(SpinLock *lock)
{
 disableInterrupts();
 schedulerSpinLock.acquire();
 lock->release();
 runningThread->state = WAITING;
 TCB *nextThread=readyList.remove();
 thread_switch(runningThread, nextThread);
 runningThread->state = RUNNING;
 schedulerSpinLock.release();
 enableInterrupts();
}

Scheduler::makeReady(TCB *thread)
{
 disableInterrupts();
 schedulerSpinLock.acquire();
 nextThread->state = READY;
 readyList.add(thread);
 schedulerSpinLock.release();
 enable_interrupt();
}

0123

75

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Scheduler Implementing

1

2

without using

schedulerSpinLock,

thread 1 can be

running in two CPUs

simultaneously

cache affinity

After a thread has run on a particular processor, next time it

runs, it would be cheaper to run it on the same processor

This means that if you use a shared ready list for multiple

processors, you will not be able to take advantage of cache affinity

therefore, you should use one ready list per processor

0123

76

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Cache Affinity

scheduler may do load balancing occasionally

0123

77

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Solaris: Processor Sets

Somewhere between the two extremes

reducing the frequency of requiring load balancing

0123

78

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Linux 2.6 Kernel Mutex Lock

common case (fast path): locks are in the FREE state

Linux kernel implementation is optimized for the common case

rare case (slow path): locks are in the BUSY state and lots of

threads are waiting in a long queue to acquire it

use read-modify-write instruction to acquire the lock and be

optimistic that most of the time, it would be successful and

be done with acquiring the lock

if the read-modify-write instruction failed to acquire the

lock, then use the previous approach for multiprocessor

queueing locks

x86 processor has atomic decrment/increment (return

previous value), atomic exchange (swap content of memory

location and CPU register), atomic test-and-set

0123

79

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Fast Path Acquire
struct mutex {
 atomic_t count;
 // 1: unlocked
 // 0: locked with no waiting thread
 // <0: locked, with possible waiting threads
 spinlock_t wait_lock;
 struct list_head wait_list;
};

Use a macro for the fast path to save procedure call overhead:

 lock decl (%eax)
 // %eax contains the address of lock->count
 jns 1f // jump if result is >= 0, i.e., not signed
 call slowpath_acquire
1:

The slow path uses the previous approach for multiprocessor

queueing locks (start by disabling preemption, acquiring spinlock,

adding thread to wait list)

main difference is that count is no longer 1 or 0 and can go

negative

also, when thread returns from scheduler.suspend(), it

cannot not assume that it owns the lock and must try to acquire

the lock again

for (;;) {
 if (atomic_xchg(&lock->count, -1) == 1)
 break;
 // go to sleep
}
// count is now -1
if (list_empty(&lock->wait_list)) {
 atomic_set(&lock->count, 0);
}

release spinlock and enable preemption
0123

80

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Slow Path Acquire

Use a macro for the fast path to save procedure call overhead:

 lock incl (%eax)
 // %eax contains the address of lock->count
 jg 1f // jump if result is = 0, i.e., FREE
 call slowpath_release
1:

0123

81

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Fast Path Release

lock->wait_lock.acquire();
// now unlock the lock
atomic_set(&lock->count, 1);
if (!list_empty(&lock->wait_list)) {
 // wake up one thread on lock->wait_list
}
lock->wait_lock.release();

The slow path code is similar to the previous approach for

multiprocessor queueing locks

0123

82

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Slow Path Release

0123

83

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Linux 2.6 Kernel Mutex Lock

Acquiring and releasing a lock can be inexpensive

when there is little contention, avoiding locks is unlikely to

significantly improve performance

Programmers sometimes go to great lengths to avoid acquiring a

lock

it’s often better to just keep things simple and use locks to

ensure mutual exclusion when accesing shared state

0123

84

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Condition Variables (Mesa Semantics)
void CV::wait(Lock *lock)
{
 assert(lock.isHeld());
 waiting.add(currentThread);
 scheduler.suspend(lock);
 lock->acquire();
}

void CV::signal()
{
 if (waiting.notEmpty()) {
 TCB *thread = waiting.remove();
 scheduler.makeReady(thread);
 }
}

void CV::broadcast()
{
 while (waiting.notEmpty()) {
 TCB *thread = waiting.remove();
 scheduler.makeReady(thread);
 }
}

class CV {
 private:
 queue waiting;
 public:
 void wait(Lock *lock);
 void signal();
 void broadcast();
};

since lock is already acquired,

the code is simple

0123

85

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Application-Level Synchronization

via system calls

Recall from Ch 4 that there are two ways to support

application-level concurrency:

via user-level thread scheduler

can split the lock data structure:

Kernel-managed threads

lock data structure is kept completely in the address space of

the user process

User-managed threads

count is kept in the address space of the user process

kernel holds the spinlock and waiting queue

what about disabling interrupts?

only need to disable upcalls from the OS kernel (upcalls in

user space is analygous to interrupts in kernel)

0123

86

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.8) Semaphores

Considered Harmful

a program using other paradigms can be mapped to threads and

monitors using straight-forward transformations

None of these are more powerful than using locks and condition

variables

communication sequential processes

Many different synchronization primitives have been proposed

event delivery

message passing

etc.

semaphores

0123

87

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Primitives

0123

88

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Semaphores

a semaphore is a non-negative integer value

Semaphores are defined as follows:

when a semaphore is created, its value can be initialized to

any non-negative integer

a semaphore has only two operations and no other operations

are allowed to access the semaphore value

atomic decrement: Semaphore::P() waits until the

semaphore value is positive, then atomically decrements the

semaphore value by 1 and returns

atomic increment: Semaphore::V() atomically increments

the semaphore value by 1

if some threads are waiting in P(), one of them is enabled

so that its call to P() succeeds at decrementing the

semaphore value and returns

for general waiting, it’s more clean to use CV+lock/mutex and

not a semaphore

If semaphore value is initialized to be > 0, it can be used for mutual

exclusion

0123

89

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Semaphores Considered Harmful

because it’s used in two different ways

Why are semaphores considered harmful?

e.g., can be used to solve the FIFO bounded buffer problem

If semaphore value is initialized to be 0, it can be used for general

waiting

e.g., thread A calls P() to wait for thread B to call V()
thread B can call V() first, then when thread A calls P(), it

would return right away

P() is like CV::wait() and V() is like CV::signal(), but

not exactly the same because if CV::signal() is called

first, CV::wait() can get stuck forever

0123

90

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

one producer (I/O device) and one consumer (thread waiting

for I/O completion)

Semaphores are often used to synchronize communication between

an I/ O device and threads waiting for I/ O completion

Conveyor belt (in hardware)

perfect parallelism between producer and consumer

ProducerConsumer

Most of the time, no interference

A circular buffer is used in software implementation

if you use a single mutex to lock the entire array of buffers,

it’s an overkill (i.e., too inefficient)

We will look at the solution for multiple producer and multiple

consumer

0123

91

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

one producer (I/O device) and one consumer (thread waiting

for I/O completion)

Semaphores are often used to synchronize communication between

an I/ O device and threads waiting for I/ O completion

ProducerConsumer

producer needs to be blocked when all slots are full

consumer needs to be blocked when all slots are empty

When does it require synchronization?

will use a semaphore as a mutex to atomically accessing

some shared variables

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

mutex 1

tail 0

0123

92

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

93

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

mutex 1

tail 0

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

94

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 1

tail 0

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

95

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 0

tail 0

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

96

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 0

tail 0

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

97

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 0

tail 1

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

98

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

mutex 1

tail 1

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

99

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 1 note: producer

continue to produce
mutex 1

tail 1

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

100

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

101

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 0

tail 1

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

102

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 0

tail 1

front 0

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

103

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 0

tail 1

front 1

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

104

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 1

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

105

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 1

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

106

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0 note: producer

continue to produce
mutex 1

tail 1

front 1

if produce and consume run at same rate and work at different

spots, no producer may ever wait for a consumer and vice versa

if producer is fast and consumer slow, producer may wait

if consumer is fast and producer slow, consumer may wait

although threads of same type must be synchronized

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

107

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

you may use one mutex to control access to the number of

empty and occupied cells, front, and tail

Semaphore empty=MAX;
Semaphore occupied=0;
Semaphore mutex=1;// synchronize threads
int front=0, tail=0;

void put(item) {
 empty.P();
 mutex.P();
 buf[tail%MAX] = item;
 tail++;
 mutex.V();
 occupied.V();
}

char get() {
 occupied.P();
 mutex.P();
 item = buf[front%MAX];
 front++
 mutex.V();
 empty.V();
 return item;
}

0123

108

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

FIFO Bounded Buffer with Semaphores

Mutex by itself is more "coarse grain"

Semaphore gives more "fine grain parallelism"

Semaphore has limited use

pretty much the only place it’s really good for is

producer-consumer

T2 T3 T4T1 T5

"pipelined parallelism"

although it’s a very important application of semaphores

the queues above are queues with bounded buffer

difficult to use perfectly due to semaphore’s memory property

0123

109

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Semaphores Considered Harmful

0123

110

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Communicating Sequential Processes
(CSP / Google Go)

only that thread is allowed to touch object’s data

One thread per shared object

to call a method on the object, send thread a message with

method name and arguments

thread waits in a loop, get message and perform operation

No memory race conditions!

since data access is sequential/serialized

void put(item) {
 lock.acquire();
 while((tail-front)==MAX){
 full.wait(&lock);
 }
 buf[tail%MAX] = item;
 tail++;
 empty.signal(&lock);
 lock.release();
}

get() {
 lock.acquire();
 while(front==tail){
 empty.wait(&lock);
 }
 item = buf[front%MAX];
 front++
 full.signal(lock);
 lock.release();
 return item;
}

CV empty, full;
int front=0, tail=0;

producer thread sleeps in the full CV queue to wait for an

empty spot to appear in the buffer

consumer thread sleeps in the empty CV queue to wait for a

data item to appear in the buffer
0123

111

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

CSP Example: FIFO Bounded Buffer

0123

112

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

CSP Example: FIFO Bounded Buffer

while (cmd = getNext()){
 if (cmd == GET) {
 if (front < tail) {
 // do get()
 // send reply
 // if pending put, do it and send reply
 } else {
 // queue get operation
 }
 } else { // cmd == PUT
 if ((tail-front) < MAX) {
 // do put()
 // send reply
 // if pending get, do it and send reply
 } else {
 // queue put operation
 }
 }
}

0123

113

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks/CVs vs. CSP

Create a lock on shared data = create a single thread to operate on

data

Create a method on a shared object = send a message and wait for

reply

Wait on a CV = queue an operation that cannot be completed just

yet

Signal a condition = perform a queued operation that has been

enabled to proceed

0123

114

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Message-Passing vs. Shared Memory

Which approach is better for programming concurrency,

message-passing or shared memory?

as it turns out, any program using monitors can be recast into

CSP using a simple transmation, and vice versa

executing a procedure while holding a monitor lock is

equivalent to processing a message in CSP

a monitor is single-threaded while it’s holding the lock

It’s just a matter of style!

0123

115

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Review: Remember The Rules

Use consistent structure

Always use locks and condition variables

Always acquire lock at beginning of procedure, release at end

Always hold lock when using a condition variable

Always wait in while loop

Never spin in sleep()

0123

116

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

