Introduction to Operating Systems - CSCI 350

Ch 4: Concurrency
and Threads

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Concurrency

ﬁ} Concurrency: multiple activities can happen at the same time
—= some would make a distinction between concurrency and
parallelism

Q parallelism refers to hardware parallelism (i.e., true
parallelism)

Q concurrency means to juggle things so fast that it looks like
things are happening in parallel (but there is only one piece of
hardware, and therefore, you cannot have true parallelism)

Q looks like our textbook does not make such a distinction

ﬁ} Correctly managing concurrency is a key challenge for OS
developers

= heed a structured approach to concurrency and we will learn
how to do it

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Concurrency

ﬁ} Write concurrent program as a set of sequential streams of
execution, called threads, that interact and share results in very
precise ways
= each thread behaves as if it has its own dedicated processor

Programmer Abstraction Physical Reality
Threads| 15155 (S 1915 5 %
Processors|(1|2 [3|4 |5 1(2|3 4 5

Running Ready
Threads Threads

ﬁ> We need to learn to write multi-threaded programs so that no
matter how many processors we have (from 1 to infinity), we (\
0 —

will always get a correct result A=Y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.1) Thread Use Cases

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-threaded App: Google Map

w = Search Google Maps
n

I:

-w:. |1 Restaurants . m Hotels - [©) Thingsto(>

Q .IT'q"

- 4 i = .~ USC Village
< g ,5 %Lv@ﬁ@\\f
W th Pl 5 i E o en
Wasthst @ P 9 § University
SR = ofSouthern
California
W 37th St : Y/ = 4
' /4 i‘? S/
" JFJF X 1:_ :E‘e’b- o
R4 atural Flistory [usedm o 9 .-},?
B of Los AngeleS|County D)/ sugf L},.E‘ 3’, 3lln Q;?
Live traffic « Fast I o . Sow <

) Use many threads that runs concurrently
= multiple threads for retrieving map data and drawing portions of
the screen, one or more threads to handle Ul widgets, threads

to fetch advertisements and recommendations, etc. i
L2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Four Reasons to Use Threads

) Advantages of using threads
= good way to structure program: expressing logically concurrent
tasks
Q programs often interact with or simulate real-world
applications that have concurrent activities and threads let
you express an application’s natural concurrency by writing
each concurrent task as a separate thread
= responsiveness: shifting work to run in the background
Q use a separate thread to interact with the user can make the
application feel like it’s more responsive
Q OSes use threads to preserve responsiveness
& OSes are designed so that common case is fast
= performance: exploiting multiple processors
= performance: managing I/O devices
Q hardware can run in parallel
Q when one thread is waiting for I/O device to complete, |
another thread can be using the processor @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.2) Thread Abstraction

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Thread

ﬁ} A thread is a single execution sequence that represents a
separately schedulable task
= single execution sequence: the familiar programming model
= separately schedulable task: the OS can run, suspend, or
resume a thread at any time
Q therefore, an interrupt handler is not a thread

ﬁ} To map an arbitrary set of threads to a fixed set of processors,
operating systems include a thread scheduler that can switch
between threads that are running and those that are ready but not
running
= threads that are ready to run (i.e., not waiting for anything else

but only waiting for a processor to run on) are put on a ready list

ﬁ> The abstraction is that each thread runs on a dedicated virtual
processor with unpredictable and variable speed

= the scheduler may suspend a thread between one |
instruction and the next and resume running it later 834

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Programmer vs. Processor View

Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X=X+1; X=X+1; X=X+1; X=X+1;
y=Yy+X; y=y+X; y=Yy+X;
Z = X + 5Yy; Z = X + 5y; thread suspended

other threads run thread suspended
thread is resumed other threads run
thread is resumed

y=Yy+X,

Z = X + 9y; Z = X + 5y;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Possible Executions

One Execution (1 CPU)
Thread 1 | I
Thread 2 I I
Thread 3 I I

Another Execution (1 CPU)

Thread1 [1 [1 []
Thread 2 L1 O O [C
Thread 3 L] [1]]

Another Execution (3 CPUs)
Thread 1 | I
Thread 2 | I
Thread 3 | |

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Cooperative vs. Preemptive Multi-threading

ﬁ} Cooperative multi-threading: a thread runs without interruption
until it explicitly relinquishes control of the processor

= DOS/Window 3.x, Macintosh
= can only run one thread at a time, no parallelism
= most people would not consider the OS they run on a "real” OS

ﬁ} Preemptive multi-threading: running threads can be switched at

any time
= when we talk about multi-threading in this class, we mean

preemptive multi-threading

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.3) Simple Thread API

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Thread Operations

I:> thread_create (thread, func, args)
= create a hew thread to run func (args)
Q sometimes | would refer to func as the first procedure of the
new thread

_) thread_yield()
= relinquish processor voluntarily

I:> thread__join (thread)
= wait for thread to die
= this function is a blocking call (i.e., the calling thread may get
suspended and may not return right away)
= may only be called once for each thread

I:> thread_exit ()
= quit thread and clean up, wake up joiner if any

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example: Multi-threaded Hello World

#define NTHREADS 10 %./ threadHello
thread_t threads[NTHREADS]; Hello from thread 0
main () { Hello from thread 1
for (i = 0; i < NTHREADS; i++) { Thread 0 returned 100
thread_create (&threads[i], &go, 1i); Hello from thread 3
} Hello from thread 4
for (i = 0; i < NTHREADS; i++) { Thread 1 returned 101
exitValue = thread_join (threads[i]); Hello from thread 5
printf ("Thread %d returned with %1d\n", Hello from thread 2
i, exitValue); Hello from thread 6
} Hello from thread 8
printf ("Main thread done.\n"); Hello from thread 7
} Hello from thread 9
void go (int n) { Thread 2 returned 102
printf ("Hello from thread %d\n", n); Thread 3 returned 103
thread_exit (100 + n); Thread 4 returned 104
// REACHED? Thread 5 returned 105
} Thread 6 returned 106
Thread 7 returned 107
Thread 8 returned 108
I:> After thread_create () returns Thread 9 returned 109
successfully, when will the newly Main thread done.

created thread starts running?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fork/Join Parallelism
ﬁ} Threads can create children, and wait for their completion

ﬁ> You can write code such that data only shared before fork/after join
—= therefore, can run the children in parallel

) Examples:
= web server: "fork” a new thread for every new connection

Q as long as the threads are completely independent
= merge sort: each level of merge sort can run in parallel
= parallel memory copy

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

bzero () with Fork/Join Parallelism

// to pass two arguments, we need a struct to hold them
typedef struct bzeroparams {

unsigned char *buffer;

int length;
};

#define NTHREADS 10

void go(struct bzeroparams *p) ({
memset (p—>buffer, 0, p->length);

}

void blockzero (unsigned char *p, int length) ({
int i, j;
thread_t threads[NTHREADS];
struct bzeroparams params[NTHREADS];
// for simplicity, assumes length is divisible by NTHREADS.
for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {
params|[i] .buffer = p + i * length/NTHREADS;
params[i] .length = length/NTHREADS;
thread_create_p (& (threads[i]), go, ¶ms[i]);
}
for (i = 0; i < NTHREADS; i++) {
thread_join (threads|[i]);
}
}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.4) Thread Data
Structures and Life Cycle

Copyright © William C. Cheng

Shared Thread 1’s Thread 2’s
State Per-Thread State Per-Thread State
Thread Control Thread Control
Code Block (TCB) Block (TCB)
Stack Stack
Information Information
Global Saved Saved
Variables Registers Registers
Thread Thread
Metadata Metadata
Heap Stack Stack

Introduction to Operating Systems - CSCI 350

Thread Data Structures

ﬁ> Above can be a multi-threaded process or the OS kernel

_, Examples of thread metadata: thread ID, scheduling priority,
owner, resource consumption, etc. 7NN
P 2y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Thread Data Structures

Shared Thread 1’s Thread 2’s
State Per-Thread State Per-Thread State
Thread Control Thread Control
Code Block (TCB) Block (TCB)
Stack Stack
Information Information
Global Saved Saved
Variables Registers Registers
Thread Thread
Metadata Metadata
Heap Stack Stack

ﬁ> To avoid unexpected behaviors, it’s important to know which
variables are designed to be shared and which are designed to be

private (‘\
= e.g., errno is private to a thread 193 @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.5) Thread Life Cycle

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Thread Lifecycle

Thread Creation Thread EXxit
thread_create() thread_exit ()

Scheduler
Resumes Thread

Ready < Running
Thread Yield/Scheduler
Suspends Thread
thread_yield()
Event Occurs Thread Waits for Event
(Wake Up Call) thread_join ()

ﬁ} Wake up means moving a thread from the queue it’s sleeping |
on to the ready queue (and changing state) 4

21

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Thread Lifecycle

_) Ready state (a.k.a., runnable state): thread is on the ready list
= the ready list is conceptually a list, but usually, it can be a
complex data structure to support whatever the scheduler needs

ﬁ> Running state: thread is on a processor (and not on the ready list)
— stored register values on the TCB are stale
= a preemptive scheduler can preempt a running thread and move
it to the ready state
= a running thread can call thread_yield () to go back into the
ready state

ﬁ> Waiting state: thread is sleeping on a queue (a waiting list of a
synchronization variable), waiting for an wake up event
= when wake up event occurs, thread is moved to the ready state

ﬁ} Finished state (a.k.a., zombie state): thread is dead and can never
run code again

— some state of the thread may be freed N

=/

Copyright © William C. Cheng

Thread Lifecycle

Introduction to Operating Systems - CSCI 350

Thread State

Location of TCB

Location of Registers

Init
Ready
Running
Waiting

Finished

(being created)

ready list

running list

waiting list (for a
synchronization variable)
Finished

TCB
TCB

processor
TCB

TCB or deleted

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Idle Thread

ﬁ} On a multi-processor system, it may not be possible to keep all
the processors busy
— create a low priority idle thread for each processor
Q the idle thread sits in an infinite loop calling thread_yield()
Q to save power, idle thread would halt the CPU (i.e., put the
processor into a low-power sleep mode)
<& halt only returns if the processor gets a hardware interrupt
and this will get the idle thread going again
& halting the CPU is a privileged instruction, if this is done
inside a VM, the host OS can switch to a differernt VM

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.6) Implementing
Kernel Threads

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Threads: Roadmap

_) Kernel threads
= thread abstraction only available to kernel
— at the user level, we have single-threaded processes
Q before user space multithreading was invented, what’s
running in the user space is just a process (there was no
such a thing as a user space thread)
& the kernel has always been multithreaded

_, Multi-threaded processes using kernel threads (Linux, MacOS)
= Kkernel thread operations available via system calls

ﬁ> User-level threads
= thread operations without system calls

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Kernel Threads and Single-Threaded Processes

Process 1 Process 2
Thread Thread
Stack Stack
Code Code
Globals Globals
Heap Heap
User
Kel‘nel Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S 5 5
Globals TCB 1 TCB 2 TCB 3 PCB 1 PCB 2
Heap Stack Stack Stack Stack Stack

G> Only PCB in the kernel for a user processe (ho TCB)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-threaded Processes Using Kernel Threads

Process 1 Process 2

Thread A Thread B Thread A Thread B

S S S S

Stack Stack Stack Stack
Code Code
Globals Globals
Heap Heap
User
Kernel Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S 5 5 PCB 1 PCB 2
Globals | | tcB1 | | TcB2 | | TCB3 TcB1.A| [TcB1.B| |TCB2.A| |TCB2B
Heap Stack Stack Stack Stack Stack Stack Stack

) Each user thread has a corresponding TCB in the kernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Threads

I:> thread_create (func, args)
= allocate thread control block
allocate stack
build stack frame for base of stack (stub)
put func, args on stack
put thread on ready list
will run sometime later (maybe right away if no other thread is
available to run)

[

U 0 0 [

I:> stub (func, args)
= call (*func) (args)
= |f return, call thread_exit ()

void stub (void (*func) (int), int arg) {
// execute the function func /()
(*func) (arqg);
// if func () does not call thread_exit (), call it here
thread_exit (0);
}

|
Q stub () Is also known as the thread startup function 293 |.’
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Create A Thread

void thread_create (thread_t *thread, wvoid (*func) (int), int arg) ({

Copyright © William C. Cheng

// allocate TCB and stack

TCB *tcb = new TCB();

thread->tcb = tcb;

tcb—>stack_size = INITIAL_STACK_SIZE;

tcb—>stack = new Stack (INITIAL_STACK_SIZE);

// initialize registers so that when thread is resumed, it will start
// running at stub

// stack starts at the bottom of the allocated region and grows upward
tcb—->sp = tcb—->stack + INITIAL_STACK_SIZE;

tcb->pc = stub;

// create a stack frame by pushing stub’s arguments and start address
// onto the stack: func, arg

* (tcb->sp) = arg;

tcb—>sp——;

* (tcb—->sp) = func;

tcb—>sp——;

// create another stack frame so that thread_switch() works correctly
// this routine is explained after we discuss thread_switch()
thread_dummySwitchFrame (tcb) ;

tcb—>state = READY;

readyList.add(tcb); // put tcb on ready list

Introduction to Operating Systems - CSCI 350

Deleting A Thread

) Two steps to deleting a thread when a thread calls thread_exict ()
= remove the thread from the ready list so that it will never run
again
= free the per-thread state allocated for the thread
Q cannot do this immediately, what if you get an interrupt, how
can you resume this thread
Q also, the thread cannot finish running the code in
thread_exit () if it doesn’t have a stack?
Q solution: let another thread free the state of this thread
when this thread is no longer running
& can do this in when this other thread is about to return
from thread_join ()
& last thing In thread_exit () is to indicate that this thread
is dead and yield the processor

=

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Thread Context Switch

_) Voluntary
= thread_yield()

= thread_join () (if child is not done yet)

) Involuntary
= Interrupt or exception

= some other thread with higher priority wants to run

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Voluntary Kernel Thread Context Switch
) Save registers on old stack
ﬁ> Switch to new stack, new thread

) Restore registers from new stack

_) Return

ﬁ> Exactly the same with kernel threads or user threads
= thread switch is always between kernel threads, not between
user process and kernel thread (i.e., no thread switching when a
system call is made)

// we enter as oldThread, but we return as newThread

// returns with new’s registers and stack

void thread_switch (oldThreadTCB, newThreadTCB) {
pushad; // push general register values onto the old stack
0ldThreadTCB->sp = %esp; // save the old thread¢s stack pointer
runningThread = newThreadTCB; // runningThread is a global variable
$esp = newThreadTCB->sp; // switch to the new stack
popad; // pop register values from the new stack

) (5

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Voluntary Kernel Thread Context Switch

void thread_yield() ({
TCB *chosenTCB, *finishedTCB;
// prevent an interrupt from stopping us in the middle of a switch
disableInterrupts();
// choose another TCB from the ready list
chosenTCB = readyList.getNextThread();
if (chosenTCB == NULL) {
// nothing else to run, so go back to running the original thread
} else {
// move running thread onto the ready list
runningThread->state = ready;
readyList.add (runningThread) ;
thread_switch (runningThread, chosenTCB);
// switch to the new thread
runningThread->state = running;
}
// delete any threads on the finished list
while ((finishedTCB = finishedList->getNextThread()) != NULL) {
delete finishedTCB->stack;
delete finishedTCB;
}

enablelInterrupts();

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Voluntary Kernel Thread Context Switch

ﬁ} All threads must call thread_switch () to give up the processor

in the same way as in thread_yield()

—= thread_join () must call thread_switch () with interrupt
disabled before it blocks

= when a thread wants to wait for I/O device to complete, it must
add itself to the I/0 queue and call thread_switch () with
interrupt disabled before it blocks

= how would you switch to a newly created thread (which has
never called thread_switch())?
Q you need to create a dummy frame to pretend that it has

already called thread_switch ()

// when another thread switches to a newly created thread,
// the last two lines of thread_switch () work correctly
void thread_dummySwitchFrame (newThread) ({

* (tcb—->sp) = stub;

// return to the beginning of stub

tcb—>sp——;

tcb->sp —-= SizeOfPopad; ‘%!’)
}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Involuntary Kernel Thread Context Switch

) Timer or /O interrupt
= in Ch 2, we have talked about what happens when an interrupt
interrupts a running user-level process (involves mode switching
and iret to go back to user space)
= the mechanism is almost identical when an interrupt triggers a
kernel thread switch (except no mode switching and iret is
replaced by a regular return from a function)
Q the current thread state is pushed onto the current stack,
starting from the current stack pointer
Q to resume a different thread when returning, just call
thread_switch () right before the handler returns
Q on x86 processor, the iret function will examine the saved
state in the stack (EFLAGS) to see if it’s returning to user
space; if it’s not returning to user space, it will perform a
regular function return)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.7) Combining Kernel
Threads and
Single-Threaded
User Processes

Copyright © William C. Cheng

) The ready list contains a mix of

TCBs or PCBs and the kernel

Introduction to Operating Systems - CSCI 350

Kernel Threads and Single-Threaded Processes

Process 1 Process 2
must deal with this when perform Thread Thread
switching S S
= e.g., user state may contain

. . . Stack Stack
saved floating point registers
(typically, kernel does not
. . . Code Code
use floating point operations)
Globals Globals
Heap Heap
User
Kernel Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S S S
Globals | | ycgq | | TcB2 | | TCB3 PCB 1 PCB 2
Heap Stack Stack Stack Stack Stack

Copyright © William C. Cheng

N = : : ix of
= kernel does not need to save floating \e|

Introduction to Operating Systems - CSCI 350

Kernel Threads and Single-Threaded Processes

pointer registers when switching f Process 1 Process 2
between kernel threads, but have to save priorm Thread Thread
them when switch between processes S S
- ain
. . . Stack Stack
saved floating point registers
(typically, kernel does not
. . . Code Code
use floating point operations)
Globals Globals
Heap Heap
User
Kernel Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S 5 5
Globals | | tcgy | [TcB2 | | TCB 3 PCB 1 PCB 2
Heap Stack Stack Stack Stack Stack

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.8) Implementing
Multi-Threaded Processes

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Multi-threaded User Processes
Using Kernel Threads

) User thread = kernel thread Process 1 Process 2
(Linux MaCOS) Thread A Thread B Thread A Thread B
J
= all thread-related function calls 5 S S S
are SyStem calls Stack Stack Stack Stack
Q kernel does context switch
= simple, but a lot of transitions Code Code
between user and kernel mode Globals Globals
Heap Heap
User
Kern6| Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S S 5 PCB 1 PCB 2
Globals TCB 1 TcB2 | | TCcB 3 TcB1.A| |TcB1.B TcB2.A| |TCB 2B
Heap Stack Stack Stack Stack Stack Stack Stack
.
41

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
Without Kernel Support

ﬁ} Implement user-level threads completely at user level, without
any OS support
= e.g., green threads in the earliest implementation of Sun’s Java
Virtual Machine (JVM)
Q to the kernel, a multi-threaded application using green
threads appears to be a normal single-threaded process
Q if a user thread makes a system call and get blocked waiting
for 1/0, the kernel cannot run a different user thread
& to get true parallelism, you have to run multiple processes

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
Without Kernel Support

ﬁ} The kernel doesn’t know about Process 1 Process 2
Th B
User'level threads Thr;d A Thr;d B Thr;d A r;d
TCB 1 TCB 2 TCB 1 TCB 2
Stack Stack Stack Stack
Code Code
Heap Globals Heap Globals
User
Kel‘nel Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S S S
Globals TCB 1 TcB2 | | TCB3 PCB 1 PCB 2
Heap Stack Stack Stack Stack Stack

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
Without Kernel Support

ﬁ} Preemptive user-level threads: implementation for process P
= user-level thread library makes a system call to register a timer

Copyright © William C. Cheng

sighal handler and signal stack with the kernel

when a hardware timer interrupt occurs, the hardware saves
P’s register state and runs the kernel’s handler

instead of restoring P’s register state and resuming P where it
was interrupted, the kernel’s handler copies P’s saved registers
onto P’s signal stack

the kernel resumes execution in P at the registered signal
handler on the signal stack

the signal handler copies the processor state of the preempted
user-level thread from the signal stack to that thread’s TCB

the signal handler chooses the next thread to run, re-enables the
sighal handler (similar to re-enabling interrupts), and restores

the new thread’s state from its TCB into the processor; |
execution with the state (newly) stored on the signal stack 443 @;

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
With Kernel Support

ﬁ} Today, most programs use kernel-supported threads rather than
pure user-level threads
= major operating systems support threads using standard
abstractions, so the issue of portability is less of an issue than it
once was

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
With Kernel Support

ﬁ} Various systems take more of a hybrid model (best of both worlds)
= hybrid thread join
= per-processor kernel threads
= scheduler activations (in Windows): user-level thread scheduler
Is notified/activated for every kernel event that might affect the
user-level thread system

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.9) Alternative
Abstractions

ﬁ> Asynchronous I/O and event-driven programming
= allows a single-threaded program to cope with high-latency 1/O
devices by overlapping I/0 with processing and other I/O

) Data parallel programming
= all processors perform the same instruction in parallel on

different parts of a data set ('\
x 47 @’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

