
Ch 4: Concurrency

and Threads

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Concurrency

Concurrency: multiple activities can happen at the same time

Correctly managing concurrency is a key challenge for OS

developers

some would make a distinction between concurrency and

parallelism

concurrency means to juggle things so fast that it looks like

things are happening in parallel (but there is only one piece of

hardware, and therefore, you cannot have true parallelism)

need a structured approach to concurrency and we will learn

how to do it

parallelism refers to hardware parallelism (i.e., true

parallelism)

looks like our textbook does not make such a distinction

Write concurrent program as a set of sequential streams of

execution, called threads, that interact and share results in very

precise ways

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Concurrency

Programmer Abstraction

Threads

Processors

Running
Threads

Physical Reality

Ready
Threads

1 2 3 4 5 1 2 3 4 5

each thread behaves as if it has its own dedicated processor

We need to learn to write multi-threaded programs so that no

matter how many processors we have (from 1 to infinity), we

will always get a correct result

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.1) Thread Use Cases

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-threaded App: Google Map

multiple threads for retrieving map data and drawing portions of

the screen, one or more threads to handle UI widgets, threads

to fetch advertisements and recommendations, etc.

Use many threads that runs concurrently

programs often interact with or simulate real-world

applications that have concurrent activities and threads let

you express an application’s natural concurrency by writing

each concurrent task as a separate thread

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Four Reasons to Use Threads

good way to structure program: expressing logically concurrent

tasks

Advantages of using threads

responsiveness: shifting work to run in the background

use a separate thread to interact with the user can make the

application feel like it’s more responsive

OSes use threads to preserve responsiveness

OSes are designed so that common case is fast

performance: exploiting multiple processors

performance: managing I/O devices

hardware can run in parallel

when one thread is waiting for I/O device to complete,

another thread can be using the processor

(4.2) Thread Abstraction

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread

single execution sequence: the familiar programming model

A thread is a single execution sequence that represents a

separately schedulable task

separately schedulable task: the OS can run, suspend, or

resume a thread at any time

To map an arbitrary set of threads to a fixed set of processors,

operating systems include a thread scheduler that can switch

between threads that are running and those that are ready but not

running

threads that are ready to run (i.e., not waiting for anything else

but only waiting for a processor to run on) are put on a ready list

The abstraction is that each thread runs on a dedicated virtual

processor with unpredictable and variable speed

the scheduler may suspend a thread between one

instruction and the next and resume running it later

therefore, an interrupt handler is not a thread

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programmer vs. Processor View

Programmer’s

View

Possible

Execution

#1

Possible

Execution

#2

Possible

Execution

#3

.

.

.

x = x + 1;

y = y + x;

thread suspended

other threads run

thread is resumed

z = x + 5y;

.

.

.

.

.

.

x = x + 1;

thread suspended

other threads run

thread is resumed

y = y + x;

z = x + 5y;

.

.

.

.

.

.

x = x + 1;

y = y + x;

z = x + 5y;

.

.

.

.

.

.

x = x + 1;

y = y + x;

z = x + 5y;

.

.

.

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Possible Executions

One Execution (1 CPU)

Thread 1

Thread 2

Thread 3

Another Execution (3 CPUs)

Thread 1

Thread 2

Thread 3

Another Execution (1 CPU)

Thread 1

Thread 2

Thread 3

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Cooperative vs. Preemptive Multi-threading

DOS/Window 3.x, Macintosh

Cooperative multi-threading: a thread runs without interruption

until it explicitly relinquishes control of the processor

when we talk about multi-threading in this class, we mean

preemptive multi-threading

Preemptive multi-threading: running threads can be switched at

any time

can only run one thread at a time, no parallelism

most people would not consider the OS they run on a "real" OS

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.3) Simple Thread API

create a new thread to run func(args)

thread_create(thread, func, args)

relinquish processor voluntarily

thread_yield()

wait for thread to die

thread_join(thread)

quit thread and clean up, wake up joiner if any

thread_exit()

this function is a blocking call (i.e., the calling thread may get

suspended and may not return right away)

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Operations

sometimes I would refer to func as the first procedure of the

new thread

may only be called once for each thread

After thread_create() returns

successfully, when will the newly

created thread starts running?
0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Multi-threaded Hello World

#define NTHREADS 10

thread_t threads[NTHREADS];

main() {

 for (i = 0; i < NTHREADS; i++) {

 thread_create(&threads[i], &go, i);

 }

 for (i = 0; i < NTHREADS; i++) {

 exitValue = thread_join(threads[i]);

 printf("Thread %d returned with %ld\n",

 i, exitValue);

 }

 printf("Main thread done.\n");

}

void go (int n) {

 printf("Hello from thread %d\n", n);

 thread_exit(100 + n);

 // REACHED?

}

%./ threadHello

Hello from thread 0

Hello from thread 1

Thread 0 returned 100

Hello from thread 3

Hello from thread 4

Thread 1 returned 101

Hello from thread 5

Hello from thread 2

Hello from thread 6

Hello from thread 8

Hello from thread 7

Hello from thread 9

Thread 2 returned 102

Thread 3 returned 103

Thread 4 returned 104

Thread 5 returned 105

Thread 6 returned 106

Thread 7 returned 107

Thread 8 returned 108

Thread 9 returned 109

Main thread done.

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Fork/Join Parallelism

web server: "fork" a new thread for every new connection

as long as the threads are completely independent

Threads can create children, and wait for their completion

You can write code such that data only shared before fork/after join

Examples:

merge sort: each level of merge sort can run in parallel

parallel memory copy

therefore, can run the children in parallel

// to pass two arguments, we need a struct to hold them

typedef struct bzeroparams {

 unsigned char *buffer;

 int length;

};

#define NTHREADS 10

void go(struct bzeroparams *p) {

 memset(p->buffer, 0, p->length);

}

void blockzero(unsigned char *p, int length) {

 int i, j;

 thread_t threads[NTHREADS];

 struct bzeroparams params[NTHREADS];

 // for simplicity, assumes length is divisible by NTHREADS.

 for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {

 params[i].buffer = p + i * length/NTHREADS;

 params[i].length = length/NTHREADS;

 thread_create_p(&(threads[i]), go, ¶ms[i]);

 }

 for (i = 0; i < NTHREADS; i++) {

 thread_join(threads[i]);

 }

} 0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

bzero() with Fork/Join Parallelism

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.4) Thread Data

Structures and Life Cycle

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Data Structures

Thread 1’s
Per-Thread State

Thread Control

Block (TCB)

Stack

Information

Saved

Registers

Thread

Metadata

Stack

Thread 2’s
Per-Thread State

Thread Control

Block (TCB)

Stack

Information

Saved

Registers

Thread

Metadata

Stack

Shared
State

Code

Global

Variables

Heap

Examples of thread metadata: thread ID, scheduling priority,

owner, resource consumption, etc.

Above can be a multi-threaded process or the OS kernel

e.g., errno is private to a thread

To avoid unexpected behaviors, it’s important to know which

variables are designed to be shared and which are designed to be

private
0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Data Structures

Thread 1’s
Per-Thread State

Thread Control

Block (TCB)

Stack

Information

Saved

Registers

Thread

Metadata

Stack

Thread 2’s
Per-Thread State

Thread Control

Block (TCB)

Stack

Information

Saved

Registers

Thread

Metadata

Stack

Shared
State

Code

Global

Variables

Heap

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.5) Thread Life Cycle

Init

Thread Exit
thread_exit()

Thread Creation
thread_create()

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Lifecycle

Scheduler

Resumes Thread

Thread Yield/Scheduler

Suspends Thread
thread_yield()

Thread Waits for Event
thread_join()

Event Occurs

(Wake Up Call)

Ready Running

Finished

Waiting

Wake up means moving a thread from the queue it’s sleeping

on to the ready queue (and changing state)

Finished state (a.k.a., zombie state): thread is dead and can never

run code again

Waiting state: thread is sleeping on a queue (a waiting list of a

synchronization variable), waiting for an wake up event

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Lifecycle

the ready list is conceptually a list, but usually, it can be a

complex data structure to support whatever the scheduler needs

Ready state (a.k.a., runnable state): thread is on the ready list

stored register values on the TCB are stale

Running state: thread is on a processor (and not on the ready list)

when wake up event occurs, thread is moved to the ready state

some state of the thread may be freed

a preemptive scheduler can preempt a running thread and move

it to the ready state

a running thread can call thread_yield() to go back into the

ready state

Init

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Lifecycle

Ready

Running

Waiting

Finished

Thread State

(being created)

ready list

running list

waiting list (for a

synchronization variable)

Finished

Location of TCB

TCB

TCB

processor

TCB

TCB or deleted

Location of Registers

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Idle Thread

create a low priority idle thread for each processor

the idle thread sits in an infinite loop calling thread_yield()

On a multi-processor system, it may not be possible to keep all

the processors busy

to save power, idle thread would halt the CPU (i.e., put the

processor into a low-power sleep mode)

halt only returns if the processor gets a hardware interrupt

and this will get the idle thread going again

halting the CPU is a privileged instruction, if this is done

inside a VM, the host OS can switch to a differernt VM

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.6) Implementing

Kernel Threads

before user space multithreading was invented, what’s

running in the user space is just a process (there was no

such a thing as a user space thread)

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Threads: Roadmap

thread abstraction only available to kernel

Kernel threads

kernel thread operations available via system calls

Multi-threaded processes using kernel threads (Linux, MacOS)

thread operations without system calls

User-level threads

at the user level, we have single-threaded processes

the kernel has always been multithreaded

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Kernel Threads and Single-Threaded Processes

Only PCB in the kernel for a user processe (no TCB)

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

Process 1

Stack

Process 2

Stack

PCB 1 PCB 2

Thread

Process 2

Stack

Globals

Code

Heap

Thread

Process 1

Stack

Globals

Code

Heap

User

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-threaded Processes Using Kernel Threads

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

TCB 1.A

Process 1

Stack

TCB 1.B

Stack

TCB 2.A

Process 2

Stack

TCB 2.B

Stack

PCB 1 PCB 2

Thread B

Stack

Thread A

Process 2

Stack

Globals

Code

Heap

Thread B

Stack

Thread A

Process 1

Stack

Globals

Code

Heap

User

Each user thread has a corresponding TCB in the kernel

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Threads

allocate thread control block

thread_create(func, args)

allocate stack

build stack frame for base of stack (stub)

put func, args on stack

put thread on ready list

will run sometime later (maybe right away if no other thread is

available to run)

call (*func)(args)

stub(func, args)

if return, call thread_exit()

void stub(void (*func)(int), int arg) {

 // execute the function func()

 (*func)(arg);

 // if func() does not call thread_exit(), call it here

 thread_exit(0);

}

stub() is also known as the thread startup function

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Create A Thread

void thread_create(thread_t *thread, void (*func)(int), int arg) {

 // allocate TCB and stack

 TCB *tcb = new TCB();

 thread->tcb = tcb;

 tcb->stack_size = INITIAL_STACK_SIZE;

 tcb->stack = new Stack(INITIAL_STACK_SIZE);

 // initialize registers so that when thread is resumed, it will start

 // running at stub

 // stack starts at the bottom of the allocated region and grows upward

 tcb->sp = tcb->stack + INITIAL_STACK_SIZE;

 tcb->pc = stub;

 // create a stack frame by pushing stub’s arguments and start address

 // onto the stack: func, arg

 *(tcb->sp) = arg;

 tcb->sp--;

 *(tcb->sp) = func;

 tcb->sp--;

 // create another stack frame so that thread_switch() works correctly

 // this routine is explained after we discuss thread_switch()

 thread_dummySwitchFrame(tcb);

 tcb->state = READY;

 readyList.add(tcb); // put tcb on ready list

}

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Deleting A Thread

Two steps to deleting a thread when a thread calls thread_exit()

remove the thread from the ready list so that it will never run

again

free the per-thread state allocated for the thread

cannot do this immediately, what if you get an interrupt, how

can you resume this thread

also, the thread cannot finish running the code in

thread_exit() if it doesn’t have a stack?

solution: let another thread free the state of this thread

when this thread is no longer running

last thing in thread_exit() is to indicate that this thread

is dead and yield the processor

can do this in when this other thread is about to return

from thread_join()

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Thread Context Switch

interrupt or exception

thread_yield()

Voluntary

thread_join() (if child is not done yet)

Involuntary

some other thread with higher priority wants to run

thread switch is always between kernel threads, not between

user process and kernel thread (i.e., no thread switching when a

system call is made)

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Voluntary Kernel Thread Context Switch

Save registers on old stack

Switch to new stack, new thread

Restore registers from new stack

Return

Exactly the same with kernel threads or user threads

// we enter as oldThread, but we return as newThread

// returns with new’s registers and stack

void thread_switch(oldThreadTCB, newThreadTCB) {

 pushad; // push general register values onto the old stack

 oldThreadTCB->sp = %esp; // save the old thread¢s stack pointer

 runningThread = newThreadTCB; // runningThread is a global variable

 %esp = newThreadTCB->sp; // switch to the new stack

 popad; // pop register values from the new stack

}

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Voluntary Kernel Thread Context Switch

void thread_yield() {

 TCB *chosenTCB, *finishedTCB;

 // prevent an interrupt from stopping us in the middle of a switch

 disableInterrupts();

 // choose another TCB from the ready list

 chosenTCB = readyList.getNextThread();

 if (chosenTCB == NULL) {

 // nothing else to run, so go back to running the original thread

 } else {

 // move running thread onto the ready list

 runningThread->state = ready;

 readyList.add(runningThread);

 thread_switch(runningThread, chosenTCB);

 // switch to the new thread

 runningThread->state = running;

 }

 // delete any threads on the finished list

 while ((finishedTCB = finishedList->getNextThread()) != NULL) {

 delete finishedTCB->stack;

 delete finishedTCB;

 }

 enableInterrupts();

}

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Voluntary Kernel Thread Context Switch

// when another thread switches to a newly created thread,

// the last two lines of thread_switch() work correctly

void thread_dummySwitchFrame(newThread) {

 *(tcb->sp) = stub;

 // return to the beginning of stub

 tcb->sp--;

 tcb->sp -= SizeOfPopad;

}

thread_join() must call thread_switch() with interrupt

disabled before it blocks

All threads must call thread_switch() to give up the processor

in the same way as in thread_yield()

when a thread wants to wait for I/O device to complete, it must

add itself to the I/O queue and call thread_switch() with

interrupt disabled before it blocks

how would you switch to a newly created thread (which has

never called thread_switch())?

you need to create a dummy frame to pretend that it has

already called thread_switch()

on x86 processor, the iret function will examine the saved

state in the stack (EFLAGS) to see if it’s returning to user

space; if it’s not returning to user space, it will perform a

regular function return)

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Involuntary Kernel Thread Context Switch

in Ch 2, we have talked about what happens when an interrupt

interrupts a running user-level process (involves mode switching

and iret to go back to user space)

Timer or I/O interrupt

the mechanism is almost identical when an interrupt triggers a

kernel thread switch (except no mode switching and iret is

replaced by a regular return from a function)

the current thread state is pushed onto the current stack,

starting from the current stack pointer

to resume a different thread when returning, just call

thread_switch() right before the handler returns

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.7) Combining Kernel

Threads and

Single-Threaded

User Processes

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Kernel Threads and Single-Threaded Processes

The ready list contains a mix of

TCBs or PCBs and the kernel

must deal with this when perform

switching

e.g., user state may contain

saved floating point registers

(typically, kernel does not

use floating point operations)

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

Process 1

Stack

Process 2

Stack

PCB 1 PCB 2

Thread

Process 2

Stack

Globals

Code

Heap

Thread

Process 1

Stack

Globals

Code

Heap

User

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Kernel Threads and Single-Threaded Processes

The ready list contains a mix of

TCBs or PCBs and the kernel

must deal with this when perform

switching

e.g., user state may contain

saved floating point registers

(typically, kernel does not

use floating point operations)

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

Process 1

Stack

Process 2

Stack

PCB 1 PCB 2

Thread

Process 2

Stack

Globals

Code

Heap

Thread

Process 1

Stack

Globals

Code

Heap

User

kernel does not need to save floating

pointer registers when switching

between kernel threads, but have to save

them when switch between processes

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.8) Implementing

Multi-Threaded Processes

all thread-related function calls

are system calls

kernel does context switch

User thread = kernel thread

(Linux, MacOS)

simple, but a lot of transitions

between user and kernel mode

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Multi-threaded User Processes
Using Kernel Threads

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

TCB 1.A

Process 1

Stack

TCB 1.B

Stack

TCB 2.A

Process 2

Stack

TCB 2.B

Stack

PCB 1 PCB 2

Thread B

Stack

Thread A

Process 2

Stack

Globals

Code

Heap

Thread B

Stack

Thread A

Process 1

Stack

Globals

Code

Heap

User

e.g., green threads in the earliest implementation of Sun’s Java

Virtual Machine (JVM)

to the kernel, a multi-threaded application using green

threads appears to be a normal single-threaded process

Implement user-level threads completely at user level, without

any OS support

if a user thread makes a system call and get blocked waiting

for I/O, the kernel cannot run a different user thread

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
Without Kernel Support

to get true parallelism, you have to run multiple processes

Stack

TCB 1

Thread B

Stack

Thread A

Process 2

Heap

TCB 2

Code

Globals

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
Without Kernel Support

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

Process 1 Process 2

User

Stack Stack

PCB 1 PCB 2

The kernel doesn’t know about

user-level threads

Stack

TCB 1

Thread B

Stack

Thread A

Process 1

Heap

TCB 2

Code

Globals

the signal handler chooses the next thread to run, re-enables the

signal handler (similar to re-enabling interrupts), and restores

the new thread’s state from its TCB into the processor;

execution with the state (newly) stored on the signal stack 0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
Without Kernel Support

Preemptive user-level threads: implementation for process P

user-level thread library makes a system call to register a timer

signal handler and signal stack with the kernel

when a hardware timer interrupt occurs, the hardware saves

P’s register state and runs the kernel’s handler

instead of restoring P’s register state and resuming P where it

was interrupted, the kernel’s handler copies P’s saved registers

onto P’s signal stack

the kernel resumes execution in P at the registered signal

handler on the signal stack

the signal handler copies the processor state of the preempted

user-level thread from the signal stack to that thread’s TCB

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
With Kernel Support

Today, most programs use kernel-supported threads rather than

pure user-level threads

major operating systems support threads using standard

abstractions, so the issue of portability is less of an issue than it

once was

Various systems take more of a hybrid model (best of both worlds)

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
With Kernel Support

hybrid thread join

per-processor kernel threads

scheduler activations (in Windows): user-level thread scheduler

is notified/activated for every kernel event that might affect the

user-level thread system

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.9) Alternative

Abstractions

Asynchronous I/O and event-driven programming

allows a single-threaded program to cope with high-latency I/O

devices by overlapping I/O with processing and other I/O

Data parallel programming

all processors perform the same instruction in parallel on

different parts of a data set

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

