
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Ch 2: The Kernel

Abstraction

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Challenge: Protection

A central role of OS is protection

isolating bad applications and users so that they do not corrupt

other applications or the OS (which is the protector of other

applications)

Protection is essential to achiving some of the OS goals

reliability - when an application crashes, it must not affect the OS

security - protect other applications and the OS from malicious

applications

privacy - on a multi-user system, one user must not be able

to access information of another user

fair resource allocation - an application must not be allowed to

use an unfair amount of shared resources (e.g., CPU time,

memory, disk space, etc.)

trusted code vs. untrusted code

Implementing protection is the job of the OS kernel

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Challenge: Protection

The OS kernel is the lowest level of software running on the system

and has full access to all machine hardware

must trust the OS kernel to do anything with the hardware

everything else is untrusted and must run in a restricted

environment

Hardware

APP APP APP

Operating System Kernel

Trusted

Untrusted

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Main Points

Process concept

a process is the OS abstraction for executing a program with

limited privileges

Dual-mode operation: user vs. kernel

kernel-mode: execute with complete privileges

user-mode: execute with fewer privileges

Safe control transfer

how do we switch from one mode to the other?

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Concept

A process is the execution of an application program with restricted

rights

the process is the abstraction for protected execution provided

by the OS kernel

a process needs permission from the OS kernel before accessing

memory of any other process, before reading/writing to disk,

before changing hardware settings, etc.

The OS kernel runs directly on the processor with unlimitted rights

what about applications?

in order to have good performance, applications also need to run

directly on the processor

but with all potentially dangerous operations disabled

hardware can help to improve performance

in general, the more hardware help the better/faster

how much can and should hardware help?

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Dual-mode Operation

Split personality of a process

when running the OS kernel, it’s in charge of everything and

can do anything it wants

when running applicatino code, it needs to ask permissions

to do anything potentially harmful to other applications or

the OS kernel

remember that they are running on the same processor,

sometimes completely trustworthy and other times completely

untrusted

Safe Control Transfer

Application to OS kernel: make system call

return from system call

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.1) The Process

Abstraction

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

OS

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

A process is a running program

it has an address space that’s made up

of memory segments

machine instructions are kept inside the

text segment

global variables are kept inside the data

segment

the heap holds dynamically allocated

data structures that the process might

need

the stack holds the state of local

variables and function arguments during procedure calls

conceptually, the OS kernel has its own address space

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

What’s to keep the process from modifying

data in the OS kernel or other processes?

What’s to keep the process from modifying

data on disk?

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

OS

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

process concept

Solution:

safe control transfer

dual-mode operation: user vs. kernel

user-mode: execute with fewer

privileges

how do we switch from one mode to the other?

kernel-mode: execute with

complete privileges

a process is the OS abstraction for

executing a program with limited

privileges

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

Process: an instance of a program, running with limited rights

thread: a sequence of instructions within a process

potentially many threads per process (for now 1:1)

address space: set of rights of a process

memory that a process can access

other permissions the process has (e.g., what memory is

shared with another process)

OS maintains information about every process in a data structure

called a Process Control Block (PCB)

where the process data (e.g., code, global variabls, stack, heap)

is stored in memory

PCB contains information such as:

where its executable image resides on disk

which user asked to execute the program

what privileges the process has

...

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Control Block (PCB)

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.2) Dual-Mode

Operation

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.2) Dual-Mode Operation

Kernel mode

execution with the full privileges of the hardware

read/write to any memory, access any I/O device, read/write

any disk sector, send/read any packet

User mode

limited privileges

only those granted by the operating system kernel

On the x86, mode stored in EFLAGS register

On the MIPS, mode in the status register

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

A Model of a CPU

branch address

CPU

instructions

fetch &

execute

Program

Counter

(PC)

Select

PC

new PC
+4

opcode

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

A CPU with Dual-Mode Operation

branch address

CPU

instructions

fetch &

execute

Program

Counter

(PC)

Select

PC

new PC

handler PC

+4

Select

Mode

new mode
mode

opcode

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

A CPU with Dual-Mode Operation

Privileged instructions

available to kernel

not available to user code

Limits on memory accesses

to prevent user code from overwriting the kernel

Timer

Safe way to switch from user mode to kernel mode, and vice versa

to regain control from a user program in a loop

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Privileged Instructions

What would be an example of a privileged instruction?

change mode bit in EFLAGS register

change which memory location a user program can access

send commands to I/O devices

read data from or write data to I/O devices

jump into kernel code

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Privileged Instructions

What should happen if a user program attempts to execute a

privileged instruction?

would cause a processor exception (in hardware)

which would cause the processor to transfer control to an

exception handler in the OS kernel

usually, the kernel simply halts the process after a

privilege violation

What bad thing can happen if an application can jump into kernel

mode at any location in the kernel?

it may crash the kernel

it may allow the application to access privileged data

it may allow the application to bypass security checks

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Simple Memory Protection: Base & Bound Registers

raise

exception

base

Physical

Memory

base

bound

<

bound

≥

Processor

physical

address

Can only modify these registers using privileged instructions

otherwise, application can access data that belongs to the

kernel or other processes

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Towards Virtual Addresses

addresses used by an application must be contiguous (cannot

have gaps)

it would be nice if the stack and heap can grow and shrink

What’s are the problems with base and bound?

cannot share code between processes

absolute addresses are difficult to use

how to load the same program at two different memory

locations?

e.g., "jmp 0x12345678"

memory fragmentation

the (virtual) memory

of every process

starts at the same

place, i.e., 0

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Addresses

Translation done in hardware (on every address), using a table set

up by the OS kernel
Physical

Memory

Virtual Addresses

(process layout)

code

code

heap

data

heap

data

stack

stack

0

these memory

"segments" can

be located

anywhere in

physical memory

If you run two instances of this program simultaneously, you would

get the same printout from them if virtual addresses are used

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Address Example

int staticVar = 0; // a static variable

main() {

 staticVar += 1;

 sleep(10); // sleep for 10 seconds

 printf("static address: %x, value: %d\n",

 &staticVar, staticVar);

}

if you don’t have support for virtual addresses and have to use

physical addresses, the printout will be different

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Address Example

If you run two instances of this program simultaneously, you would

get the same printout from them if virtual addresses are used

int staticVar = 0; // a static variable

main() {

 staticVar += 1;

 sleep(10); // sleep for 10 seconds

 printf("static address: %x, value: %d\n",

 &staticVar, staticVar);

}

if you don’t have support for virtual addresses and have to use

physical addresses, the printout will be different

my color codes for code

reserved/key words are

in blue

numeric and string

constants are in red

comments are in green

black otherwise

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Hardware Timer

What if a programming bug causes a user process to go into an

infinite loop and never give up the processor?

we need a way for the OS kernel to gain control periodically

Hardware timer is a device that periodically interrupts the

processor

returns control to the kernel handler

interrupt frequency set by the kernel

not by user code

interrupts can be temporarily deferred

not by user code

interrupt deferral crucial for implementing mutual exclusion

expires every few milliseconds (human reaction time is a

few hundred of milliseconds)

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.3) Types of

Mode Transfer

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Types of Mode Transfer

User Mode To Kernel Mode

Kernel Mode To User Mode

Interrupts (if we don’t say "software interrupt", we mean "hardware

interrupt")

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mode Switch: User Mode To Kernel Mode

triggered by timer and I/O devices

Exceptions

triggered by unexpected program behavior

or malicious behavior!

e.g., divide by zero, execute a privileged instruction

System calls (aka protected procedure call)

request by program for kernel to do some operation on its behalf

only limited number of very carefully coded kernel entry points

e.g., read data from disk, create another process

when such an exception occurs, the thread in the user process

"traps" into the kernel

also "trap" into the kernel

when a thread in a user process makes a system call, it

"traps" into the kernel

Interrupts (if we don’t say "software interrupt", we mean "hardware

interrupt")

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mode Switch: User Mode To Kernel Mode

triggered by timer and I/O devices

Exceptions

triggered by unexpected program behavior

or malicious behavior!

e.g., divide by zero, execute a privileged instruction

System calls (aka protected procedure call)

request by program for kernel to do some operation on its behalf

only limited number of very carefully coded kernel entry points

e.g., read data from disk, create another process

when such an exception occurs, the thread in the user process

"traps" into the kernel

also "trap" into the kernel

when a thread in a user process makes a system call, it

"traps" into the kernel

trap is a synchronous

event (to transfer from

user mode to kernel mode)

interrupt is an

asynchronous event (can

happen at any time)

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mode Switch: Kernel Mode To User Mode

New process (or new thread) starts

jump to first instruction in program (or thread)

Return from interrupt, exception, system call

resume suspended execution

Process (or thread) context switch

resume some other process (or thread)

User-level upcall (UNIX signal)

asynchronous notification to user program

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.4) Implementing

Safe Mode Transfer

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Safe Mode Transfer

Context switch code must be carefully crafted

relies on hardware support

limited entry into the kernel

Most OS has a common sequence of instructions for enter the

kernel and for returning to user level, regardless of cause

at a minimum, this common sequence must provide

atomic changes to processor state

transparent, restartable execution

an entry point must be set up by the kernel and not allow

entry into the kernel at arbitrary points

processor mode, program counter, stack pointer, memory

protection registers all change at the same time

an interrupt must be invisible to the user process (i.e.,

serviced transparently)

if an interrupt is serviced in the middle of an instruction

execution, the CPU needs to be able to restart or

finish the execution of that instruction seamlessly

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Interrupt / Exception Handling

On an interrupt (or exception), the following happens

1) the processor saves its current state to memory

2) further events are deferred

3) changes to kernel mode

4) jump to the interrupt or exception handler

When the handler finishes, the steps are reversed and the

processor state is restored from its saved location

the interrupted entity has no idea that an interrupt has occurred

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interrupt Vector (Table)

Table set up by OS kernel

the interrupt vector is an array of function pointers, pointing to

code to run on different events

a special purpose processor register stores the address of this

array
Interrupt

Vector

...

handleTimerInterrupt() {

 ...

}...

handleDivideByZero() {

 ...

}...

handleSystemCall() {

 ...

}...

Processor

Register

on a multi-processor system, another thread in the same process

that runs in a different processor may modify the saved state

user-level stack pointer may be invalid (malicious user)

Why can’t you use the process’s user-level stack to store the saved

state?

the hardware automatically saves some of the interrupted

thread’s registers by pushing them onto the interrupt stack

before calling the handler

On most processors, a special hardware register points to an

interrupt stack

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interrupt Stack

when an interrupt or a trap causes a context switch into the

kernel, the hardware changes the stack pointer to point to the

interrupt stack

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Thread

Most OS allocate a kernel interrupt stack for every user-level

thread

when a user-level thread is running, the hardware interrupt

stack points to that thread’s kernel stack and the kernel stack is

empty

we refer to the interrupt stack simply as the "kernel stack"

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

the code for crt0.s is simply:

exit(main());

main() is called by crt0.s

some would call crt0.s the

startup function

if main() returns N, then the

main thread would call exit(N)

to terminate the process

you don’t see crt0.s because

it’s written for you already

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

User Stack

ready to run

proc2

proc1

main

Kernel Stack

user CPU

state

crt0.s

running

proc2

proc1

main

crt0.s

in this example, the user

thread was suspended

due to timer expiration,

(i.e., hardware interrupt)

timer

ISR

SP

waiting for syscall return

proc2

proc1

main

syscall

user CPU

state

syscall

handler

crt0.s

SP
0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

in this example, the user

thread made a system

call and the system call

started an I/O operation

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

I/O driver

(top half)

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

waiting for I/O

...

syscall

user CPU

state

syscall

handler

handling I/O completion

interrupt

"top half" refers to code

the kernel executes

("bottom half" is executed

by hardware)

SP SP

waiting for syscall return

proc2

proc1

main

syscall

user CPU

state

syscall

handler

crt0.s

kernel CPU

state
SP

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interrupt Masking

re-enabled when interrupt completes

Interrupt handler runs with interrupts disabled

e.g., when determining the next process/thread to run

CLI: disable interrrupts

OS kernel can also turn interrupts off

on x86

STI: enable interrrupts

only applies to the current CPU (on a multicore)

We will need this to implement synchronization in Ch 5

when interrupt is enabled, all pending interrupt will be delivered

in a certain sequence

If an interrupt is generated when interrupt is disabled, the new

interrupt becomes pending (and deferred, but not lost)

usually, the hardware will buffer one interrupt of each type

interrupt handler needs to check with the device to see

if multiple interrupts of the same type has occurred

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.5) Putting It

All Together:

x86 Mode Transfer

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

x86 Mode Transfer

Case Study: x86 Interrupt

vector through interrupt table

interrupt handler saves registers it might clobber

mask interrupts and switch to kernel mode1)

save current stack pointer, program counter, and Processor

Status Word (condition codes) to internal registers

2)

the hardware switchs to interrupt/kernel stack (information

stored in a special hardware register)

3)

pushd saved SP, PC, PSW from internal registers on to stack4)

save error code that caused the interrupt)5)

invoke the interrupt handler6)

other registers:

EAX, EBX, ...

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Before Interrupt

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stackuser stack

other registers:

EAX, EBX, ...

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Got Interrupt

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stackuser stack

SS

ESP

EFLAGS

CS

EIP

Error
trap

frame

(saved

user

state)

other registers:

EAX, EBX, ...

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

After Interrupt Handler Starts

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stack

user stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers

one points to interrupt stack, one points to user stack

Note: two ESPs saved inside the interrupt stack

trap

frame

(saved

user

state)

handler

frame

other registers:

EAX, EBX, ...

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

After Interrupt Handler Starts

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stack

user stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers

one points to interrupt stack, one points to user stack

Note: two ESPs saved inside the interrupt stack

xv6

trap

frame

xv6 calls this the

trap frame

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

At End Of Handler

Handler restores saved registers

restore program counter

iret: atomically return to interrupted process/thread

restore program stack

restore processor status word/condition codes

switch to user mode

handler() {

 pushad

 ...

 popad

 iret

}

kernel

iret is the only way to go/return from kernel to user mode for the

x86 CPU

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.6) Implementing

Secure System Calls

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Secure System Calls

System calls provide the illusion that the OS kernel is simply a

set of user space library routines

user space program needs not be concerned itself with how

the kernel implements system calls

All system calls follow a certain calling convention

e.g., how to name them, how to pass arguments, how to receive

return values

information is passed in registers and on the executiong stack

a trap instruction is eventually invoked to transfer control to

the kernel

for x86, the machine instruction to trap into the kernel is a

software interrupt machine instruction

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Typical Structure Of System Call Implementation

In the OS kernel, each system

call is implemented by a different

function

one main difference between

this type of function and other

OS kernel functions is that it

must not trust the values

passed from user space

bad arguments must not

crash the kernel

computer virus must not be able to user a system call to take

control of the OS kernel

Portable OS Kernel

Applications

Portable OS Library

System Call Interface

Hardware

(CPU/Devices)

#TRAPCODE is the index into the

x86 interrupt vector table for

the system call handler

file_open_handler() {

 // copy arguments

 // from user memory

 // check arguments
 file_open(arg1, args);

 // copy return value

 // into user memory
 return;

}

Kernel Stub

main() {

 file_open(arg1,args);

}

file_open(arg1, args) {

 // do operation

}

KernelUser Program

User Stub

file_open(arg1, args) {

 push #SYSCALL_OPEN

 int #TRAPCODE

 return

}

(5)

trap return

(2)

hardware trap

(1) (6) (3) (4)

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

User Stub & Kernel Stub In A System Call

for xv6, it’s 0x40

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Kernel Stub

Kernel stub has four tasks

locate system call arguments

in registers or on user stack

translate user addresses into kernel addresses (again, must

not trust user addresses)

copy arguments from user memory into kernel memory

protect kernel from malicious code evading checks (must do

this before validating arguments to protect the kernel from a

TOCTOU attack)

validate arguments

protect kernel from errors (or attacks) in user code

copy results back from the kernel into user memory

must verify user space addresses before copying

user stack pointer may be bad (must not trust user)

every byte of user data must be valid and file access rights

must be verified

Server

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Network Server

(5) file
read

(8) kernel
copy

reply
buffer

 (4) parse
request

Kernel

Hardware

network interface

disk interface

(7) disk
data (DMA)

(6) disk
request

(2) copy arriving
packet (DMA)

(11) format outgoing
packet and DMA

(1) network
socket read

(3) kernel
copy

request
buffer

(10) socket write and
copy to kernel buffer

(9) format reply

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.7) Starting A

New Process

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Starting A New Process

Step 1: Create a new process

allocate and initialize a new PCB

allocate memory for the new process

copy program data from disk into the newly allocated memory

allocate user-level stack for user-level code execution

allocate kernel-level stack to handle system calls, interrupts,

and processor exceptions

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Starting A New Process

Step 2: Start running the new process

copy arguments into memory

by convention, arguments of a process are copied to the base

of the user-level stack (i.e., pushed onto the stack)

in C, set up argv[] to point there

transfer control to user mode

as if it’s returning from a system call (set up the bottom of the

kernel stack just right then execute popad and iret)

the starting point of a user program is not main()

start(argc, argv) {

 exit(main(argc, argv));

}

the start() function doesn’t return and it’s identical for all

programs (and that’s why you don’t need to write code for

this function)

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.8) Implementing

Upcalls

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Upcalls

e.g., be notified about I/O completion interrupt

of course, user space program should not be allowed to

provide actual interrupt handler (or should it?!)

It would be nice to have OS-like functionality in user space

there is a need to "virtualize" some part of the OS kernel so that

applications can behave more like the OS

We call virtualized interrupts and exceptions upcalls

in Unix/Linux, they are called signals

in Windows, they are called asynchronous events

Upcalls from kernel to user processes are not always needed

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcalls

preemptive user-level threads (e.g., timer upcall)

There are several uses for immediate event delivery with upcalls

asynchronous I/O notification (e.g., I/O completion upcall)

interprocess communication (e.g., debugger upcall to suspend

or resume a process, logout upcall to safely self-terminate)

user-level exception handling (e.g., divide-by-zero upcall to

safely self-terminate)

used in asynchronous I/O

user-level resource allocation (e.g., Java garbage collection

upcall when amount of available memory changes for a process)

event-driven applications don’t need upcalls since OS events

can be virtualized

until recently, Microsoft Windows had no support for

immediate delivery of upcalls to user-level programs since

application programs are all event-driven

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Unix Signals

Signal delivery to a user space program is similar to hardware

interrupt delivery to the kernel

instead of interrupt vector, Unix has signal handlers

instead of using an interrupt stack, some OSes use a signal stack

registers are automatically saved and restored, transparent

to user processes or kernel

signal masking: signals disabled while in signal handler (since

there is only one signal stack per process)

processor state: kernel copies onto the signal stack the saved

state (i.e., PC, SP, general purpose registers at the point when

the user process stopped)

this is a design choice; alternatively, can use a normal

execution stack

difficult to modify the stack you are using

the signal handler can modify the saved state (e.g., so

that the kernel can resume a different user-level task

when the signal handler returns)

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcall: Before

...

x = y + z;

...

signal_handler() {

 ...

}

CPU

Stack Pointer

Program Counter

signal stack

user stack

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcall: During

...

x = y + z;

...

signal_handler() {

 ...

}

CPU

Stack Pointer

Program Counter

signal stack

user stack

SP

PC

Saved

Registers

the bottom of the signal stack is set up by the kernel (e.g., copied

from the interrupt stack)

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcall: Implementation

e.g., timer interrupt upcall

kernel copies save state to the bottom of the signal stack

To implement upcall only requires a small modification to the

"return from system call" or "return from interrupt" mechanism

reset the saved state to point to the signal handler and and

signal stack

use iret to exit the kernel handler and resume user-level

execution at the signal handler

when signal handler returns, these steps are unwound (i.e.,

processor state is copied back from the singal handler into

the interrupt stack)

use iret to resume original user-level computation

the hardware and the interrupt handler save the state of the

user-level computation

0123

65

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.9) Case Study:

Booting An OS Kernel

0123

66

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

BIOS

Physical Memory (RAM)
BIOS in ROM (or EPROM)

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

bootloader

OS kernel

login app

bootloader

OS kernel

login app

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)
BIOS in ROM (or EPROM)

0123

67

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

BIOS loads the bootloader into memory and jumps to it

on newer hardware, BIOS would first verify the integrity of

bootloader

Bootloader loads the OS kernel into memory and jumps to it

bootloader

OS kernel

login app

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

0123

68

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)

OS kernel

code & data

(2) bootloader

copies

OS kernel

BIOS in ROM (or EPROM)

bootloader would first verify the integrity of OS kernel

bootloader knows how to access file system on disk

bootloader

OS kernel

login app

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

0123

69

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)

OS kernel

code & data

login app

code & data

(2) bootloader

copies

OS kernel

(3) OS kernel

copies

login application

BIOS in ROM (or EPROM)

accessed via physical addresses

When OS kernel starts running, it would first

initialize some kernel data structures (including

setting up interrupt vector table)

OS kernel needs to communicate with physical devices

Devices operate asynchronously from the CPU

polling: kernel polls to see if I/O is done

interrupts: kernel can do other work in the meantime

Device access to memory

Programmed I/O (PIO): CPU reads and writes to device

Direct Memory Access (DMA) by device

buffer descriptor: sequence of DMA’s

0123

70

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Booting

0123

71

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.10) Case Study:

Virtual Machines

0123

72

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Virtual Machines

large, monolithic system

TSS (Time-Sharing System) project

IBM wants to build a multiuser time-sharing system

In the 60s, IBM had a single-user time-sharing system called CMS

virtual machine monitor (VMM)

CP67

lots of people working on it

for years

total, complete flop

a (working) multiuser time-sharing system

Put the two together ...

supports multiple virtual IBM 360s

it’s a very difficult system to build

0123

73

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines

A "monitor" is a synchronization construct that allows executing

entities to have both mutual exclusion and the ability to wait (block)

for a certain condition to become true

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

What abstraction does a virtual machine provide?

hardware

today, we call the VMM a hypervisor

0123

74

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

and it can be tested on a real machine (which behaves

identical to the VM)

A single user time-sharing system could be developed

independently of the VMM

no ambiguity about the interface VMM must provide to

its applications - identical to the real machine!

0123

75

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine: run one OS inside (or on-top-of) another OS

run (not emulate/simulate) OSx on-top-of OSy

we will refer to OSx as the guest OS and OSy as the host OS

(a host can have multiple guests)

make the guest OS think that it’s running on hardware, but in

reality, it is running inside a virtual machine

a virtual machine is not an OS emulator

must execute guest OS code on the real processor directly

0123

76

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How?

guest OS runs in the (virtual) privileged mode of the VM

Privileged

User

User

Privileged

Real/Host Machine

Virtual/Guest Machine
(VM)

VMM/hypervisor runs in the privileged mode of the real machine

Run the entire VM in user mode of the real machine

VMM keeps track of whether each VM is in the

virtual/guest privileged mode or in the virtual/guest user mode

VMM/hypervisor

"Guest" OS

Application

applications runs in the (virtual) user mode of the VM

0123

77

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

HOW?

VMM/hypervisor provides the illusion that

the guest OS is running on real hardware

e.g., VMM must manage mode transfer

between guest processes and guest OS

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

e.g., to provide a guest disk, VMM can

simulate a virtual disk as a file on real disk

e.g., to provide network access to guest

OS, VMM can simulate a virtual network

using physical network packets

e.g., host kernel must manage memory to

provide the illusion that the guest kernel is

managing its own memory protection

"Virtual Machine" in the picture contains: virtual CPU, virtual disk,

virtual display, virtual keyboard, etc.

data structures and code that represent real hardware

components

0123

78

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #1

Mode transfer example #1:

when host kernel starts the virtual machine, the guest kernel

starts running as if it’s being booted:

1) host loads the guest bootloader from the virtual disk and

starts it running

2) guest bootloader loads the guest kernel from the virtual

disk and starts it running

3) guest kernel initializes its interrupt vector table as it

normally would

4) guest kernel loads a process from the virtual disk into

guest memory

5) to start a process, guest kernel issues instructions to

resume execution at user level (use iret on x86) and traps

into host kernel (since this is a privileged instruction)

during boot the host kernel initializes its interrupt vector table as

usual

6) ...

0123

79

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #1

Mode transfer example #1:

6) host kernel simulates the requested mode transfer as if the

processor had directly executed the iret instruction

it restores the PC, SP, and processor status word

exactly as the guest kernel had intended

host kernel must protect itself from bugs in guest OS

needs to verify the validity of the mode transfer (i.e., make

sure that the mode transfer will not end up in the host kernel)

Mode transfer example #2:

trap machine instruction would trap into the host kernel (and it

needs to be delivered to the trap handler in the guest kernel)

1) host kernel saves user space IP, SP, and processor status

register on the interrupt stack of the guest kernel

2) host kernel transfers control to the guest kernel at the

beginning of the interrupt handler, but with the guest

kernel running with user-mode privilege

guest user process makes a system call

0123

80

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #2

host kernel simulates what would have happened had the system

call instruction occurred on real hardware running the guest OS:

3) guest kernel performs the system call, starts with saving

user state and checking arguments

4) when guest kernel attempts to return from the system call

back to user level, this causes a processor exception,

dropping back into the host kernel

5) cont...

Mode transfer example #2:

5) host kernel can then restore the state of the user process,

running at user level, as if the guest OS had been able to

return there directly

0123

81

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #2

0123

82

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #2

host
interrupt
vector
table

timer
handler

syscall
handler

host
interrupt
stack

host PC

host SP

host flags

physical
disk

virtual
disk

guest
interrupt
vector
table

timer
handler

syscall
handler

guest
interrupt
stack

guest PC

guest SP

guest flags

guest file system
and other kernel
services

guest
process

guest
process
...
trap
...

guest
program
counter

Host KernelHost
Kernel
Mode

Hardware

Guest Kernel
Guest
Kernel
Mode

Guest
User
Mode

Host
User
Mode

Virtual Machine

0123

83

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Exception Handling

exceptions generated in the guest user mode needs to be

delivered to the guest kernel

Host kernel handles processor exceptions similarly

exceptions generated in the guest kernel mode needs to be

simulated by the host kernel (if they do not have handlers in

the guest kernel)

therefore, the host kernel must track whether the virtual machine

is in the virtual/guest user mode or virtual/guest kernel mode

if yes, the job of the host kernel is to deliver trap/interrupt to the

guest kernel handler

If you got into the host kernel, think about whether there is a

handler in the guest kernel or not

if no, the job of the host kernel is to emulate the trap/interrupt

0123

84

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Timer Interrupt Handling

Timer interrupts need special handling

while servicing a timer interrupt in host kernel, enough virtual

time may have passed that the guest kernel is due for a timer

interrupt

in this case, host kernel needs to invoke the interrupt handler

for the guest kernel

guest kernel may switch guest user processes

this would cause a processor exception (since iret is

executed) and returning to the host kernel

host kernel can then resume the correct guess user process

0123

85

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: I/O Interrupt Handling

Handling I/O interrupts is similar to handling timer interrupts

when guest kernel makes a request to a virtual disk, it would

write instructions to the buffer descriptor ring for the virtual

disk device

in this case, host kernel would translate and perform these

instructions on the virtual disk

guest kernel expects to receive I/O completion interrupt

when the host kernel finishes performing operations

on the virtual disk, it needs to invoke the disk interrupt

handler for the guest kernel

0123

86

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

User-Level Virtual Machine

How does VMware Workstation Player work?

run as a user-level application

how does it catch privileged instructions, interrupts, I/O

operations?

VMware installs a kernel driver (called VMDriver) into host kernel

requires administrator privileges

modifies interrupt table to redirect to VMDriver code

if interrupt is for VM, upcall

if interrupt is for another process, reinstalls interrupt table

and resumes kernel

Modern OSes allow 3rd party kernel drivers (kind of like device

drivers with no corresponding devices)

these drivers can intercept hardware and software interrupts to

execute its own ISR

interpositioning: they can even call the original ISR (similar to

DLL injection attack in Windows)

0123

87

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

User-Level Virtual Machine

VMAppprocessprocess

Host OS

DevicesProcessor(s)

Device drivers

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver

0123

88

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

0123

89

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Challenge: Protection

How do we execute code with restricted privileges?

either because the code is buggy or if it might be malicious

Some examples:

a script running in a web browser

a program you just downloaded off the Internet

a program you just wrote that you haven’t tested yet

One main problem with this model is

that it’s quite difficult for the machine code

to use physical memory addresses

the addresses used by the machine code

are virtual memory addresses

Solution: Virtual Memory

HW will translate virtual address to

physical addresses on-the-fly

this is address translation and

it’s performed by the MMU

both the kernel and the application uses

virtual addresses to run code and access data

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

kernel

Physical

Memory
Source

Code

Executable

Image:

Instructions

and Data

compileredits

0123

90

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Edit, Compile, Load, and Run

OS kernel needs to communicate with physical devices

Devices operate asynchronously from the CPU

polling: kernel polls to see if I/O is done

interrupts: kernel can do other work in the meantime

Device access to memory

Programmed I/O (PIO): CPU reads and writes to device

Direct Memory Access (DMA) by device

buffer descriptor: sequence of DMA’s

e.g., packet header and packet body

queue of buffer descriptors

buffer descriptor itself is DMA’ed

0123

91

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Booting

0123

92

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(Virtual) Address Space Abstraction

Abstraction of physical memory

Goal of address space abstraction:

The kernel has its own address space

give each process a private memory area for code, data, stack

prevent one process from reading/writing outside its address

space

allow sharing, when needed

0123

93

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Address Space: Implementation

Usually the implementation is split between the OS and HW

OS manages address spaces

allocates physical memory (for creation, growth, deletion)

HW performs address translation and protection

translates user addresses to physical addresses

kernel space

(1 GB)

user space

(3 GB)

Linux

0

0xC0000000

0xFFFFFFFF

0xBFFFFFFF
kernel space

(2 GB)

user space

(2 GB)

0

0x80000000

0xFFFFFFFF

Windows

0x7FFFFFFF

0123

94

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

Process ≠ Program

Process is an instance of a program, running with lmited rights

Process consists of two parts

1)

code

address space which contains memory segments

data

heap

stack

kernel stack

2) process control block (PCB) which contains all the information

the kernel needs about the process, e.g.,

where the address space is stored in memory

where the executable image resides on disk

which user the process belongs to

what privileges the process has

etc.

0123

95

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

Process ≠ Program

Process is an instance of a program, running with lmited rights

Process consists of two parts

1)

code

address space which contains memory segments

data

heap

stack

kernel stack

2) process control block (PCB) which contains all the information

the kernel needs about the process, e.g.,

where the address space is stored in memory

where the executable image resides on disk

which user the process belongs to

what privileges the process has

etc.

contents of these are stored in user space

contents of these are stored in kernel space

0123

96

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Address Space

All (virtual) memory a process can address

stack

heap

data

text (code)

dynamic

(i.e., can grow and shrink)

static

(cannot grow/shrink)

0

Vmax

Virtual

Addresses

0123

97

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Function Invocation

x = 1

y = ?

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1
stack pointer

void outer() {

 int x = 1;

 int y = inner(x);

}

int inner(int idx) {

 int z[3] = { 1, 2, 3 };

 return z[idx];

}

Stack

0123

98

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Function Invocation

x = 1

y = 2

void outer() {

 int x = 1;

 int y = inner(x);

}stack pointer

Stack

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1

If you have a pointer pointing to the old/osbolete z somehow, this

pointer is now pointing to "garbage" (although it doesn’t look like

garbage at this moment)

0123

99

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Function Invocation

x = 1

y = 2

void outer() {

 int x = 1;

 int y = inner(x);

}stack pointer

Stack

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1pointer

when you make another function call, you would build a stack

frame and may wipe out the values in old z

when will it turn into garbage?

0123

100

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Static Variables

x = 1

y = ?

i = 1

return addr

Z[2] = 3

Z[1] = 2

Z[0] = 1

stack pointer

void outer() {

 int x = 1;

 int y = inner(x);

}

static int Z[3] = { 1, 2, 3 };

int inner(int idx) {

 return Z[idx];

}

Stack

Data

0123

101

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Dynamic/Heap Memory

x = 1

y = ?

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1

stack pointer

void outer() {

 int x = 1;

 int y = inner(x);

}

int inner(int idx) {

 z = malloc(3*sizeof(int));

 z[0] = 1;

 z[1] = 2;

 z[3] = 3;

 return z[idx];

}

Stack

Heap

z

0123

102

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Dynamic/Heap Memory

x = 1

y = 2

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1

stack pointer

void outer() {

 int x = 1;

 int y = inner(x);

}

Stack

Heap

Memory leak

no way to figure out where

the dynamically allocated z

was

z

when you use up your heap

(maybe because too many

memory leaks), malloc()

will fail and return NULL)

0123

103

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Address Space in xv6

A process’s user memory starts at virtual address 0, can grow up to

KERNBASE, allowing a process to address up to 2 GB of memory

0xFE000000

0xFDFFFFFF

kernel

text + data,

device memory

heap

data

text (code)
0

u
s
e
r

p
ro

c
e
s
s
 c

a
n

 a
c
c
e
s
s

0x80000000 (KERNBASE)

0x7FFFFFFF

stack
the stack is a single page (4 KB)

heap is above the stack so that

it can expand with sbrk()

k
e
rn

e
l
c
a
n

 a
c
c
e
s
s

0123

104

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Control Block (PCB)

OS maintains information about every process in a data structure

called a Process Control Block (PCB)

unique process identifier (PID)

PCB contains:

process state (running, ready, etc.)

CPU state (program counter, registers, flags)

memory management information (page table, segment table,

base & bound registers)

CPU scheduling & accounting information

parent process

child processes

...

0123

105

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PCB Example xv6: "proc.h"

// Per-process state

struct proc {

 uint sz; // Size of process memory (bytes)

 pde_t* pgdir; // Page table

 char *kstack; // Bottom of kernel stack for this process

 enum procstate state; // Process state

 int pid; // Process ID

 struct proc *parent; // Parent process

 struct trapframe *tf; // Trap frame for current syscall

 struct context *context; // swtch() here to run process

 void *chan; // If non-zero, sleeping on chan

 int killed; // If non-zero, have been killed

 struct file *ofile[NOFILE]; // Open files

 struct inode *cwd; // Current directory

 char name[16]; // Process name (debugging)

};

0123

106

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PCBs of Multiple Processes

for each process, there is one entry in the table

OS has a Process Table to manage all the PCBs

PID

Process Table

PCB

1

2

...

N

...

