Introduction to Operating Systems - CSCI 350

Ch 2: The Kernel
Abstraction

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Challenge: Protection

) A central role of OS is protection
= [solating bad applications and users so that they do not corrupt
other applications or the OS (which is the protector of other
applications)

ﬁ> Protection is essential to achiving some of the OS goals

= reliability - when an application crashes, it must not affect the OS

= security - protect other applications and the OS from malicious
applications
Q trusted code vs. untrusted code

= privacy - on a multi-user system, one user must not be able
to access information of another user

= fair resource allocation - an application must not be allowed to
use an unfair amount of shared resources (e.g., CPU time,
memory, disk space, etc.)

) Implementing protection is the job of the OS kernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Challenge: Protection

ﬁ} The OS kernel is the lowest level of software running on the system
and has full access to all machine hardware
= must trust the OS kernel to do anything with the hardware
= everything else is untrusted and must run in a restricted
environment

APP APP APP

Untrusted

Trusted
Operating System Kernel

Hardware

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Main Points

) Process concept
= a process is the OS abstraction for executing a program with
limited privileges

) Dual-mode operation: user vs. kernel
= kernel-mode: execute with complete privileges
= user-mode: execute with fewer privileges

_, Safe control transfer
= how do we switch from one mode to the other?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Process Concept

ﬁ} A process is the execution of an application program with restricted
rights
= the process is the abstraction for protected execution provided
by the OS kernel
= a process heeds permission from the OS kernel before accessing
memory of any other process, before reading/writing to disk,
before changing hardware settings, etc.

ﬁ> The OS kernel runs directly on the processor with unlimitted rights
= what about applications?
= In order to have good performance, applications also need to run
directly on the processor
Q but with all potentially dangerous operations disabled
— hardware can help to improve performance
Q in general, the more hardware help the better/faster
< how much can and should hardware help?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Dual-mode Operation

) Split personality of a process

= when running the OS kernel, it’s in charge of everything and
can do anything it wants

= when running applicatino code, it needs to ask permissions
to do anything potentially harmful to other applications or
the OS kernel

—= remember that they are running on the same processor,
sometimes completely trustworthy and other times completely
untrusted

Safe Control Transfer

) Application to OS kernel: make system call
= return from system call

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.1) The Process
Abstraction

Copyright © William C. Cheng

@ edits
_>

Source
Code

compiler

Executable
Image:
Instructions
and Data

0S
Copies

L

Physical

Memory (RAM)

) A process is a running program
— it has an address space that’s made up

of memory segments

Q machine instructions are kept inside the

lext segment

Q global variables are kept inside the data
segment

Q the heap holds dynamically allocated
data structures that the process might

need

Q the stack holds the state of local
variables and function arguments during procedure calls |
= conceptually, the OS kernel has its own address space 4

Copyright © William C. Cheng

machine
instructions

data

heap

stack

Introduction to Operating Systems - CSCI 350

The Process Abstraction

> process

machine
instructions

data

heap

stack

. (0133
kernel

Introduction to Operating Systems - CSCI 350

The Process Abstraction

@ edits
_>

Source
Code

compiler
P -

Executable
Image:
Instructions
and Data

0S
Copies

Physical
Memory (RAM)

L

> What's to keep the process from modifying
data in the OS kernel or other processes?

_, What's to keep the process from modifying
data on disk?

Copyright © William C. Cheng

machine
instructions

data > process

heap

stack

machine
instructions

data s 0S

kernel
heap

stack

Introduction to Operating Systems - CSCI 350

The Process Abstraction

0S Physical
edits compiler Executaple Copies Memory (RAM)
| Source P > Image: P

Code Instructions | coe
and Data 7

machine
i> Solution: Inst;uaci':ons
= process concept - process
. . heap
Q a process is the OS abstraction for o
executing a program with limited ?
privileges "
. B
= dual-mode operation: user vs. kernel machine

instructions

Q kernel-mode: execute with

. . data
complete privileges — - kernel
Q user-mode: execute with fewer —

privileges g
= safe control transfer
Q how do we switch from one mode to the other?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Process Abstraction

ﬁ} Process: an instance of a program, running with limited rights
= thread: a sequence of instructions within a process
Q potentially many threads per process (for now 1:1)
= address space: set of rights of a process
Q memory that a process can access
Q other permissions the process has (e.g., what memory is
shared with another process)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Process Control Block (PCB)

ﬁ} OS maintains information about every process in a data structure
called a Process Control Block (PCB)

_, PCB contains information such as:
— where the process data (e.g., code, global variabls, stack, heap)
is stored in memory
where its executable image resides on disk
which user asked to execute the program
what privileges the process has

0 0 0 [

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.2) Dual-Mode
Operation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.2) Dual-Mode Operation

_) Kernel mode
= execution with the full privileges of the hardware
= read/write to any memory, access any I/O device, read/write
any disk sector, send/read any packet

_) User mode
= limited privileges
= ohnly those granted by the operating system kernel

) On the x86, mode stored in EFLAGS register
> On the MIPS, mode in the status register

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

A Model of a CPU

branch address

@ :
rogram

Select new PC instructions
- - - —
PC Counter fetch &

{ (PC) execute

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

A CPU with Dual-Mode Operation

branch address

@ :
rogram

Select new PC instructions

> o
™ pc > C°:gter fetch &
handler PC —» (PC) — | execute [
\ J
-
Select |new mode d
Mode mode

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

A CPU with Dual-Mode Operation

) Privileged instructions
= available to kernel
= not available to user code

) Limits on memory accesses
= to prevent user code from overwriting the kernel

ﬁ> Timer

= to regain control from a user program in a loop

ﬁ> Safe way to switch from user mode to kernel mode, and vice versa

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Privileged Instructions

ﬁ} What would be an example of a privileged instruction?
change mode bit in EFLAGS register

change which memory location a user program can access
send commands to I/O devices

read data from or write data to I/O devices

jump into kernel code

[

0000

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Privileged Instructions

ﬁ} What should happen if a user program attempts to execute a
privileged instruction?
= would cause a processor exception (in hardware)
Q which would cause the processor to transfer control to an
exception handler in the OS kernel
& usually, the kernel simply halts the process after a
privilege violation

ﬁ> What bad thing can happen if an application can jump into kernel
mode at any location in the kernel?
= it may crash the kernel
= it may allow the application to access privileged data
= It may allow the application to bypass security checks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Simple Memory Protection: Base & Bound Registers

Physical
Memory

base
physical
address
Processor o
base
Hé
bound
bound
:%: raise
exception

ﬁ> Can only modify these registers using privileged instructions
= otherwise, application can access data that belongs to the (\
0 —

kernel or other processes =

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Towards Virtual Addresses

ﬁ} What’s are the problems with base and bound?
= addresses used by an application must be contiguous (cannot
have gaps)
Q 1t would be nice if the stack and heap can grow and shrink
cannot share code between processes
absolute addresses are difficult to use
Q how to load the same program at two different memory
locations?
& e.g., "jmp 0x12345678"
= memory fragmentation

[

[

Copyright © William C. Cheng

Virtual Addresses

ﬁ} Translation done in hardware (on every address), using a table set

up by the OS kernel
= the (virtual) memory
of every process
starts at the same
place, i.e., 0
Q these memory
"segments" can
be located
anywhere in
physical memory

Copyright © William C. Cheng

Virtual Addresses
(process layout)

0

code

data

heap

v
i

-~y
-y
-~y

-
-~y
- -

-~y
-y
-~y

-
-~y
- -

-
L.

- -
-

-~y
-y
- -

-~ -
-
~ -
-
-
-
-
-
-
-
-
-
-
-
-
-
-~y
-~ -

Introduction to Operating Systems - CSCI 350

Physical
Memory

code

data

heap

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

stack

Introduction to Operating Systems - CSCI 350

Virtual Address Example

int staticvar = 0; // a static wvariable
main () {
staticvVar += 1;
sleep(10); // sleep for 10 seconds
printf ("static address: %x, wvalue: %d\n",
&staticvVar, staticVar);

}

ﬁ> If you run two instances of this program simultaneously, you would
get the same printout from them if virtual addresses are used
= if you don’t have support for virtual addresses and have to use
physical addresses, the printout will be different

Copyright © William C. Cheng

int staticvar = 0; // a static vari

main () {
staticvVar += 1;

sleep(10); // sleep for 10 second

printf ("static address: %x,
&staticvVar, staticVar);

}

Introduction to Operating Systems - CSCI 350

Virtual Address Example

r

value)

L

= my color codes for code
L reserved/key words are
in blue
1 numeric and string
constants are in red
J comments are in green
1 black otherwise

ﬁ> If you run two instances of this program simultaneously, you would
get the same printout from them if virtual addresses are used
= if you don’t have support for virtual addresses and have to use

physical addresses, the printout will be different

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Hardware Timer

ﬁ} What if a programming bug causes a user process to go into an
infinite loop and never give up the processor?
= we need a way for the OS kernel to gain control periodically

ﬁ> Hardware timer is a device that periodically interrupts the
processor
= returns control to the kernel handler
= interrupt frequency set by the kernel
Q not by user code
Q expires every few milliseconds (human reaction time is a
few hundred of milliseconds)
= Interrupts can be temporarily deferred

Q not by user code
Q interrupt deferral crucial for implementing mutual exclusion

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.3) Types of
Mode Transfer

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Types of Mode Transfer
) User Mode To Kernel Mode
ﬁ> Kernel Mode To User Mode

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mode Switch: User Mode To Kernel Mode

ﬁ} Interrupts (if we don’t say "software interrupt”, we mean "hardware
interrupt”)
= triggered by timer and I/O devices

) Exceptions
= triggered by unexpected program behavior

= or malicious behavior!

= e.g., divide by zero, execute a privileged instruction

— wWhen such an exception occurs, the thread in the user process
"traps” into the kernel

ﬁ> System calls (aka protected procedure call)
= request by program for kernel to do some operation on its behalf
— only limited number of very carefully coded kernel entry points
= e.g., read data from disk, create another process

= also "trap” into the kernel

when a thread in a user process makes a system call, it |
"traps’ into the kernel 233

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mode Switch: User Mode To Kernel Mode

) Interrupts (if we don’t say "software interrupt”,(_
. " = frap is a synchronous
mterrupt) event (to transfer from
= triggered by timer and I/O devices user mode to kernel mode
= interruptis an
|:> Exceptions asynchronous event (can
= triggered by unexpected program behavior happen at any time)
.

= or malicious behavior!

= e.g., divide by zero, execute a privileged instruction

— wWhen such an exception occurs, the thread in the user process
"traps” into the kernel

ﬁ> System calls (aka protected procedure call)
= request by program for kernel to do some operation on its behalf
— only limited number of very carefully coded kernel entry points
= e.g., read data from disk, create another process

= also "trap” into the kernel

when a thread in a user process makes a system call, it |
"traps’ into the kernel 293

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mode Switch: Kernel Mode To User Mode

ﬁ} New process (or new thread) starts
= jump to first instruction in program (or thread)

ﬁ} Return from interrupt, exception, system call
= resume suspended execution

) Process (or thread) context switch
= resume some other process (or thread)

) User-level upcall (UNIX signal)
= asynchronous notification to user program

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.4) Implementing
Safe Mode Transfer

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Safe Mode Transfer

) Context switch code must be carefully crafted
= relies on hardware support

ﬁ} Most OS has a common sequence of instructions for enter the
kernel and for returning to user level, regardless of cause
= at a minimum, this common sequence must provide
Q limited entry into the kernel
<& an entry point must be set up by the kernel and not allow
entry into the kernel at arbitrary points
Q atomic changes to processor state
& processor mode, program counter, stack pointer, memory
protection registers all change at the same time
Q transparent, restartable execution
& an interrupt must be invisible to the user process (i.e.,
serviced transparently)
<& if an interrupt is serviced in the middle of an instruction
execution, the CPU needs to be able to restart or N

finish the execution of that instruction seamlessly
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Interrupt / Exception Handling

ﬁ} On an interrupt (or exception), the following happens
1) the processor saves its current state to memory
2) further events are deferred
3) changes to kernel mode
4) jump to the interrupt or exception handler

ﬁ} When the handler finishes, the steps are reversed and the
processor state is restored from its saved location
= the interrupted entity has no idea that an interrupt has occurred

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Interrupt Vector (Table)

) Table set up by OS kernel

= the interrupt vector is an array of function pointers, pointing to

code to run on different events

= a special purpose processor register stores the address of this

array Processor
Redgister Interrupt
9 Vector
® -
‘_

Copyright © William C. Cheng

—P handleTimerInterrupt () {

}

—P handleDivideByZero () {

}

—P handleSystemCall () {

}

Introduction to Operating Systems - CSCI 350

Interrupt Stack

ﬁ} On most processors, a special hardware register points to an
interrupt stack
= when an interrupt or a trap causes a context switch into the
kernel, the hardware changes the stack pointer to point to the
interrupt stack
QO the hardware automatically saves some of the interrupted
thread’s registers by pushing them onto the interrupt stack
before calling the handler

ﬁ> Why can’t you use the process’s user-level stack to store the saved
state?
= user-level stack pointer may be invalid (malicious user)
= onh a multi-processor system, another thread in the same process
that runs in a different processor may modify the saved state

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Two Stacks Per Thread

ﬁ} Most OS allocate a kernel interrupt stack for every user-level
thread

= when a user-level thread is running, the hardware interrupt
stack points to that thread’s kernel stack and the kernel stack is
empty
Q we refer to the interrupt stack simply as the "kernel stack”

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Two Stacks Per Process

running

User Stack -
proc2

proci

main

crt0.s

Kernel Stack

.

Copyright © William C. Cheng

I:> main () is called by crt0.s
= some would call crt0. s the

startup function
— the code for crt0. s is simply:

exit (main());

= ifmain () returns N, then the
main thread would call exit (N)
to terminate the process

—= you don’t see crt0.s because
it’s written for you already

running

ready to run

Introduction to Operating Systems - CSCI 350

Two Stacks Per Process

r

User Stack -

Kernel Stack

.

proc2

proci

main

crt0.s

proc2

= in this example, the user
thread was suspended
due to timer expiration,
(i.e., hardware interrupt)

proci

main

crt0.s

timer
ISR

user CPU

Copyright © William C. Cheng

SP

state

Introduction to Operating Systems - CSCI 350

Two Stacks Per Process

r

running waiting for syscall return| = jn this example, the user
thread made a system
. call and the system call
> started an I/O operation
syscall L
User Stack -

proc2 proc2
proci proci
main main
crt0.s crt0.s

syscall
Kernel Stack handler

user CPU
state
> SP &!’)

Copyright © William C. Cheng

= handling I/0 completion
interrupt

= "top half" refers to code
the kernel executes
("bottom half" is executed
by hardware)

]nning

waiting for syscall return

roc2

proci

main

crt0.s

syscall

proc2

proci

main

crt0.s

Kernel Stack

syscall
handler

user CPU

.

Copyright © William C. Cheng

SP state

waiting for 1/0

syscall

=

1/0 driver
(top half)

kernel CPU
sp|state

syscall
handler

user CPU
state

SP

Introduction to Operating Systems - CSCI 350

Two Stacks Per Process

Interrupt Masking

) Interrupt handler runs with interrupts disabled
= re-enabled when interrupt completes

ﬁ} OS kernel can also turn interrupts off
= e.g., when determining the next process/thread to run
= Ooh x86
Q CLI: disable interrrupts
Q STI: enable interrrupts
Q only applies to the current CPU (on a multicore)

—> We will need this to implement synchronization in Ch 5

Introduction to Operating Systems -

CSCI 350

) If an interrupt is generated when interrupt is disabled, the new

interrupt becomes pending (and deferred, but not lost)

= when interrupt is enabled, all pending interrupt will be delivered

=

in a certain sequence
= usually, the hardware will buffer one interrupt of each type
Q interrupt handler needs to check with the device to see

iIf multiple interrupts of the same type has occurred
Copyright © William C. Cheng

41

(2.5) Putting It
All Together:
x86 Mode Transfer

Introduction to Operating Systems - CSCI 350

x86 Mode Transfer

ﬁ} Case Study: x86 Interrupt

1) mask interrupts and switch to kernel mode

2) save current stack pointer, program counter, and Processor
Status Word (condition codes) to internal registers

3) the hardware switchs to interrupt/kernel stack (information
stored in a special hardware register)

4) pushd saved SP, PC, PSW from internal registers on to stack

5) save error code that caused the interrupt)

6) invoke the interrupt handler
= vector through interrupt table
= Interrupt handler saves registers it might clobber

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Before Interrupt

user-level process

registers kernel
foo () { - SS: ESP handler () {
while (...) { pushad
x =x+ 1; .
v =y - 2; CS: EIP }
}
} EFLAGS
other registers:
user stack EAX, EBX, ... interrupt stack
-

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Got Interrupt

user-level process registers kernel
foo () { - SS: ESP —p» handler () {
while (...) { pushad
X =x+ 1; .
vy =y - 2; CS: EIP }
}
} EFLAGS
other registers:
user stack EAX, EBX, ... interrupt stack
>
Error tra
- | EP P
1 CS frame
EFLAGS |[Lssae"red
{ ESSSP state)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

After Interrupt Handler Starts

user-level process

registers

foo () { -
while

KX~
|+ -
N R~

e

user stack

SS: ESP

CS: EIP

kernel

handler () {
pushad

>

EFLAGS

other registers:

EAX, EBX, ...

}

interrupt stack

> 3
all|[EAX, EBX,

general-| ECX, EDX | handler
purpose|ESP, EBP || frame
registers| ESI, EDI

Error
| &P trap
1 CS frame
EFLAGS |[(Saved
user
{ ESSSP state)

> Note: two ESPs saved inside the interrupt stack |
= ohe points to interrupt stack, one points to user stack 4534

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

After Interrupt Handler Starts

user-level process registers = XVv6 calls this the

trap frame

foo() { SS: ESP h
while { pushad

CS: EIP |

KX~
|+ -
N R~

}
) EFLAGS interrupt stack

e

other registers: > .
user stack EAX, EBX, ... all|[EAX, EBX,
general-| ECX, EDX
purpose| ESP, EBP
registers| ESI, EDI
Error

i EIP

| cs
EFLAGS

| Esp
1 ss

Xvé6
- trap
frame

> Note: two ESPs saved inside the interrupt stack

|
= ohe points to interrupt stack, one points to user stack 473 ..’
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

At End Of Handler

ﬁ} Handler restores saved registers kernel

ﬁ> iret: atomically return to interrupted process/thread nandier() ¢
= restore program counter pushad
= restore program stack — » popad
= restore processor status word/condition codes , iret
= switch to user mode

ﬁ> iret is the only way to go/return from kernel to user mode for the
x86 CPU

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.6) Implementing
Secure System Calls

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Secure System Calls

ﬁ} System calls provide the illusion that the OS kernel is simply a
set of user space library routines
= user space program needs not be concerned itself with how
the kernel implements system calls

) All system calls follow a certain calling convention

= e.g., how to name them, how to pass arguments, how to receive
return values

= Information is passed in registers and on the executiong stack

= a trap instruction is eventually invoked to transfer control to
the kernel
Q for x86, the machine instruction to trap into the kernel is a

software interrupt machine instruction

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Typical Structure Of System Call Implementation

) In the OS kernel, each system
call is implemented by a different Applications /
function
= one main difference between Portable OS Library
this type of function and other System Call Interface
OS kernel functions is that it Portable OS Kernel
must not trust the values
passed from user space / Hardware \
(CPU/Devices)
Q bad arguments must not

crash the kernel
Q computer virus must not be able to user a system call to take

control of the OS kernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

User Stub & Kernel Stub In A System Call

User Program Kernel
main () { file_open(argl, args) {
file_open (argl, args); // do operation
} }
(ﬂl T(G) (3)T l(4)
(2)
User Stub hardware trap Kernel Stub
file_open(argl, args) { (5) file_open_handler () {
I.Dush #SYSCALL_OPEN trap return /I copy arguments
int #TRAPCODE - /[from user memory
return /I check arguments
} file_open(argl, args);
// copy return value
ﬁ> #TRAPCODE is the index into the /I into user memory
- t ;
x86 interrupt vector table for y oo

the system call handler
= for xv6, it’s 0x40

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Kernel Stub

) Kernel stub has four tasks
= |locate system call arguments
Q in registers or on user stack
& user stack pointer may be bad (must not trust user)
Q translate user addresses into kernel addresses (again, must
not trust user addresses)
= copy arguments from user memory into kernel memory
Q protect kernel from malicious code evading checks (must do
this before validating arguments to protect the kernel from a
TOCTOU attack)
— validate arguments
Q protect kernel from errors (or attacks) in user code
<& every byte of user data must be valid and file access rights
must be verified
= copy results back from the kernel into user memory

Q must verify user space addresses before copying @\

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example: Network Server

Server request (4) parse reply
. | buffer R request |, | buffer R > (9) format reply —
(1) network (3) kernel (5) file (8) kernel (10) socket write and
socket read copy read copy copy to kernel buffer
; A ; A ;
Y ' V ' v
Kernel
; g ;
(2) copy arriving (6) disk (7) disk (11) format outgoing
packet (DMA) request data (DMA) packet and DMA
Hardware : v : disk interface : I
% network interface ;?)—

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.7) Starting A
New Process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Starting A New Process

) Step 1: Create a new process

allocate and initialize a new PCB

allocate memory for the new process

copy program data from disk into the newly allocated memory
allocate user-level stack for user-level code execution
allocate kernel-level stack to handle system calls, interrupts,
and processor exceptions

[

0000

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Starting A New Process

_, Step 2: Start running the new process
= COpYy arguments into memory
Q by convention, arguments of a process are copied to the base
of the user-level stack (i.e., pushed onto the stack)
¢ inC, setup argv[] to point there
= transfer control to user mode
Q as if it’s returning from a system call (set up the bottom of the
kernel stack just right then execute popad and iret)
= the starting point of a user program is not main ()

start (arge, argv) ({
exit (main (argc, argv));

}

Q the start () function doesn’t return and it’s identical for all
programs (and that’s why you don’t need to write code for

this function)
|
S

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.8) Implementing
Upcalls

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Upcalls

) It would be nice to have OS-like functionality in user space
= e.(g., be notified about I/O completion interrupt
Q of course, user space program should not be allowed to
provide actual interrupt handler (or should it?!)
= there is a need to "virtualize” some part of the OS kernel so that
applications can behave more like the OS

ﬁ} We call virtualized interrupts and exceptions upcalls
= In Unix/Linux, they are called signals
= In Windows, they are called asynchronous events

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Upcalls

ﬁ} There are several uses for immediate event delivery with upcalls

= preemptive user-level threads (e.g., timer upcall)

= asynchronous /O notification (e.g., /O completion upcall)
Q used in asynchronous I/O

= interprocess communication (e.g., debugger upcall to suspend
or resume a process, logout upcall to safely self-terminate)

= user-level exception handling (e.g., divide-by-zero upcall to
safely self-terminate)

= user-level resource allocation (e.g., Java garbage collection
upcall when amount of available memory changes for a process)

G> Upcalls from kernel to user processes are not always needed
= event-driven applications don’t need upcalls since OS events
can be virtualized
Q until recently, Microsoft Windows had no support for
immediate delivery of upcalls to user-level programs since
application programs are all event-driven f @’_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Unix Signals

ﬁ} Signal delivery to a user space program is similar to hardware
interrupt delivery to the kernel

o

|

Copyright © William C. Cheng

instead of interrupt vector, Unix has signal handlers

instead of using an interrupt stack, some OSes use a signal stack

Q this is a design choice; alternatively, can use a normal
execution stack
& difficult to modify the stack you are using

registers are automatically saved and restored, transparent

to user processes or kernel

signal masking: signhals disabled while in signal handler (since

there is only one signal stack per process)

processor state: kernel copies onto the signal stack the saved

state (i.e., PC, SP, general purpose registers at the point when

the user process stopped)

Q the signal handler can modify the saved state (e.g., so
that the kernel can resume a different user-level task |
when the signal handler returns) 3

Introduction to Operating Systems - CSCI 350

Upcall: Before

CPU
X =y + z; € Stack Pointer signal_handler () {
Program Counter ’
signal stack

user stack

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Upcall: During

CPU
X =y + z2; @ Stack Pointer —» signal_handler () {
Program Counter ’
signal stack
user stack
>
Saved
Registers
< |
SP
PC

= the bottom of the signal stack is set up by the kernel (e.g., copied

from the interrupt stack) gi\
633

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Upcall: Implementation

ﬁ} To implement upcall only requires a small modification to the
"return from system call” or "return from interrupt” mechanism
= e.g., timer interrupt upcall

Q the hardware and the interrupt handler save the state of the
user-level computation
Q kernel copies save state to the bottom of the signal stack
reset the saved state to point to the signal handler and and
signhal stack

Q use iret to exit the kernel handler and resume user-level

execution at the signal handler

Q when signal handler returns, these steps are unwound (i.e.,

processor state is copied back from the singal handler into
the interrupt stack)

Q use iret to resume original user-level computation

@

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.9) Case Study:
Booting An OS Kernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Case Study: Booting An OS Kernel

) How does the OS bootstrap itself?
= EX: running Linux or Windows on a PC

) BIOS in ROM (or EPROM)
= accessed via physical addresses
= boot code in BIOS is small and
simple (not a good idea to put
the entire kernel in ROM)

3

bootloader
OS kernel

login app
\/

Copyright © William C. Cheng

Physical Memory (RAM)

BIOS

Introduction to Operating Systems - CSCI 350

Case Study: Booting An OS Kernel

) How does the OS bootstrap itself?
= EX: running Linux or Windows on a PC

) BIOS in ROM (or EPROM)

Physical Memory (RAM)

= accessed via physical addresses (1) BIOS BlOS
_ _ copies
= boot code in BIOS is small and bootfz,ader bootloader

simple (not a good idea to put ™| code & data
the entire kernel in ROM)

D
bootloader
OS kernel
login app
~ A
) BIOS loads the bootloader into memory and jumps to it
= oh nhewer hardware, BIOS would first verify the integrity of
bootloader 4

67

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Case Study: Booting An OS Kernel

) How does the OS bootstrap itself?
= EX: running Linux or Windows on a PC

Physical Memory (RAM)
) BIOS in ROM (or EPROM)

= accessed via physical addresses (1) BIOS BlOS
_ _ copies
= boot code in BIOS is small and bootfz,ader bootloader

simple (not a good idea to put ™| code & data
the entire kernel in ROM)

(2) bootloader

copies
(> OS kernel | OS kernel
code & data
bootloader
OS kernel
login app
\/

ﬁ> Bootloader /oads the OS kernel into memory and jumps to it
= bootloader would first verify the integrity of OS kernel |
= bootloader knows how to access file system on disk 6834

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Case Study: Booting An OS Kernel

) How does the OS bootstrap itself?
= EX: running Linux or Windows on a PC

Physical Memory (RAM)
) BIOS in ROM (or EPROM)

= accessed via physical addresses (1) BIOS BlOS
_ _ copies
= boot code in BIOS is small and bootfz,ader bootloader

simple (not a good idea to put code & data
the entire kernel in ROM)

(2) bootloader

— copies
i > OS kernel | OS kernel
code & data
bootloader
OS kernel (3) OS I.(ernel
i copies
login app login application - login app
code & data

> When OS kernel starts running, it would first
initialize some kernel data structures (including |
setting up interrupt vector table) y @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Booting
_) OS kernel needs to communicate with physical devices

ﬁ> Devices operate asynchronously from the CPU
= polling: kernel polls to see if I/O is done
= interrupts: kernel can do other work in the meantime

) Device access to memory
= Programmed I/O (P1O): CPU reads and writes to device
= Direct Memory Access (DMA) by device
= buffer descriptor: sequence of DMA’s

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.10) Case Study:
Virtual Machines

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Case Study: Virtual Machines

) Inthe 60s, IBM had a single-user time-sharing system called CMS
= |BM wants to build a multiuser time-sharing system

) TSS (Time-Sharing System) project
= it’s a very difficult system to build
= |arge, monolithic system
= |lots of people working on it
= for years
= total, complete flop

_) CP67

= Virtual machine monitor (VMM)
= supports multiple virtual IBM 360s

) Put the two together ...
= a (working) multiuser time-sharing system

Copyright © William C. Cheng

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines

Applications

Applications

Applications

OSa

OSb

OSc

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual Machine Monitor (VMM)

Hardware

= hardware

ﬁ> A "monitor” is a synchronization construct that allows executing
entities to have both mutual exclusion and the ability to wait (block)
for a certain condition to become true

— today, we call the VMM a hypervisor

_» What abstraction does a virtual machine provide?

Introduction to Operating Systems - CSCI 350

Virtual Machines

Applications Applications Applications
OSa OSb OSc
Virtual Virtual Virtual
Machine Machine Machine

Virtual Machine Monitor (VMM)

Hardware

G> A single user time-sharing system could be developed
independently of the VMM
= and it can be tested on a real machine (which behaves
identical to the VM)
= no ambiguity about the interface VMM must provide to
its applications - identical to the real machine!
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines

ﬁ} Virtual Machine: run one OS inside (or on-top-of) another OS
= run (not emulate/simulate) OSx on-top-of OSy
Q we will refer to OSx as the guest OS and OSy as the host OS
(a host can have multiple guests)
Q a virtual machine is not an OS emulator
& must execute guest OS code on the real processor directly
= make the guest OS think that it’s running on hardware, but in
reality, it is running inside a virtual machine

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

User Application

Privileged "Guest" OS

Virtual/Guest Machine
VMM/hypervisor Privileged (VM)

Real/Host Machine

) Run the entire VM in user mode of the real machine
= VMM/hypervisor runs in the privileged mode of the real machine

) VMM keeps track of whether each VM is in the
virtual/guest privileged mode or in the virtual/guest user mode
= guest OS runs in the (virtual) privileged mode of the VM
= applications runs in the (virtual) user mode of the VM

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

HOW?
_» VMM/hypervisor provides the illusion that GREIEHIEE
the guest OS is running on real hardware
g g Guest OSa
= e.g., VMM must manage mode transfer
between guest processes and guest OS Virtual
= e.g., to provide a guest disk, VMM can Machine
simulate a virtual disk as a file on real disk
. VMM
= e.g., to provide network access to guest
OS, VMM can simulate a virtual network
. . Hardware
using physical network packets

= e.g., host kernel must manage memory to
provide the illusion that the guest kernel is
managing its own memory protection

ﬁ} "Virtual Machine" in the picture contains: virtual CPU, virtual disk,
virtual display, virtual keyboard, etc.
— data structures and code that represent real hardware

components 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines: Mode Transfer Example #1

) Mode transfer example #1:
= during boot the host kernel initializes its interrupt vector table as
usual
= When host kernel starts the virtual machine, the guest kernel
starts running as if it’s being booted:
1) host loads the guest bootloader from the virtual disk and
starts it running
2) guest bootloader loads the guest kernel from the virtual
disk and starts it running
3) guest kernel initializes its interrupt vector table as it
normally would
4) guest kernel loads a process from the virtual disk into
guest memory
5) to start a process, guest kernel issues instructions to
resume execution at user level (use iret on x86) and traps
into host kernel (since this is a privileged instruction) |
6) ... oy

Copyright © William C. Cheng

78

Introduction to Operating Systems - CSCI 350

Virtual Machines: Mode Transfer Example #1

) Mode transfer example #1:

6) host kernel simulates the requested mode transfer as if the
processor had directly executed the iret instruction
& it restores the PC, SP, and processor status word

exactly as the guest kernel had intended
= host kernel must protect itself from bugs in guest OS
Q needs to verify the validity of the mode transfer (i.e., make
sure that the mode transfer will not end up in the host kernel)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines: Mode Transfer Example #2

) Mode transfer example #2:
= guest user process makes a system call
= trap machine instruction would trap into the host kernel (and it
needs to be delivered to the trap handler in the guest kernel)
= host kernel simulates what would have happened had the system
call instruction occurred on real hardware running the guest OS:
1) host kernel saves user space IP, SP, and processor status
register on the interrupt stack of the guest kernel
2) host kernel transfers control to the guest kernel at the
beginning of the interrupt handler, but with the guest
kernel running with user-mode privilege
3) guest kernel performs the system call, starts with saving
user state and checking arguments
4) when guest kernel attempts to return from the system call
back to user level, this causes a processor exception,

dropping back into the host kernel |
9) cont... 8034

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines: Mode Transfer Example #2

) Mode transfer example #2:
5) host kernel can then restore the state of the user process,
running at user level, as if the guest OS had been able to
return there directly

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines: Mode Transfer Example #2

Virtual Machine

Host
User guest guest
Mode Guest process process
User guest
Mode trap <&— program
counter
Guest Kernel :
Guest guest PC guest guest Hranneéler
Kernel guest SP—®=| interrupt guest file system | Interrupt
Mode gyest flags stack and other kernel | Vector syscall
9 9 services table handler
Host Host Kernel :
Kernel host PC host ihnecztru , H;nnedrler
Mode host SP —#{ Interrupt virtual P
hostflags | Stack disk vector syscall
g table handler
Hardware

Copyright © William C. Cheng

physical
disk

o

Introduction to Operating Systems - CSCI 350

Virtual Machines: Exception Handling

ﬁ} Host kernel handles processor exceptions similarly

= exceptions generated in the guest user mode needs to be
delivered to the guest kernel

= exceptions generated in the guest kernel mode needs to be
simulated by the host kernel (if they do not have handlers in
the guest kernel)

= therefore, the host kernel must track whether the virtual machine
is in the virtual/guest user mode or virtual/guest kernel mode

ﬁ> If you got into the host kernel, think about whether there is a
handler in the guest kernel or not
= if yes, the job of the host kernel is to deliver trap/interrupt to the
guest kernel handler
= if no, the job of the host kernel is to emulate the trap/interrupt

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines: Timer Interrupt Handling

_, Timer interrupts need special handling
= while servicing a timer interrupt in host kernel, enough virtual

time may have passed that the guest kernel is due for a timer

interrupt

Q in this case, host kernel needs to invoke the interrupt handler
for the guest kernel

Q guest kernel may switch guest user processes
& this would cause a processor exception (since iret is

executed) and returning to the host kernel

<& host kernel can then resume the correct guess user process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtual Machines: I/O Interrupt Handling

ﬁ} Handling I/O interrupts is similar to handling timer interrupts
= when guest kernel makes a request to a virtual disk, it would
write instructions to the buffer descriptor ring for the virtual
disk device
Q in this case, host kernel would translate and perform these
instructions on the virtual disk
Q guest kernel expects to receive I/O completion interrupt
& when the host kernel finishes performing operations
on the virtual disk, it needs to invoke the disk interrupt
handler for the guest kernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

User-Level Virtual Machine

) How does VMware Workstation Player work?
= run as a user-level application
= how does it catch privileged instructions, interrupts, I/0
operations?

ﬁ> Modern OSes allow 3rd party kernel drivers (kind of like device
drivers with no corresponding devices)
= these drivers can intercept hardware and software interrupts to
execute its own ISR
Q interpositioning: they can even call the original ISR (similar to
DLL injection attack in Windows)

ﬁ} VMware installs a kernel driver (called VMDriver) into host kernel
= requires administrator privileges
modifies interrupt table to redirect to VMDriver code
iIf interrupt is for VM, upcall
if interrupt is for another process, reinstalls interrupt table (;’\

and resumes kernel Y/
Copyright © William C. Cheng

0 0 [

Introduction to Operating Systems - CSCI 350

User-Level Virtual Machine

process process process process

process process VMApp Guest OS Guest OS
Device Device
drivers drivers
Virtual Virtual Virtual Virtual
processor(s)| devices processor(s)| devices

VMDriver
Host OS Device drivers
Processor(s) Devices

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Challenge: Protection

_, How do we execute code with restricted privileges?
= either because the code is buggy or if it might be malicious

) Some examples:
= a script running in a web browser
= a program you just downloaded off the Internet

= a program you just wrote that you haven’t tested yet

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Edit, Compile, Load, and Run

Physical
Executable 0S Me‘:nory
edits compiler - Copies
| Source P > Image: P

Instruction
o ::':Sa(:as _|—> machine)
> One main problem with this model is nsinictions
that it’s quite difficult for the machine code ::: r process
to use physical memory addresses “tack
ﬁ> Solution: Virtual Memory
= the addresses used by the machine code —ohins 1)
are virtual memory addresses instructions
QO HW will translate virtual address to data . kernel
physical addresses on-the-fly heap
< this is address translation and stack | |
it’s performed by the MMU
= both the kernel and the application uses
virtual addresses to run code and access data / @!,}_

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Booting

_) OS kernel needs to communicate with physical devices

ﬁ> Devices operate asynchronously from the CPU
= polling: kernel polls to see if I/O is done
= interrupts: kernel can do other work in the meantime

) Device access to memory
= Programmed I/O (P1O): CPU reads and writes to device

= Direct Memory Access (DMA) by device
= buffer descriptor: sequence of DMA’s
Q e.g., packet header and packet body
= queue of buffer descriptors
Q buffer descriptor itself is DMA’ed

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(Virtual) Address Space Abstraction

_) Abstraction of physical memory

ﬁ> Goal of address space abstraction:
= give each process a private memory area for code, data, stack

= prevent one process from reading/writing outside its address

space
= allow sharing, when needed

) The kernel has its own address space

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Address Space: Implementation

ﬁ} Usually the implementation is split between the OS and HW
= OS manages address spaces
Q allocates physical memory (for creation, growth, deletion)
—= HW performs address translation and protection
Q translates user addresses to physical addresses

Linux Windows
kernel space OxFFFFFFFF OxFFFFFFFF
(1 GB) 0xC0000000 kernel space
0
xXBFFFFFFF (2 GB)
0x80000000
user space Ox7FFFFFFF
(3 GB) user space
(2 GB)

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Process Abstraction

_) Process # Program

ﬁ> Process is an instance of a program, running with Imited rights

) Process consists of two parts
1) address space which contains memory segments

Q
Q
Q
Q
Q

code

data

heap

stack

kernel stack

2) process control block (PCB) which contains all the information
the kernel needs about the process, e.g.,

Q

O O O

% Q

Copyright © William C. Cheng

where the address space is stored in memory
where the executable image resides on disk
which user the process belongs to

what privileges the process has

etc.)

Introduction to Operating Systems - CSCI 350

The Process Abstraction

_) Process # Program

ﬁ> Process is an instance of a program, running with Imited rights

) Process consists of two parts
1) address space which contains memory segments

Q
Q
Q
Q
Q

code)
data
heap
stack] / contents of these are stored in kernel space
kernel stack

% contents of these are stored in user space

2) process control block (PCB) which contains all the information
the kernel needs about the process, e.g.,

Q

O O O

% Q

Copyright © William C. Cheng

where the address space is stored in memory
where the executable image resides on disk
which user the process belongs to

what privileges the process has

etc.)

Introduction to Operating Systems - CSCI 350

Process Address Space

ﬁ} All (virtual) memory a process can address

I Vmax h

stack

¢ , dynamic
Virtual T (i.e., can grow and shrink)
Addresses
heap)
data
, static
(cannot grow/shrink)
text (code)

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example: Function Invocation

stack pointer .

void outer () {
int x 1;
int y inner (x) ;

}

Stack

x =1

y = ?
i=1

return addr

z[2] = 3
z[1l] = 2
z[0] =1

Copyright © William C. Cheng

—Lint inner (int idx) {
int z[3] = { 1, 2, 3 };
return z[idx];

}

Introduction to Operating Systems - CSCI 350

Example: Function Invocation

Stack
. void outer () {
x =1 int x = 1;
y = 2 int y = inner (x);
stack pointer o }

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example: Function Invocation

Stack
void outer () {
x =1 int x = 1;
y = 2 int y = inner (x);
stack pointer o }

pointer —p

ﬁ> If you have a pointer pointing to the old/osbolete z somehow, this
pointer is now pointing to "garbage” (although it doesn’t look like
garbage at this moment)
= when will it turn into garbage?
Q when you make another function call, you would build a stack
frame and may wipe out the values in old z

X 99

Copyright © William C. Cheng

Example: Static Variables

Introduction to Operating Systems - CSCI 350

Stack
. void outer () {
x =1 int x = 1;
y = ? int y = inner (x);
i=1 }
. return addr
stack pointer .
static int Z[3] = { 1, 2, 3 };
—P»> int inner (int idx) {
return Z[idx];

Data }

Z[2] = 3

Z[1l] = 2

Z[0] =1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example: Dynamic/Heap Memory

Stack
. void outer () {
x =1 int x = 1;
y = ? int y = inner (x);
i= 1 }
) return addr
stack pointer .

—L int inner (int idx) {

z = malloc (3*sizeof (int));
z[0] = 1;
z[1l] = 2;
Heap z[3] = 3;
. return z[idx];
z[2] = 3 :
z[1l] = 2

Zz—p| z[0] =1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example: Dynamic/Heap Memory

Stack

X =

1

y:

2

i =

1

void outer () {
int x = 1;
int y = inner (x);

}

return

addr

stack pointer .

z —p

X

Copyright © William C. Cheng

Heap

z[2] =

z[1l] =

|
N

z[0] =

_, Memory leak

= nho way to figure out where
the dynamically allocated z
was

= when you use up your heap
(maybe because too many
memory leaks), malloc ()
will fail and return NULL)

@

10.

Introduction to Operating Systems - CSCI 350

Process Address Space in xv6

ﬁ} A process’s user memory starts at virtual address 0, can grow up to
KERNBASE, allowing a process to address up to 2 GB of memory

r

kernel can access
A

X

Copyright © William C. Cheng

kernel
text + data,
device memory

(/)]

(/)]

O

(&

< heap
o

S Y
%) stack
§ data
2 || text(code)
()]

N

-

OxFEQ000000
OxXFDFFFFFF

0x80000000 (KERNBASE)
Ox7FFFFFFF

heap is above the stack so that
it can expand with sbrk ()

the stack is a single page (4 KB)

&

103

Introduction to Operating Systems - CSCI 350

Process Control Block (PCB)

ﬁ} OS maintains information about every process in a data structure
called a Process Control Block (PCB)

_, PCB contains:
= unique process identifier (PID)
process state (running, ready, etc.)
CPU state (program counter, registers, flags)
memory management information (page table, segment table,
base & bound registers)
CPU scheduling & accounting information
parent process
child processes

0 0 [

U 0 0 [

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PCB Example xv6: "proc.h"

// Per—-process state
struct proc {
uint sz;
pde_t* pgdir;
char *kstack;
enum procstate state;
int pid;
struct proc *parent;
struct trapframe *tf;
struct context *context;
void *chan;
int killed;
struct file *ofile[NOFILE];
struct inode *cwd;
char name[16];

};

X

Copyright © William C. Cheng

//
//
//
//
//
//
//
//
//
//
//
//
//

Size of process memory (bytes)
Page table

Bottom of kernel stack for this process
Process state

Process 1D

Parent process

Trap frame for current syscall
swtch () here to run process

If non-zero, sleeping on chan
If non-zero, have been killed
Open files

Current directory
Process name (debugging)

Introduction to Operating Systems - CSCI 350

PCBs of Multiple Processes

ﬁ} OS has a Process Table to manage all the PCBs
= for each process, there is one entry in the table

Process Table

PID | PCB
1 ®
[
N ®

X

Copyright © William C. Cheng

