
0123

1

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Ch 2: The Kernel 

Abstraction

Bill Cheng

http://merlot.usc.edu/william/usc/



0123

2

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Challenge: Protection

A central role of OS is protection

isolating bad applications and users so that they do not corrupt 

other applications or the OS (which is the protector of other 

applications)

Protection is essential to achiving some of the OS goals

reliability - when an application crashes, it must not affect the OS

security - protect other applications and the OS from malicious 

applications

privacy - on a multi-user system, one user must not be able 

to access information of another user

fair resource allocation - an application must not be allowed to 

use an unfair amount of shared resources (e.g., CPU time, 

memory, disk space, etc.)

trusted code vs. untrusted code

Implementing protection is the job of the OS kernel
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Challenge: Protection

The OS kernel is the lowest level of software running on the system 

and has full access to all machine hardware

must trust the OS kernel to do anything with the hardware

everything else is untrusted and must run in a restricted 

environment

Hardware

APP APP APP

Operating System Kernel

Trusted

Untrusted
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Main Points

Process concept

a process is the OS abstraction for executing a program with 

limited privileges

Dual-mode operation: user vs. kernel

kernel-mode: execute with complete privileges

user-mode: execute with fewer privileges

Safe control transfer

how do we switch from one mode to the other?
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Process Concept

A process is the execution of an application program with restricted 

rights

the process is the abstraction for protected execution provided 

by the OS kernel

a process needs permission from the OS kernel before accessing 

memory of any other process, before reading/writing to disk, 

before changing hardware settings, etc.

The OS kernel runs directly on the processor with unlimitted rights

what about applications?

in order to have good performance, applications also need to run 

directly on the processor

but with all potentially dangerous operations disabled

hardware can help to improve performance

in general, the more hardware help the better/faster

how much can and should hardware help?
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Dual-mode Operation

Split personality of a process

when running the OS kernel, it’s in charge of everything and 

can do anything it wants

when running applicatino code, it needs to ask permissions 

to do anything potentially harmful to other applications or 

the OS kernel

remember that they are running on the same processor, 

sometimes completely trustworthy and other times completely 

untrusted

Safe Control Transfer

Application to OS kernel: make system call

return from system call 
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(2.1) The Process

Abstraction
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The Process Abstraction

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

OS

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

A process is a running program

it has an address space that’s made up

of memory segments

machine instructions are kept inside the

text segment

global variables are kept inside the data

segment

the heap holds dynamically allocated 

data structures that the process might 

need

the stack holds the state of local

variables and function arguments during procedure calls

conceptually, the OS kernel has its own address space
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The Process Abstraction

What’s to keep the process from modifying

data in the OS kernel or other processes?

What’s to keep the process from modifying

data on disk?

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

OS

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits



OS

Copies

machine

instructions

data

heap

stack

machine

instructions
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heap

stack

process

kernel
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Memory (RAM)
Source

Code

Executable
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The Process Abstraction

process concept

Solution:

safe control transfer

dual-mode operation: user vs. kernel

user-mode: execute with fewer 

privileges

how do we switch from one mode to the other?

kernel-mode: execute with 

complete privileges

a process is the OS abstraction for 

executing a program with limited 

privileges
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The Process Abstraction

Process: an instance of a program, running with limited rights

thread: a sequence of instructions within a process

potentially many threads per process (for now 1:1)

address space: set of rights of a process

memory that a process can access

other permissions the process has (e.g., what memory is 

shared with another process)



OS maintains information about every process in a data structure 

called a Process Control Block (PCB)

where the process data (e.g., code, global variabls, stack, heap) 

is stored in memory

PCB contains information such as:

where its executable image resides on disk

which user asked to execute the program

what privileges the process has

...
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Process Control Block (PCB)



0123

13

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(2.2) Dual-Mode

Operation
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(2.2) Dual-Mode Operation

Kernel mode

execution with the full privileges of the hardware

read/write to any memory, access any I/O device, read/write 

any disk sector, send/read any packet

User mode

limited privileges

only those granted by the operating system kernel

On the x86, mode stored in EFLAGS register

On the MIPS, mode in the status register
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A Model of a CPU

branch address

CPU

instructions

fetch &

execute

Program

Counter

(PC)

Select

PC

new PC
+4

opcode
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A CPU with Dual-Mode Operation

branch address

CPU

instructions

fetch &

execute

Program

Counter

(PC)

Select

PC

new PC

handler PC

+4

Select

Mode

new mode
mode

opcode
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A CPU with Dual-Mode Operation

Privileged instructions

available to kernel

not available to user code

Limits on memory accesses

to prevent user code from overwriting the kernel

Timer

Safe way to switch from user mode to kernel mode, and vice versa

to regain control from a user program in a loop
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Privileged Instructions

What would be an example of a privileged instruction?

change mode bit in EFLAGS register

change which memory location a user program can access

send commands to I/O devices

read data from or write data to I/O devices

jump into kernel code
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Privileged Instructions

What should happen if a user program attempts to execute a 

privileged instruction?

would cause a processor exception (in hardware)

which would cause the processor to transfer control to an 

exception handler in the OS kernel

usually, the kernel simply halts the process after a 

privilege violation

What bad thing can happen if an application can jump into kernel 

mode at any location in the kernel?

it may crash the kernel

it may allow the application to access privileged data

it may allow the application to bypass security checks
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Simple Memory Protection: Base & Bound Registers

raise

exception

base

Physical

Memory

base

bound

<

bound

≥

Processor

physical

address

Can only modify these registers using privileged instructions

otherwise, application can access data that belongs to the 

kernel or other processes
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Towards Virtual Addresses

addresses used by an application must be contiguous (cannot 

have gaps)

it would be nice if the stack and heap can grow and shrink

What’s are the problems with base and bound?

cannot share code between processes

absolute addresses are difficult to use

how to load the same program at two different memory 

locations?

e.g., "jmp 0x12345678"

memory fragmentation



the (virtual) memory 

of every process 

starts at the same 

place, i.e., 0
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Virtual Addresses

Translation done in hardware (on every address), using a table set 

up by the OS kernel
Physical

Memory

Virtual Addresses

(process layout)

code

code

heap

data

heap

data

stack

stack

0

these memory 

"segments" can 

be located 

anywhere in 

physical memory



If you run two instances of this program simultaneously, you would 

get the same printout from them if virtual addresses are used
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Virtual Address Example

int staticVar = 0; // a static variable

main() {

  staticVar += 1;

  sleep(10); // sleep for 10 seconds

  printf("static address: %x, value: %d\n", 

      &staticVar, staticVar);

}

if you don’t have support for virtual addresses and have to use 

physical addresses, the printout will be different
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Virtual Address Example

If you run two instances of this program simultaneously, you would 

get the same printout from them if virtual addresses are used

int staticVar = 0; // a static variable

main() {

  staticVar += 1;

  sleep(10); // sleep for 10 seconds

  printf("static address: %x, value: %d\n", 

      &staticVar, staticVar);

}

if you don’t have support for virtual addresses and have to use 

physical addresses, the printout will be different

my color codes for code

reserved/key words are

in blue

numeric and string 

constants are in red

comments are in green

black otherwise
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Hardware Timer

What if a programming bug causes a user process to go into an 

infinite loop and never give up the processor?

we need a way for the OS kernel to gain control periodically

Hardware timer is a device that periodically interrupts the 

processor

returns control to the kernel handler

interrupt frequency set by the kernel

not by user code

interrupts can be temporarily deferred

not by user code

interrupt deferral crucial for implementing mutual exclusion

expires every few milliseconds (human reaction time is a 

few hundred of milliseconds)
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(2.3) Types of 

Mode Transfer
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Types of Mode Transfer

User Mode To Kernel Mode

Kernel Mode To User Mode



Interrupts (if we don’t say "software interrupt", we mean "hardware 

interrupt")
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Mode Switch: User Mode To Kernel Mode

triggered by timer and I/O devices

Exceptions

triggered by unexpected program behavior

or malicious behavior!

e.g., divide by zero, execute a privileged instruction

System calls (aka protected procedure call)

request by program for kernel to do some operation on its behalf

only limited number of very carefully coded kernel entry points

e.g., read data from disk, create another process

when such an exception occurs, the thread in the user process 

"traps" into the kernel 

also "trap" into the kernel 

when a thread in a user process makes a system call, it 

"traps" into the kernel 



Interrupts (if we don’t say "software interrupt", we mean "hardware 

interrupt")
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Mode Switch: User Mode To Kernel Mode

triggered by timer and I/O devices

Exceptions

triggered by unexpected program behavior

or malicious behavior!

e.g., divide by zero, execute a privileged instruction

System calls (aka protected procedure call)

request by program for kernel to do some operation on its behalf

only limited number of very carefully coded kernel entry points

e.g., read data from disk, create another process

when such an exception occurs, the thread in the user process 

"traps" into the kernel 

also "trap" into the kernel 

when a thread in a user process makes a system call, it 

"traps" into the kernel 

trap is a synchronous

event (to transfer from 

user mode to kernel mode)

interrupt is an 

asynchronous event (can 

happen at any time)
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Mode Switch: Kernel Mode To User Mode

New process (or new thread) starts

jump to first instruction in program (or thread)

Return from interrupt, exception, system call

resume suspended execution

Process (or thread) context switch

resume some other process (or thread)

User-level upcall (UNIX signal)

asynchronous notification to user program
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(2.4) Implementing

Safe Mode Transfer
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Implementing Safe Mode Transfer

Context switch code must be carefully crafted

relies on hardware support

limited entry into the kernel

Most OS has a common sequence of instructions for enter the 

kernel and for returning to user level, regardless of cause

at a minimum, this common sequence must provide

atomic changes to processor state

transparent, restartable execution

an entry point must be set up by the kernel and not allow 

entry into the kernel at arbitrary points

processor mode, program counter, stack pointer, memory 

protection registers all change at the same time

an interrupt must be invisible to the user process (i.e., 

serviced transparently)

if an interrupt is serviced in the middle of an instruction 

execution, the CPU needs to be able to restart or 

finish the execution of that instruction seamlessly
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Common Interrupt / Exception Handling

On an interrupt (or exception), the following happens

1) the processor saves its current state to memory

2) further events are deferred

3) changes to kernel mode

4) jump to the interrupt or exception handler

When the handler finishes, the steps are reversed and the 

processor state is restored from its saved location

the interrupted entity has no idea that an interrupt has occurred
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Interrupt Vector (Table)

Table set up by OS kernel

the interrupt vector is an array of function pointers, pointing to 

code to run on different events

a special purpose processor register stores the address of this 

array
Interrupt

Vector

...

handleTimerInterrupt() {

  ...

}...

handleDivideByZero() {

  ...

}...

handleSystemCall() {

  ...

}...

Processor

Register



on a multi-processor system, another thread in the same process

that runs in a different processor may modify the saved state

user-level stack pointer may be invalid (malicious user)

Why can’t you use the process’s user-level stack to store the saved 

state?

the hardware automatically saves some of the interrupted 

thread’s registers by pushing them onto the interrupt stack 

before calling the handler

On most processors, a special hardware register points to an 

interrupt stack
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Interrupt Stack

when an interrupt or a trap causes a context switch into the 

kernel, the hardware changes the stack pointer to point to the

interrupt stack
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Two Stacks Per Thread

Most OS allocate a kernel interrupt stack for every user-level 

thread

when a user-level thread is running, the hardware interrupt 

stack points to that thread’s kernel stack and the kernel stack is 

empty

we refer to the interrupt stack simply as the "kernel stack"
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Two Stacks Per Process

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

the code for crt0.s is simply:

exit(main());

main() is called by crt0.s

some would call crt0.s the 

startup function

if main() returns N, then the 

main thread would call exit(N) 

to terminate the process

you don’t see crt0.s because 

it’s written for you already
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Two Stacks Per Process

User Stack

ready to run

proc2

proc1

main

Kernel Stack

user CPU

state

crt0.s

running

proc2

proc1

main

crt0.s

in this example, the user 

thread was suspended 

due to timer expiration, 

(i.e., hardware interrupt)

timer

ISR

SP



waiting for syscall return

proc2

proc1

main

syscall

user CPU

state

syscall

handler

crt0.s

SP
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Two Stacks Per Process

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

in this example, the user 

thread made a system 

call and the system call 

started an I/O operation



User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

I/O driver

(top half)
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Two Stacks Per Process

waiting for I/O

...

syscall

user CPU

state

syscall

handler

handling I/O completion

interrupt

"top half" refers to code

the kernel executes

("bottom half" is executed 

by hardware)

SP SP

waiting for syscall return

proc2

proc1

main

syscall

user CPU

state

syscall

handler

crt0.s

kernel CPU

state
SP



0123

41

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Interrupt Masking

re-enabled when interrupt completes

Interrupt handler runs with interrupts disabled

e.g., when determining the next process/thread to run

CLI: disable interrrupts

OS kernel can also turn interrupts off

on x86

STI: enable interrrupts

only applies to the current CPU (on a multicore)

We will need this to implement synchronization in Ch 5

when interrupt is enabled, all pending interrupt will be delivered 

in a certain sequence

If an interrupt is generated when interrupt is disabled, the new 

interrupt becomes pending (and deferred, but not lost)

usually, the hardware will buffer one interrupt of each type

interrupt handler needs to check with the device to see 

if multiple interrupts of the same type has occurred
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(2.5) Putting It

All Together:

x86 Mode Transfer
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x86 Mode Transfer

Case Study: x86 Interrupt

vector through interrupt table

interrupt handler saves registers it might clobber

mask interrupts and switch to kernel mode1)

save current stack pointer, program counter, and Processor 

Status Word (condition codes) to internal registers

2)

the hardware switchs to interrupt/kernel stack (information 

stored in a special hardware register)

3)

pushd saved SP, PC, PSW from internal registers on to stack4)

save error code that caused the interrupt)5)

invoke the interrupt handler6)



other registers:

EAX, EBX, ...

0123

44

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Before Interrupt

foo() {

  while (...) {

    x = x + 1;

    y = y - 2;

  }

}

handler() {

  pushad

  ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stackuser stack



other registers:

EAX, EBX, ...
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Got Interrupt

foo() {

  while (...) {

    x = x + 1;

    y = y - 2;

  }

}

handler() {

  pushad

  ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stackuser stack

SS

ESP

EFLAGS

CS

EIP

Error
trap

frame

(saved

user

state)



other registers:

EAX, EBX, ...
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After Interrupt Handler Starts

foo() {

  while (...) {

    x = x + 1;

    y = y - 2;

  }

}

handler() {

  pushad

  ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stack

user stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers

one points to interrupt stack, one points to user stack

Note: two ESPs saved inside the interrupt stack

trap

frame

(saved

user

state)

handler

frame



other registers:

EAX, EBX, ...
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After Interrupt Handler Starts

foo() {

  while (...) {

    x = x + 1;

    y = y - 2;

  }

}

handler() {

  pushad

  ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stack

user stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers

one points to interrupt stack, one points to user stack

Note: two ESPs saved inside the interrupt stack

xv6

trap

frame

xv6 calls this the 

trap frame
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At End Of Handler

Handler restores saved registers

restore program counter

iret: atomically return to interrupted process/thread

restore program stack

restore processor status word/condition codes

switch to user mode

handler() {

  pushad

  ...

  popad

  iret

}

kernel

iret is the only way to go/return from kernel to user mode for the

x86 CPU
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(2.6) Implementing

Secure System Calls
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Implementing Secure System Calls

System calls provide the illusion that the OS kernel is simply a 

set of user space library routines

user space program needs not be concerned itself with how 

the kernel implements system calls

All system calls follow a certain calling convention

e.g., how to name them, how to pass arguments, how to receive 

return values

information is passed in registers and on the executiong stack

a trap instruction is eventually invoked to transfer control to 

the kernel

for x86, the machine instruction to trap into the kernel is a 

software interrupt machine instruction
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Typical Structure Of System Call Implementation

In the OS kernel, each system 

call is implemented by a different 

function

one main difference between 

this type of function and other 

OS kernel functions is that it 

must not trust the values 

passed from user space

bad arguments must not 

crash the kernel

computer virus must not be able to user a system call to take 

control of the OS kernel

Portable OS Kernel

Applications

Portable OS Library

System Call Interface

Hardware

(CPU/Devices)



#TRAPCODE is the index into the 

x86 interrupt vector table for 

the system call handler

file_open_handler() {

  // copy arguments

  //   from user memory

  //   check arguments
  file_open(arg1, args);

  // copy return value

  //   into user memory
  return;

}

Kernel Stub

main() {

  file_open(arg1,args);

}

file_open(arg1, args) {

  // do operation

}

KernelUser Program

User Stub

file_open(arg1, args) {

  push #SYSCALL_OPEN

  int #TRAPCODE

  return

}

(5)

trap return

(2)

hardware trap

(1) (6) (3) (4)
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User Stub & Kernel Stub In A System Call

for xv6, it’s 0x40
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Kernel Stub

Kernel stub has four tasks

locate system call arguments

in registers or on user stack

translate user addresses into kernel addresses (again, must 

not trust user addresses)

copy arguments from user memory into kernel memory

protect kernel from malicious code evading checks (must do 

this before validating arguments to protect the kernel from a 

TOCTOU attack)

validate arguments

protect kernel from errors (or attacks) in user code

copy results back from the kernel into user memory

must verify user space addresses before copying

user stack pointer may be bad (must not trust user)

every byte of user data must be valid and file access rights 

must be verified



Server
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Example: Network Server

(5) file
read

(8) kernel
copy

reply
buffer

 (4) parse 
request

Kernel

Hardware

network interface

disk interface

(7) disk
data (DMA)

(6) disk
request

(2) copy arriving
packet (DMA)

(11) format outgoing
packet and DMA

(1) network
socket read

(3) kernel
copy

request
buffer

(10) socket write and 
copy to kernel buffer

(9) format reply
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(2.7) Starting A

New Process
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Starting A New Process

Step 1: Create a new process

allocate and initialize a new PCB 

allocate memory for the new process

copy program data from disk into the newly allocated memory

allocate user-level stack for user-level code execution

allocate kernel-level stack to handle system calls, interrupts, 

and processor exceptions
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Starting A New Process

Step 2: Start running the new process

copy arguments into memory

by convention, arguments of a process are copied to the base 

of the user-level stack (i.e., pushed onto the stack)

in C, set up argv[] to point there

transfer control to user mode

as if it’s returning from a system call (set up the bottom of the 

kernel stack just right then execute popad and iret)

the starting point of a user program is not main()

start(argc, argv) {

  exit(main(argc, argv));

}

the start() function doesn’t return and it’s identical for all 

programs (and that’s why you don’t need to write code for 

this function)
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(2.8) Implementing

Upcalls
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Implementing Upcalls

e.g., be notified about I/O completion interrupt

of course, user space program should not be allowed to 

provide actual interrupt handler (or should it?!)

It would be nice to have OS-like functionality in user space

there is a need to "virtualize" some part of the OS kernel so that 

applications can behave more like the OS

We call virtualized interrupts and exceptions upcalls

in Unix/Linux, they are called signals

in Windows, they are called asynchronous events



Upcalls from kernel to user processes are not always needed
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Upcalls

preemptive user-level threads (e.g., timer upcall)

There are several uses for immediate event delivery with upcalls

asynchronous I/O notification (e.g., I/O completion upcall)

interprocess communication (e.g., debugger upcall to suspend 

or resume a process, logout upcall to safely self-terminate)

user-level exception handling (e.g., divide-by-zero upcall to 

safely self-terminate)

used in asynchronous I/O

user-level resource allocation (e.g., Java garbage collection 

upcall when amount of available memory changes for a process)

event-driven applications don’t need upcalls since OS events 

can be virtualized

until recently, Microsoft Windows had no support for 

immediate delivery of upcalls to user-level programs since 

application programs are all event-driven
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Unix Signals

Signal delivery to a user space program is similar to hardware

interrupt delivery to the kernel

instead of interrupt vector, Unix has signal handlers

instead of using an interrupt stack, some OSes use a signal stack

registers are automatically saved and restored, transparent 

to user processes or kernel

signal masking: signals disabled while in signal handler (since 

there is only one signal stack per process)

processor state: kernel copies onto the signal stack the saved 

state (i.e., PC, SP, general purpose registers at the point when 

the user process stopped)

this is a design choice; alternatively, can use a normal 

execution stack

difficult to modify the stack you are using

the signal handler can modify the saved state (e.g., so 

that the kernel can resume a different user-level task 

when the signal handler returns)
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Upcall: Before

...

x = y + z;

...

signal_handler() {

  ...

}

CPU

Stack Pointer

Program Counter

signal stack

user stack
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Upcall: During

...

x = y + z;

...

signal_handler() {

  ...

}

CPU

Stack Pointer

Program Counter

signal stack

user stack

SP

PC

Saved

Registers

the bottom of the signal stack is set up by the kernel (e.g., copied 

from the interrupt stack)
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Upcall: Implementation

e.g., timer interrupt upcall

kernel copies save state to the bottom of the signal stack

To implement upcall only requires a small modification to the 

"return from system call" or "return from interrupt" mechanism

reset the saved state to point to the signal handler and and 

signal stack

use iret to exit the kernel handler and resume user-level 

execution at the signal handler

when signal handler returns, these steps are unwound (i.e., 

processor state is copied back from the singal handler into 

the interrupt stack)

use iret to resume original user-level computation

the hardware and the interrupt handler save the state of the 

user-level computation
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(2.9) Case Study:

Booting An OS Kernel
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Case Study: Booting An OS Kernel

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

BIOS

Physical Memory (RAM)
BIOS in ROM (or EPROM)

boot code in BIOS is small and 

simple (not a good idea to put 

the entire kernel in ROM)

bootloader

OS kernel

login app



bootloader

OS kernel

login app

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)
BIOS in ROM (or EPROM)
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Case Study: Booting An OS Kernel

boot code in BIOS is small and 

simple (not a good idea to put 

the entire kernel in ROM)

BIOS loads the bootloader into memory and jumps to it

on newer hardware, BIOS would first verify the integrity of 

bootloader



Bootloader loads the OS kernel into memory and jumps to it

bootloader

OS kernel

login app

boot code in BIOS is small and 

simple (not a good idea to put 

the entire kernel in ROM)
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Case Study: Booting An OS Kernel

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)

OS kernel

code & data

(2) bootloader

copies

OS kernel

BIOS in ROM (or EPROM)

bootloader would first verify the integrity of OS kernel

bootloader knows how to access file system on disk



bootloader

OS kernel

login app

boot code in BIOS is small and 

simple (not a good idea to put 

the entire kernel in ROM)
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Case Study: Booting An OS Kernel

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)

OS kernel

code & data

login app

code & data

(2) bootloader

copies

OS kernel

(3) OS kernel

copies

login application

BIOS in ROM (or EPROM)

accessed via physical addresses

When OS kernel starts running, it would first

initialize some kernel data structures (including 

setting up interrupt vector table)



OS kernel needs to communicate with physical devices

Devices operate asynchronously from the CPU

polling: kernel polls to see if I/O is done

interrupts: kernel can do other work in the meantime

Device access to memory

Programmed I/O (PIO): CPU reads and writes to device

Direct Memory Access (DMA) by device

buffer descriptor: sequence of DMA’s
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Booting
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(2.10) Case Study:

Virtual Machines
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Case Study: Virtual Machines

large, monolithic system

TSS (Time-Sharing System) project

IBM wants to build a multiuser time-sharing system

In the 60s, IBM had a single-user time-sharing system called CMS

virtual machine monitor (VMM)

CP67

lots of people working on it

for years

total, complete flop

a (working) multiuser time-sharing system

Put the two together ...

supports multiple virtual IBM 360s

it’s a very difficult system to build
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Virtual Machines

A "monitor" is a synchronization construct that allows executing 

entities to have both mutual exclusion and the ability to wait (block) 

for a certain condition to become true

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

What abstraction does a virtual machine provide?

hardware

today, we call the VMM a hypervisor
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Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

and it can be tested on a real machine (which behaves 

identical to the VM)

A single user time-sharing system could be developed 

independently of the VMM

no ambiguity about the interface VMM must provide to 

its applications - identical to the real machine!
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Virtual Machines

Virtual Machine: run one OS inside (or on-top-of) another OS

run (not emulate/simulate) OSx on-top-of OSy

we will refer to OSx as the guest OS and OSy as the host OS 

(a host can have multiple guests)

make the guest OS think that it’s running on hardware, but in 

reality, it is running inside a virtual machine

a virtual machine is not an OS emulator

must execute guest OS code on the real processor directly
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How?

guest OS runs in the (virtual) privileged mode of the VM

Privileged

User

User

Privileged

Real/Host Machine

Virtual/Guest Machine
(VM)

VMM/hypervisor runs in the privileged mode of the real machine

Run the entire VM in user mode of the real machine

VMM keeps track of whether each VM is in the 

virtual/guest privileged mode or in the virtual/guest user mode

VMM/hypervisor

"Guest" OS

Application

applications runs in the (virtual) user mode of the VM
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HOW?

VMM/hypervisor provides the illusion that 

the guest OS is running on real hardware

e.g., VMM must manage mode transfer 

between guest processes and guest OS

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

e.g., to provide a guest disk, VMM can 

simulate a virtual disk as a file on real disk

e.g., to provide network access to guest

OS, VMM can simulate a virtual network 

using physical network packets

e.g., host kernel must manage memory to 

provide the illusion that the guest kernel is 

managing its own memory protection

"Virtual Machine" in the picture contains: virtual CPU, virtual disk, 

virtual display, virtual keyboard, etc.

data structures and code that represent real hardware 

components



0123

78

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Virtual Machines: Mode Transfer Example #1

Mode transfer example #1:

when host kernel starts the virtual machine, the guest kernel 

starts running as if it’s being booted:

1) host loads the guest bootloader from the virtual disk and 

starts it running

2) guest bootloader loads the guest kernel from the virtual 

disk and starts it running

3) guest kernel initializes its interrupt vector table as it 

normally would

4) guest kernel loads a process from the virtual disk into 

guest memory

5) to start a process, guest kernel issues instructions to 

resume execution at user level (use iret on x86) and traps 

into host kernel (since this is a privileged instruction)

during boot the host kernel initializes its interrupt vector table as 

usual

6) ...
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Virtual Machines: Mode Transfer Example #1

Mode transfer example #1:

6) host kernel simulates the requested mode transfer as if the 

processor had directly executed the iret instruction

it restores the PC, SP, and processor status word 

exactly as the guest kernel had intended

host kernel must protect itself from bugs in guest OS

needs to verify the validity of the mode transfer (i.e., make 

sure that the mode transfer will not end up in the host kernel)



Mode transfer example #2:

trap machine instruction would trap into the host kernel (and it 

needs to be delivered to the trap handler in the guest kernel)

1) host kernel saves user space IP, SP, and processor status 

register on the interrupt stack of the guest kernel

2) host kernel transfers control to the guest kernel at the 

beginning of the interrupt handler, but with the guest 

kernel running with user-mode privilege

guest user process makes a system call
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Virtual Machines: Mode Transfer Example #2

host kernel simulates what would have happened had the system 

call instruction occurred on real hardware running the guest OS:

3) guest kernel performs the system call, starts with saving 

user state and checking arguments

4) when guest kernel attempts to return from the system call 

back to user level, this causes a processor exception, 

dropping back into the host kernel

5) cont...



Mode transfer example #2:

5) host kernel can then restore the state of the user process, 

running at user level, as if the guest OS had been able to 

return there directly
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Virtual Machines: Mode Transfer Example #2
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Virtual Machines: Mode Transfer Example #2

host
interrupt
vector
table

timer
handler

syscall
handler

host
interrupt
stack

host PC

host SP

host flags

physical
disk

virtual
disk

guest
interrupt
vector
table

timer
handler

syscall
handler

guest
interrupt
stack

guest PC

guest SP

guest flags

guest file system
and other kernel
services

guest
process

guest
process
...
trap
...

guest
program
counter

Host KernelHost
Kernel
Mode

Hardware

Guest Kernel
Guest
Kernel
Mode

Guest
User
Mode

Host
User
Mode

Virtual Machine
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Virtual Machines: Exception Handling

exceptions generated in the guest user mode needs to be 

delivered to the guest kernel

Host kernel handles processor exceptions similarly

exceptions generated in the guest kernel mode needs to be 

simulated by the host kernel (if they do not have handlers in 

the guest kernel)

therefore, the host kernel must track whether the virtual machine 

is in the virtual/guest user mode or virtual/guest kernel mode

if yes, the job of the host kernel is to deliver trap/interrupt to the 

guest kernel handler

If you got into the host kernel, think about whether there is a 

handler in the guest kernel or not

if no, the job of the host kernel is to emulate the trap/interrupt
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Virtual Machines: Timer Interrupt Handling

Timer interrupts need special handling

while servicing a timer interrupt in host kernel, enough virtual 

time may have passed that the guest kernel is due for a timer 

interrupt

in this case, host kernel needs to invoke the interrupt handler 

for the guest kernel

guest kernel may switch guest user processes

this would cause a processor exception (since iret is 

executed) and returning to the host kernel

host kernel can then resume the correct guess user process
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Virtual Machines: I/O Interrupt Handling

Handling I/O interrupts is similar to handling timer interrupts

when guest kernel makes a request to a virtual disk, it would 

write instructions to the buffer descriptor ring for the virtual 

disk device

in this case, host kernel would translate and perform these 

instructions on the virtual disk

guest kernel expects to receive I/O completion interrupt

when the host kernel finishes performing operations 

on the virtual disk, it needs to invoke the disk interrupt 

handler for the guest kernel
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User-Level Virtual Machine

How does VMware Workstation Player work?

run as a user-level application

how does it catch privileged instructions, interrupts, I/O 

operations?

VMware installs a kernel driver (called VMDriver) into host kernel

requires administrator privileges

modifies interrupt table to redirect to VMDriver code

if interrupt is for VM, upcall

if interrupt is for another process, reinstalls interrupt table 

and resumes kernel

Modern OSes allow 3rd party kernel drivers (kind of like device 

drivers with no corresponding devices)

these drivers can intercept hardware and software interrupts to 

execute its own ISR

interpositioning: they can even call the original ISR (similar to

DLL injection attack in Windows)
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User-Level Virtual Machine

VMAppprocessprocess

Host OS

DevicesProcessor(s)

Device drivers

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver
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Extra Slides



0123

89

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Challenge: Protection

How do we execute code with restricted privileges?

either because the code is buggy or if it might be malicious

Some examples:

a script running in a web browser

a program you just downloaded off the Internet

a program you just wrote that you haven’t tested yet



One main problem with this model is

that it’s quite difficult for the machine code 

to use physical memory addresses

the addresses used by the machine code

are virtual memory addresses

Solution: Virtual Memory

HW will translate virtual address to

physical addresses on-the-fly

this is address translation and

it’s performed by the MMU

both the kernel and the application uses

virtual addresses to run code and access data

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

kernel

Physical

Memory
Source

Code

Executable

Image:

Instructions

and Data

compileredits
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Edit, Compile, Load, and Run



OS kernel needs to communicate with physical devices

Devices operate asynchronously from the CPU

polling: kernel polls to see if I/O is done

interrupts: kernel can do other work in the meantime

Device access to memory

Programmed I/O (PIO): CPU reads and writes to device

Direct Memory Access (DMA) by device

buffer descriptor: sequence of DMA’s

e.g., packet header and packet body

queue of buffer descriptors

buffer descriptor itself is DMA’ed
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Booting
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(Virtual) Address Space Abstraction

Abstraction of physical memory

Goal of address space abstraction:

The kernel has its own address space

give each process a private memory area for code, data, stack

prevent one process from reading/writing outside its address 

space

allow sharing, when needed
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Address Space: Implementation

Usually the implementation is split between the OS and HW

OS manages address spaces

allocates physical memory (for creation, growth, deletion)

HW performs address translation and protection

translates user addresses to physical addresses

kernel space

(1 GB)

user space

(3 GB)

Linux

0

0xC0000000

0xFFFFFFFF

0xBFFFFFFF
kernel space

(2 GB)

user space

(2 GB)

0

0x80000000

0xFFFFFFFF

Windows

0x7FFFFFFF
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The Process Abstraction

Process ≠ Program

Process is an instance of a program, running with lmited rights

Process consists of two parts

1)

code

address space which contains memory segments

data

heap

stack

kernel stack

2) process control block (PCB) which contains all the information 

the kernel needs about the process, e.g.,

where the address space is stored in memory

where the executable image resides on disk

which user the process belongs to

what privileges the process has

etc.
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The Process Abstraction

Process ≠ Program

Process is an instance of a program, running with lmited rights

Process consists of two parts

1)

code

address space which contains memory segments

data

heap

stack

kernel stack

2) process control block (PCB) which contains all the information 

the kernel needs about the process, e.g.,

where the address space is stored in memory

where the executable image resides on disk

which user the process belongs to

what privileges the process has

etc.

contents of these are stored in user space

contents of these are stored in kernel space
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Process Address Space

All (virtual) memory a process can address

stack

heap

data

text (code)

dynamic

(i.e., can grow and shrink)

static

(cannot grow/shrink)

0

Vmax

Virtual

Addresses
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Example: Function Invocation

x = 1

y = ?

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1
stack pointer

void outer() {

  int x = 1;

  int y = inner(x);

}

int inner(int idx) {

  int z[3] = { 1, 2, 3 };

  return z[idx];

}

Stack
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Example: Function Invocation

x = 1

y = 2

void outer() {

  int x = 1;

  int y = inner(x);

}stack pointer

Stack

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1



If you have a pointer pointing to the old/osbolete z somehow, this 

pointer is now pointing to "garbage" (although it doesn’t look like 

garbage at this moment)
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Example: Function Invocation

x = 1

y = 2

void outer() {

  int x = 1;

  int y = inner(x);

}stack pointer

Stack

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1pointer

when you make another function call, you would build a stack 

frame and may wipe out the values in old z

when will it turn into garbage?
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Example: Static Variables

x = 1

y = ?

i = 1

return addr

Z[2] = 3

Z[1] = 2

Z[0] = 1

stack pointer

void outer() {

  int x = 1;

  int y = inner(x);

}

static int Z[3] = { 1, 2, 3 };

int inner(int idx) {

  return Z[idx];

}

Stack

Data
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Example: Dynamic/Heap Memory

x = 1

y = ?

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1

stack pointer

void outer() {

  int x = 1;

  int y = inner(x);

}

int inner(int idx) {

  z = malloc(3*sizeof(int));

  z[0] = 1;

  z[1] = 2;

  z[3] = 3;

  return z[idx];

}

Stack

Heap

z
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Example: Dynamic/Heap Memory

x = 1

y = 2

i = 1

return addr

z[2] = 3

z[1] = 2

z[0] = 1

stack pointer

void outer() {

  int x = 1;

  int y = inner(x);

}

Stack

Heap

Memory leak

no way to figure out where 

the dynamically allocated z 

was

z

when you use up your heap 

(maybe because too many 

memory leaks), malloc() 

will fail and return NULL)
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Process Address Space in xv6

A process’s user memory starts at virtual address 0, can grow up to 

KERNBASE, allowing a process to address up to 2 GB of memory

0xFE000000

0xFDFFFFFF

kernel

text + data,

device memory

heap

data

text (code)
0

u
s
e
r 

p
ro

c
e
s
s
 c

a
n

 a
c
c
e
s
s

0x80000000 (KERNBASE)

0x7FFFFFFF

stack
the stack is a single page (4 KB)

heap is above the stack so that 

it can expand with sbrk()

k
e
rn

e
l 
c
a
n

 a
c
c
e
s
s
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Process Control Block (PCB)

OS maintains information about every process in a data structure 

called a Process Control Block (PCB)

unique process identifier (PID)

PCB contains:

process state (running, ready, etc.)

CPU state (program counter, registers, flags)

memory management information (page table, segment table, 

base & bound registers)

CPU scheduling & accounting information

parent process

child processes

...



0123

105

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

PCB Example xv6: "proc.h"

// Per-process state

struct proc {

  uint sz;                     // Size of process memory (bytes)

  pde_t* pgdir;                // Page table

  char *kstack;                // Bottom of kernel stack for this process

  enum procstate state;        // Process state

  int pid;                     // Process ID

  struct proc *parent;         // Parent process

  struct trapframe *tf;        // Trap frame for current syscall

  struct context *context;     // swtch() here to run process

  void *chan;                  // If non-zero, sleeping on chan

  int killed;                  // If non-zero, have been killed

  struct file *ofile[NOFILE];  // Open files

  struct inode *cwd;           // Current directory

  char name[16];               // Process name (debugging)

};
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PCBs of Multiple Processes

for each process, there is one entry in the table

OS has a Process Table to manage all the PCBs

PID

Process Table

PCB

1

2

...

N

...


