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Housekeeping (Lecture 7 - 6/12/2025)

if you have code from current or a previous semester, do not 

look at/copy/share any code from it

it’s best if you just get rid of it

PA2 is due at 11:45pm on Tuesday, 7/1/2025

if you include files that’s not part of the original 

"make pa2-submit" command, the grader will delete them

Grading guidelines is the ONLY way we will grade and we can only 

grade on a standard 32-bit Ubuntu Linux 16.04 inside 

VirtualBox/UTM or on AWS Free Tier

although not recommended, you can do your development on a 

different platform

you must test your code on the "standard" platform because 

those are the only platforms the grader is allowed to grade on
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Housekeeping (Lecture 7 - 6/12/2025)

PA2 and PA3 are sepeate assignments and they will be graded 

separately

if you only make a PA3 submission, you will get a score of 0 

for your PA2 submission

I would suggest that when you are done with PA2, make a 

submission and keep the source in the cs350/pa2 directory and 

don’t touch it

create a cs350/pa3 directory by copying everything from the 

cs350/pa2 directory and start working on PA3 in the cs350/pa3 

directory

when you are working on PA3 and discovered bugs in your PA2 

code, you need modify your PA2 code in both the pa2 directory 

and the pa3 directory and make another PA2 submission
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(4.8) Implementing

Multi-Threaded Processes



all thread-related function calls 

are system calls

kernel does context switch

User thread = kernel thread 

(Linux, MacOS)

simple, but a lot of transitions 

between user and kernel mode
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Implementing Multi-threaded User Processes
Using Kernel Threads
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e.g., green threads in the earliest implementation of Sun’s Java 

Virtual Machine (JVM)

to the kernel, a multi-threaded application using green 

threads appears to be a normal single-threaded process

Implement user-level threads completely at user level, without 

any OS support

if a user thread makes a system call and get blocked waiting 

for I/O, the kernel cannot run a different user thread
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Implementing User-Level Threads
Without Kernel Support

to get true parallelism, you have to run multiple processes
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Implementing User-Level Threads
Without Kernel Support
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the signal handler chooses the next thread to run, re-enables the 

signal handler (similar to re-enabling interrupts), and restores 

the new thread’s state from its TCB into the processor; 

execution with the state (newly) stored on the signal stack 0123
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Implementing User-Level Threads 
Without Kernel Support

Preemptive user-level threads: implementation for process P

user-level thread library makes a system call to register a timer 

signal handler and signal stack with the kernel

when a hardware timer interrupt occurs, the hardware saves 

P’s register state and runs the kernel’s handler

instead of restoring P’s register state and resuming P where it 

was interrupted, the kernel’s handler copies P’s saved registers 

onto P’s signal stack

the kernel resumes execution in P at the registered signal 

handler on the signal stack

the signal handler copies the processor state of the preempted 

user-level thread from the signal stack to that thread’s TCB
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Implementing User-Level Threads
With Kernel Support

Today, most programs use kernel-supported threads rather than 

pure user-level threads

major operating systems support threads using standard 

abstractions, so the issue of portability is less of an issue than it 

once was



Various systems take more of a hybrid model (best of both worlds)
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Implementing User-Level Threads
With Kernel Support

hybrid thread join

per-processor kernel threads

scheduler activations (in Windows): user-level thread scheduler 

is notified/activated for every kernel event that might affect the 

user-level thread system
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(4.9) Alternative

Abstractions

Asynchronous I/O and event-driven programming

allows a single-threaded program to cope with high-latency I/O 

devices by overlapping I/O with processing and other I/O

Data parallel programming

all processors perform the same instruction in parallel on 

different parts of a data set
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Extra Slides



Ch 5: Synchronizing

Access to Shared Objects

Bill Cheng

http://merlot.usc.edu/william/usc/
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Synchronization Motivation

two threads write to the same variable; which one should win?

does it matter which thread runs first?

When threads concurrently read/write shared memory, program 

behavior is undefined

when would it be considered the behavior wrong/incorrect?

behavior changes when re-run program

Thread schedule is non-deterministic

Compiler/hardware instruction reordering

Multi-word operations (such as memcmp()) are not atomic

programs need to work for any possible interleaving
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Compiler/Hardware Can Reorder Instructions

Modern compilers (and hardware) reorder instructions to 

improve performance

Thread 1

p = someComputation()

pInitialized = true;

Thread 2

while (!pInitialized)

    ;

q = anotherComputation(p)

can thread 2 use p before p is initialized?

doesn’t look like it’s possible, right?!

If you have optimization turned on when you compile, the compiler 

may decide to do the following (since it doesn’t understand that p

and pInitialized are semantically related):

Thread 1

pInitialized = true;

p = someComputation()

Thread 2

while (!pInitialized)

    ;

q = anotherComputation(p)

clearly, this is no good
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Why Reordering?

Why do compilers reorder instructions?

efficient code generation requires analyzing control/data 

dependency

Why do CPUs reorder instructions?

write buffering: allow next instruction to execute while write 

is being completed

Fix: memory barrier (a.k.a. membar or memory fence)

instruction to compiler/CPU

no operation after barrier starts until barrier returns

all operations before barrier complete before barrier returns
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(5.1) Challenges
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Race Condition

possible final values of x are 1 or 2

A race condition occurs when the behavior of a program depends 

on the interleaving of operations of different threads

Thread 1

x = 1;

Thread 2

x = 2;

possible final values of x are 13 or 25

Ex: y is initialized to 12

Thread 1

x = y + 1;

Thread 2

y = y * 2;

possible final values of x are 1, 2, and 3

Ex: x is initialized to 0

Thread 1

x = x + 1;

Thread 2

x = x + 2;



x = x + 2;
 /* 
  load  r1,x
  add   r2,r1,1
  store x,r2
  */

x = x + 1;
 /* 
  load  r1,x
  add   r2,r1,1
  store x,r2
  */
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Race Condition

Thread 1: Thread 2:

they execute machine instructions

Unfortunately, processors do not execute high-level language 

statements

if thread 1 executes the first (or two) machine instructions

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

x would end up to be 1

context switch can happen (to run a different thread)

Memory

memory bus

x

r1 and r2 are 
inside here

this can happen if you have a preemptive scheduler

0

Note: load and store are atomic (indivisible) operations
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Too Much Milk Problem

Two roommates want to make sure that the refrigerator is always 

well stocked with milk

what’s the algorithm for each roommate?

Correctness property

liveness: the program eventually enters a good state

safety: the program never enters a bad state

if there is no milk, eventually someone would buy milk

must not end up with more than one milk

Unless otherwise specified, we will always assume that neither the 

compiler nor the architecture reorders instructions
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Too Much Milk Try #1: Leave A Note

Algorithm:

// thread A or thread B
if(milk == 0){   // if no milk
  if(note == 0){ // if no noke
    note = 1;    // leave a note
    milk++;      // buy milk
    note = 0;    // remove note
  }
}

which statements are atomic?

the assumption here is that if a statement only access zero or

one memory location, it’s an atomic operation (because it 

cannot be preempted in the middle of that operation)

Q: Does the above solution guarantees safety and liveness?
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Too Much Milk Try #1: Leave A Note

This solution satisfies liveness but violates safety

// thread A
if(milk == 0){

  if(note == 0){
    note = 1;
    milk++;
    note = 0;
  }
}

// thread B

if(milk == 0){
  if(note == 0){
    note = 1;
    milk++;
    note = 0;
  }
}

time

in this scenario, milk is 2 at the end

Heisenbug!

occasionally fail in ways that may be difficult to reproduce



// thread A
noteA = 1;       // leave note
if(noteB == 0){  // if no note
  if(milk == 0){ // if no milk
    milk++;      // buy milk
  }
}
noteA = 0;       // remove note

// thread B
noteB = 1;       // leave note
if(noteA == 0){  // if no note
  if(milk == 0){ // if no milk
    milk++;      // buy milk
  }
}
noteB = 0;       // remove note

does this solution guarantees safety and liveness?
0123
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Too Much Milk Try #2: Two Notes

Algorithm:



proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

To prove safety, need to look at all possible 

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]
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Too Much Milk Try #2: Two Notes

      // thread A
      noteA = 1;
[A1]  if(noteB == 0){
[A2]    if(milk == 0){
[A3]      milk++;
        }
      }
      noteA = 0;

      // thread B
      noteB = 1;
[B1]  if(noteA == 0){
[B2]    if(milk == 0){
[B3]      milk++;
[B4]    }
[B5]  }
      noteB = 0;

given the assumption, thread A will be

at [A3] and thread B will be at [B3]



contradiction, thread B will not reach [B3]  ¤

To prove safety, need to look at all possible 

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]
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Too Much Milk Try #2: Two Notes

      // thread A
      noteA = 1;
[A1]  if(noteB == 0){
[A2]    if(milk == 0){
[A3]      milk++;
        }
      }
      noteA = 0;

      // thread B
      noteB = 1;
[B1]  if(noteA == 0){
[B2]    if(milk == 0){
[B3]      milk++;
[B4]    }
[B5]  }
      noteB = 0;

proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

given the assumption, thread A will be

at [A3] and thread B will be at [B3]

Case 1: noteB = 1, milk = don’t care

contradiction, thread A will not reach [A3]

Case 2: noteB = 0, milk > 0

contradiction, thread A will not reach [A3]

Case 3: noteB = 0, milk = 0



Canno prove liveness
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Too Much Milk Try #2: Two Notes

      // thread A
[A0]  noteA = 1;
[A1]  if(noteB == 0){
[A2]    if(milk == 0){
[A3]      milk++;
        }
      }
      noteA = 0;

      // thread B
[B0]  noteB = 1;
[B1]  if(noteA == 0){
[B2]    if(milk == 0){
[B3]      milk++;
[B4]    }
[B5]  }
      noteB = 0;

if thread A executes [A0] and switch to

thread B to execute [B0], or vice versa,

both will not buy milk
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Too Much Milk Try #3: Waiting

// thread A
noteA = 1;         // leave noteA
while(noteB == 1){ // if no note from roommate
  ;                // spin
}
if(milk == 0){     // if no milk
  milk++;          // buy milk
}
noteA = 0;         // remove noteA

// thread B
noteB = 1;         // leave note
if(noteA == 0){    // if no note from roommate
  if(milk == 0){   // if no milk
    milk++;        // buy milk
  }
}
noteB = 0;         // remove note

does this solution guarantees safety and liveness?

Algorithm:



Can prove safety using a similar argument for 

solution 2

0123

27

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 1){
  ;
}
if(milk == 0){
  milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
  if(milk == 0){
    milk++;
  }
}
noteB = 0;

Liveness: since thread B has no loop, noteB

will eventually be 0 and thread A will get to

decide to buy milk or not

Solution 3 has both safety and liveness using

only atomic load and store operations

case 1: noteB = 1, milk = don’t care

contradiction, B will not buy milk

case 2: noteB = 0, milk > 0

contradiction, A will not buy milk

case 3: noteB = 0, milk = 0

contradiction, B will not buy milk  ¤



Is solution 3 a "good" solution?
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Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 0){
  ;
}
if(milk == 0){
  milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
  if(milk == 0){
    milk++;
  }
}
noteB = 0;

issues:

solution is complex (why the asymmetry?)

solution is inefficient: thread A is doing

busy-waiting and consuming CPU resource

solution may fail if the compiler or hardware

reorders instructions (although this 

limitation can be addressed by using

memory barriers, which would increase

the implementation complexity of the

algorithm)

there is something called Peterson’s

algorithm that would work more generally



// thread A or thread B
Kitchen::buyIfNeeded() {
  mutex.lock();
  ...
  mutex.unlock();
}

Unless otherwise specified, we use the term lock and mutex 

interchangeably (although in general, a lock may allow multiple 

threads to have concurrent access to a resource)

Lock: a primitive that only one thread at a time can own

// thread A or thread B
Kitchen::buyIfNeeded() {
  lock.acquire();
  if (milk == 0) {
    milk++;
  }
  lock.release();
}

simple and symmetrical
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Too Much Milk: Use Synchronization Objects
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(5.2) Structuring

Shared Objects
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Threads And Shared Objects

shared objects contain both shared state and synchronization 

variables (for controlling concurrent access to shared state)

In a multi-threaded program, threads are separate from shared 

objects and operate concurrently on shared objects

Shared ObjectsThreads

P
u

b
li

c
 M

e
th

o
d

s

State

Variables

Synchronization

Variables

all shared state in a program should be encapsulated in

one or more shared objects

Shared objects: objects that can be accessed safely by multiple 

threads



Early programming languages with monitors include Birnch 

Hansen’s Concurrent Pascal and Xerox PARC’s Mesa

today, Java supports monitors via the synchronized keyword
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Monitors

When a programming language includes support for shared 

objects, a shared object is often called a monitor

a monitor is a synchronization construct that allows executing 

entities to have both mutual exclusion and the ability to 

wait/block for a certain condition to become true
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Shared Objects Are Implemented In Layers

Shared

Objects:

Synchronization

Variables:

Atomic

Instructions:

Hardware:

Semaphores Locks Condition Variables

Interrupt Disable Test-and-Set

Multiple Processors Hardware Interrupts

Concurrent

Applications:

Bounded Buffer BarrierReaders/Writers
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(5.3) Locks:

Mutual Exclusion

Synchronization

Variables:
Semaphores Locks Condition Variables



0123

35

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Locks

A lock is a synchronization variable that provides mutual exclusion 

(when one thread holds a lock, no other thread can hold it, i.e., 

other threads are excluded)

A program associates each lock with some subset of shared state 

and requires a thread to hold the lock when accessing that state

as a result, only one thread can access the shared state at a 

time

while holding a lock, a thread can perform an arbitrary set of 

operations

those operations appear to be atomic to other threads

no other thread can observe an intermediate state

other threads can only observe the state after the lock is 

released
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Locks: API and Properties

a lock can be in one of two states: BUSY or FREE

A lock enables mutual exclusion by providing two methods: 

Lock::acquite() and Lock::release()

a lock is initially in the FREE state

Lock::acquire() waits until the lock is FREE and then 

atomically makes the lock BUSY

Lock::release() makes the lock FREE

if there are pending acquire() operations, this state change 

causes one of them to proceed

seeing the state is FREE and setting the state to BUSY are 

together an atomic operation

if multiple threads try to acquire the lock, at most one thread 

will succeed

one thread observes that the lock is FREE and sets it to 

BUSY while other threads just see that the lock is BUSY
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Locks: API and Properties

mutual exclusion: at most one thread holds the lock

A lock implementation should ensure the following three properties

progress: if no thread holds the lock and any thread attempts to 

acquire the lock, then eveutually some thread succeeds in 

acquiring the lock

bounded waiting: if a thread T attempts to acquire a lock, then 

there exists a bound on the number of times other threads can 

successfully acquire the lock before T does

this is a safety property - locks prevent more than one thread 

from accessing shared state

this is a liveness property - if a lock is FREE, some thread 

must be able to acquire it

this is a liveness property - any particular thread that wants 

to acquire the lock must eventually succeed in doing so

Non-property: thread ordering

no promise that waiting threads acquire the lock in FIFO

order



tryget() {
  item = NULL;
  lock.acquire();
  if (front < tail) {
    item = buf[front % MAX];
    front++;
  }
  lock.release();
  return item;
}

Use a fixed size buffer to implement a FIFO queue
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Case Study: Thread-Safe Bounded Queue

tryput(item) {
  lock.acquire();
  if ((tail - front) < size) {
    buf[tail % MAX] = item;
    tail++;
  }
  lock.release();
}

initially, front=tail=0, lock=FREE, buf[MAX]

for simplicity, assume no wraparound/overflow on array index

front = total number of items removed

tail = total number of items inserted/appended

a thread cannot know the state of the bounded queue/buffer 

unless it’s holding the lock

if tryget() returns NULL, we can only conclude that the 

buffer was empty



A critical section is a sequence of code that atomically accesses 

shared state
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Critical Section

a critical section with respect to lock L is code executed when 

holding lock L (code between L.acquire() and L.release())
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(5.4) Condition Variables:

Waiting for a Change

Synchronization

Variables:
Semaphores Locks Condition Variables



get()
{
  while ((data = tryget()) == NULL) ;
  return data;
}

Wait: atomically release lock, placing the thread on the CV queue,

and suspend the execution of the calling thread

these threads are working together and helping each other

The right way to wait for a shared state variable to change value is 

to go sleep on a queue (i.e., a condition variable queue) and wait for 

a wake up call (i.e., a notification)

called only when holding a lock

Waiting inside a critical section

reacquire the lock when wakened

Signal: wake up a waiting thread, if any

Broadcast: wake up all waiting threads, if any

Busy waiting:
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Condition Variables (CV)
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Condition Variable Design Pattern

methodThatWaits() {
  lock.acquire();
  // read/write shared state
  while (!testSharedState()) {
    cv.wait(lock);
  }
  // read/write shared state
  lock.release();
}

methodThatSignals() {
  lock.acquire();
  // read/write shared state
  // if testSharedState() is true
  cv.signal(lock);
  // read/write shared state
  lock.release();
}
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Example: Bounded Queue/Buffer

get() {
  lock.acquire();
  while (front==tail){
    empty.wait(lock);
  }
  item = buf[front%MAX];
  front++;
  full.signal(lock);
  lock.release();
  return item;
}

put(item) {
  lock.acquire();
  while ((tail-front)==MAX){
    fullf.wait(lock);
  }
  buf[tail%MAX] = item;
  tail++;
  empty.signal(lock);
  lock.release();
}

empty: threads sleep here because the buffer is empty (nothing 

to get, nothing to work on)

Two CV queues

full: threads sleep here because the buffer is full (cannot add 

work, no space)

full.signal() if the buffer is no longer full

empty.signal() if the buffer is no longer empty



methodThatWaits() {
  lock.acquire();
  // pre-condition: State is consistent
  // read/write shared state
  while (!testSharedState()) {
    cv.wait(lock);
  }
  // WARNING: shared state may have changed,
  //     but testSharedState() is true and
  //     pre-condition is true
  // read/write shared state
  lock.release();
}

methodThatSignals() {
  lock.acquire();
  // pre-condition: State is consistent
  // read/write shared state
  // if testSharedState() is true
  cv.signal(lock);
  // NO WARNING: signal keeps lock
  // read/write shared state
  lock.release();
}
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Pre/Post Conditions
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Condition Variables

Always hold lock when calling wait(), signal(), broadcast()

always hold lock when accessing shared state

if signal when no one is waiting, it’s as if nothing has happened

Condition variable is memoryless

if wait before signal, waiting thread wakes up

wait() atomically releases lock

signal()/broadcast() put the thread on the ready list

When a thread is woken up from wait(), it may not run immediately

when lock is released, any waiting thread might acquire it

while (needToWait()) {

  cv.wait(lock);

}

wait() must be called in a loop since spurious wakeup can occur

lock is reacquired before wait() returns
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(5.5) Designing and 

Implementing

Shared Objects
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Structured Synchronization

Identify objects or data structures that can be accessed by multiple 

threads concurrently

release lock on finish

Add locks to object/module

If need to wait:

grab lock on start to every method/procedure

do not assume when you wake up, signaller just ran

If do something that might wake someone up

signal() or broadcast()

Always leave shared state variables in a consistent state when lock 

is released, or when waiting

while (needToWait()) {

  cv.wait(lock);

}
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Remember The Rules

Use consistent structure

Always use locks and condition variables

Always acquire lock at beginning of procedure, release at end

Always hold lock when using a condition variable

Always wait in while loop

Never spin in sleep()


