Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 7 - 6/12/2025)

_) PA2is due at 11:45pm on Tuesday, 7/1/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pa2-submit’ command, the grader will delete them

ﬁ} Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
= although not recommended, you can do your development on a

different platform
Q you must test your code on the "standard" platform because
those are the only platforms the grader is allowed to grade on

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 7 - 6/12/2025)

ﬁ} PA2 and PA3 are sepeate assignments and they will be graded

separately

= if you only make a PA3 submission, you will get a score of 0
for your PA2 submission

= | would suggest that when you are done with PA2, make a
submission and keep the source in the cs350/pa2 directory and
don’t touch it

= create a ¢s350/pa3 directory by copying everything from the
cs350/pa2 directory and start working on PA3 in the ¢s350/pa3
directory

= Wwhen you are working on PA3 and discovered bugs in your PA2
code, you need modify your PA2 code in both the pa2 directory
and the pa3 directory and make another PA2 submission

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.8) Implementing
Multi-Threaded Processes

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Multi-threaded User Processes
Using Kernel Threads

) User thread = kernel thread Process 1 Process 2
(Linux MaCOS) Thread A Thread B Thread A Thread B
J
= all thread-related function calls 5 S S S
are SyStem calls Stack Stack Stack Stack
Q kernel does context switch
= simple, but a lot of transitions Code Code
between user and kernel mode Globals Globals
Heap Heap
User
Kern6| Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S S 5 PCB 1 PCB 2
Globals TCB 1 TcB2 | | TCcB 3 TcB1.A| |TcB1.B TcB2.A| |TCB 2B
Heap Stack Stack Stack Stack Stack Stack Stack

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
Without Kernel Support

ﬁ} Implement user-level threads completely at user level, without
any OS support
= e.g., green threads in the earliest implementation of Sun’s Java
Virtual Machine (JVM)
Q to the kernel, a multi-threaded application using green
threads appears to be a normal single-threaded process
Q if a user thread makes a system call and get blocked waiting
for 1/0, the kernel cannot run a different user thread
& to get true parallelism, you have to run multiple processes

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
Without Kernel Support

ﬁ} The kernel doesn’t know about Process 1 Process 2
Th B
User'level threads Thr;d A Thr;d B Thr;d A r;d
TCB 1 TCB 2 TCB 1 TCB 2
Stack Stack Stack Stack
Code Code
Heap Globals Heap Globals
User
Kel‘nel Kthread 1 Kthread 2 Kthread 3 Process 1 Process 2
Code S S S
Globals TCB 1 TcB2 | | TCB3 PCB 1 PCB 2
Heap Stack Stack Stack Stack Stack

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
Without Kernel Support

ﬁ} Preemptive user-level threads: implementation for process P
= user-level thread library makes a system call to register a timer

Copyright © William C. Cheng

sighal handler and signal stack with the kernel

when a hardware timer interrupt occurs, the hardware saves

P’s register state and runs the kernel’s handler

instead of restoring P’s register state and resuming P where it
was interrupted, the kernel’s handler copies P’s saved registers
onto P’s signal stack

the kernel resumes execution in P at the registered signal
handler on the signal stack

the signal handler copies the processor state of the preempted
user-level thread from the signal stack to that thread’s TCB

the signal handler chooses the next thread to run, re-enables the
sighal handler (similar to re-enabling interrupts), and restores
the new thread’s state from its TCB into the processor; |
execution with the state (newly) stored on the signal stack 73 @J

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
With Kernel Support

ﬁ} Today, most programs use kernel-supported threads rather than
pure user-level threads
= major operating systems support threads using standard
abstractions, so the issue of portability is less of an issue than it
once was

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing User-Level Threads
With Kernel Support

ﬁ} Various systems take more of a hybrid model (best of both worlds)
= hybrid thread join
= per-processor kernel threads
= scheduler activations (in Windows): user-level thread scheduler
Is notified/activated for every kernel event that might affect the
user-level thread system

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(4.9) Alternative
Abstractions

ﬁ> Asynchronous I/O and event-driven programming
= allows a single-threaded program to cope with high-latency 1/O
devices by overlapping I/0 with processing and other I/O

) Data parallel programming
= all processors perform the same instruction in parallel on

different parts of a data set HATNN
% S

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Ch 5: Synchronizing
Access to Shared Objects

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Synchronization Motivation

ﬁ} When threads concurrently read/write shared memory, program
behavior is undefined
= two threads write to the same variable; which one should win?

) Thread schedule is non-deterministic
= behavior changes when re-run program
Q does it matter which thread runs first?
Q when would it be considered the behavior wrong/incorrect?
Q programs need to work for any possible interleaving

) Compiler/hardware instruction reordering

ﬁ> Multi-word operations (such as memcmp ()) are not atomic

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Compiler/Hardware Can Reorder Instructions

ﬁ} Modern compilers (and hardware) reorder instructions to
improve performance

Thread 1 Thread 2

p = someComputation () while (!'pInitialized)
pInitialized = true; ;

14

q = anotherComputation (p)

= can thread 2 use p before p is initialized?
Q doesn’t look like it’s possible, right?!

ﬁ> If you have optimization turned on when you compile, the compiler
may decide to do the following (since it doesn’t understand that p
and pInitialized are semantically related):

Thread 1 Thread 2
pInitialized = true; while (!pInitialized)
p = someComputation () ;

14

q = anotherComputation (p)

|
= clearly, this is no good y @;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Why Reordering?

> Why do compilers reorder instructions?
= efficient code generation requires analyzing control/data

dependency
> Why do CPUs reorder instructions?
— write buffering: allow next instruction to execute while write
is being completed

ﬁ> Fix: memory barrier (a.k.a. membar or memory fence)

= [nstruction to compiler/CPU
= all operations before barrier complete before barrier returns

= no operation after barrier starts until barrier returns

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.1) Challenges

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Race Condition

ﬁ} A race condition occurs when the behavior of a program depends
on the interleaving of operations of different threads

Thread 1 Thread 2

x =1; x = 2;

— possible final values of x are 1 or 2

_, Ex:yis initialized to 12

Thread 1 Thread 2
x =y +1; y =y * 2;

= possible final values of x are 13 or 25

_, Ex:xis initialized to 0

Thread 1 Thread 2

x=x+ 1; X =x + 2;

L L
= possible final values of x are 1, 2, and 3 ALY/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Race Condition | r1 and r2 are
- inside here
Thread 1: Thread 2:
x =x + 1; x =x + 2 memory bus
/* /*
load rl1,x load rl1,x
add r2,rl,1 add r2,rl,1 x[0
store x,r2 store x,r2 Memory
*/ */
ﬁ} Unfortunately, processors do not execute high-level language
statements

—= they execute machine instructions

= if thread 1 executes the first (or two) machine instructions

= context switch can happen (to run a different thread)

Q this can happen if you have a preemptive scheduler

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

= x would end up to be 1
AN
2y

[

[

ﬁ> Note: load and store are atomic (indivisible) operations
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Problem

ﬁ} Two roommates want to make sure that the refrigerator is always
well stocked with milk
= what’s the algorithm for each roommate?

G> Correctness property
= liveness: the program eventually enters a good state
Q if there is no milk, eventually someone would buy milk
= safety: the program never enters a bad state
Q must not end up with more than one milk

G> Unless otherwise specified, we will always assume that neither the
compiler nor the architecture reorders instructions

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #1: Leave A Note

) Algorithm:
// thread A or thread B
if(milk == 0){ // if no milk
if(note == 0){ // if no noke
note = 1; // leave a note
milk++; // buy milk
note = 0; // remove note

}
}

= which statements are atomic?
Q the assumption here is that if a statement only access zero or
one memory location, it’'s an atomic operation (because it
cannot be preempted in the middle of that operation)

ﬁ> Q: Does the above solution guarantees safety and liveness?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #1: Leave A Note

ﬁ} This solution satisfies liveness but violates safety

// thread A // thread B
if(milk == 0) {
if(milk == 0) {
if (note == 0) {
note = 1;
milk++;
note = 0;
}
}
if (note == 0) {
note = 1;
milk++;
note = 0;
time }
Y }
= in this scenario, milk is 2 at the end

) Heisenbug!
= occasionally fail in ways that may be difficult to reproduce [///A\
y y y P B @,

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #2: Two Notes

) Algorithm:

// thread A

noteA = 1; // leave note

if(noteB == 0){ // if no note
if(milk == 0){ // if no milk

milk++; // buy milk

}

}

noteA = 0; // remowve note

// thread B

noteB = 1; // leave note
if(noteA == 0){ // if no note
if(milk == 0){ // if no milk
milk++; // buy milk
}
}
noteB = 0; // remove note

= does this solution guarantees safety and liveness?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Too Much Milk Try #2: Two Notes 1

) To prove safety, need to look at all possible /) tnresd B
interleaving noteA = 1;
L. i = [Al] if(noteB == 0) {
= proof by contradiction: assuming that [A2] if (milk == 0){
the algorithm is not safe, i.e., both A and RSl e
B will buy milk }
noteA = 0;
) Consider the state of the two variables 7)) o) i
. . noteB = 1;
noteB and milk when thread A is at [A1] T Pt fe 0
= given the assumption, thread A will be Egg if(r_nillck == 0){
milk++;
at [A3] and thread B will be at [B3] [B4] }
[B5] }
noteB = 0;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Too Much Milk Try #2: Two Notes 1

) To prove safety, need to look at all possible
interleaving

=i [Al]

= proof by contradiction: assuming that
the algorithm is not safe, i.e., both A and
B will buy milk

) Consider the state of the two variables
noteB and milk when thread A is at [A1]
= given the assumption, thread A will be

at [A3] and thread B will be at [B3]

_) Case 1: noteB = 1, milk = don’t care
= contradiction, thread A will not reach [A3]

) Case 2: noteB = 0, milk > 0
= contradiction, thread A will not reach [A3]

) Case 3: noteB = 0, milk = 0

= contradiction, thread B will not reach [B3] »

Copyright © William C. Cheng

[A2]
[A3]

// thread A
noteA = 1;

if (noteB == 0) {
if(milk == 0) {
milk++;

}

}
noteA = 0;

// thread B

noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0) {
[B3] milk++;
[B4] }
[BS] }
noteB = 0O;
N
S

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #2: Two Notes

) Canno prove liveness

(

= if thread A executes [A0] and switch to =¥ [20]

thread B to execute [B0], or vice versa,
both will not buy milk

Copyright © William C. Cheng

[Al]
[A2]
[A3]

[BO]
[B1]
[B2]
[B3]
[B4]
[B3]

// thread A
noteA = 1;

if (noteB == 0) {
if(milk == 0){
milk++;

}

}
noteA = 0;

// thread B
noteB = 1;

if (noteA == 0) {
if(milk == 0) {
milk++;

}

}
noteB = 0O;

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #3: Waiting

) Algorithm:

// thread A
noteA = 1;
while (noteB == 1) {

4

}

if(milk == 0) {
milk++;

}

noteA = 0;

// thread B

noteB = 1;
if (noteA == 0) {
if(milk == 0) {
milk++;

}
}
noteB = 0;

= does this solution guarantees safety and liveness?

Copyright © William C. Cheng

//
//
//

//
//

//
//
//

//
//

//

leave noteA
if no note from roommate
spin

if no milk
buy milk

remove notelA
leave note
if no note from roommate

if no milk
buy milk

remove note

Too Much Milk Try #3: Waltlng

ﬁ} Can prove safety using a similar argument for

solution 2
= case 1: noteB =1, milk = don’t care

Q contradiction, B will not buy milk
= case 2: hoteB =0, milk >0

Q contradiction, A will not buy milk
= case 3:noteB=0,milk=0

Q contradiction, B will not buy milk

_) Liveness: since thread B has no loop, noteB
will eventually be 0 and thread A will get to
decide to buy milk or not

G> Solution 3 has both safety and liveness using
only atomic load and store operations

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350 1

// thread A
noteA = 1;
while (noteB == 1)

}

= if (milk == 0) {

milk++;

}
noteA = 0;

// thread B

noteB = 1;
if (noteA == 0) {
if(milk == 0) {
milk++;
}
}
noteB = 0;

) Is solution 3 a "good" solution?
= issues:

Q

Q

Q

Copyright © William C. Cheng

solution is complex (why the asymmetry?)
& there is something called Peterson’s
algorithm that would work more generally
solution is inefficient: thread A is doing
busy-waiting and consuming CPU resource
solution may fail if the compiler or hardware
reorders instructions (although this
limitation can be addressed by using
memory barriers, which would increase
the implementation complexity of the
algorithm)

Introduction to Operating Systems - CSCI 350

Too Much Milk Try #3: Waltlng

// thread A

noteA = 1;

while (noteB == 0)

}

if(milk == 0) {
milk++;

}
noteA = 0;

// thread B
noteB = 1;

if (noteA == 0) {
if(milk == 0){
milk++;

}

}
noteB = 0;

Introduction to Operating Systems - CSCI 350

Too Much Milk: Use Synchronization Objects

ﬁ} Lock: a primitive that only one thread at a time can own

// thread A or thread B
Kitchen: :buyIfNeeded () {
lock.acquire();
if (milk == 0) {
milk++;
}

lock.release();

}
= simple and symmetrical

G> Unless otherwise specified, we use the term Jock and mutex

interchangeably (although in general, a lock may allow multiple
threads to have concurrent access to a resource)

// thread A or thread B

Kitchen: :buyIfNeeded () {
mutex.lock () ;

mutex.unlock () ;

} 02

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.2) Structuring
Shared Objects

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Threads And Shared Objects

Threads Shared Objects

N
> 5
>

State
Variables

Synchronization
Variables

H Public Methods I

ﬁ> In a multi-threaded program, threads are separate from shared
objects and operate concurrently on shared objects
— shared objects contain both shared state and synchronization
variables (for controlling concurrent access to shared state)

ﬁ} Shared objects: objects that can be accessed safely by multiple
threads
= all shared state in a program should be encapsulated in / @’_

onhe or more shared objects
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Monitors

ﬁ} When a programming language includes support for shared
objects, a shared object is often called a monitor

= a monitor is a synchronization construct that allows executing
entities to have both mutual exclusion and the ability to
wait/block for a certain condition to become true

ﬁ} Early programming languages with monitors include Birnch
Hansen’s Concurrent Pascal and Xerox PARC’s Mesa

= today, Java supports monitors via the synchronized keyword

Copyright © William C. Cheng

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shared Objects Are Implemented In Layers

Concurrent
Applications:

She_:red Bounded Buffer Readers/Writers Barrier

Objects:

Synchronization .. :
: Semaphores Locks Condition Variables

Variables:

Atomic : Interrupt Disable Test-and-Set

Instructions:

Hardware: Multiple Processors Hardware Interrupts

Introduction to Operating Systems - CSCI 350

(5.3) Locks:
Mutual Exclusion

Synchronization

. Semaphores Locks Condition Variables
Variables:

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks

ﬁ} A lock is a synchronization variable that provides mutual exclusion
(when one thread holds a lock, no other thread can hold it, i.e.,
other threads are excluded)
= while holding a lock, a thread can perform an arbitrary set of

operations
Q those operations appear to be atomic to other threads
<& no other thread can observe an intermediate state
& other threads can only observe the state after the lock is
released

ﬁ} A program associates each lock with some subset of shared state
and requires a thread to hold the lock when accessing that state
= as a result, only one thread can access the shared state at a
time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks: APl and Properties

ﬁ} A lock enables mutual exclusion by providing two methods:
Lock: :acquite () and Lock: : release ()
= a lock can be in one of two states: BUSY or FREE
= a lock is initially in the FREE state
= Lock: :acquire () waits until the lock is FREE and then
atomically makes the lock BUSY
Q seeing the state is FREE and setting the state to BUSY are
together an atomic operation
Q 1f multiple threads try to acquire the lock, at most one thread
will succeed
& one thread observes that the lock is FREE and sets it to
BUSY while other threads just see that the lock is BUSY
= Lock: :release () makes the lock FREE
Q Iif there are pending acquire () operations, this state change
causes one of them to proceed

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Locks: APl and Properties

ﬁ} A lock implementation should ensure the following three properties
= mutual exclusion: at most one thread holds the lock

Q this is a safety property - locks prevent more than one thread
from accessing shared state

progress: if no thread holds the lock and any thread attempts to

acquire the lock, then eveutually some thread succeeds in

acquiring the lock

Q this is a liveness property - if a lock is FREE, some thread
must be able to acquire it

bounded waiting: if a thread T attempts to acquire a lock, then

there exists a bound on the number of times other threads can

successfully acquire the lock before T does

Q this is a liveness property - any particular thread that wants
to acquire the lock must eventually succeed in doing so

_, Non-property: thread ordering
= no promise that waiting threads acquire the lock in FIFO / @’_

Copyright © William C. Cheng

e

order 37

Case Study: Thread-Safe Bounded Queue

ﬁ} Use a fixed size buffer to implement a FIFO queue

0 00 0 [

Copyright © William C. Cheng

tryget () { tryput (item) {
item = NULL; lock.acquire();
lock.acquire(); if ((tail - front) < size) {
if (front < tail) { buf[tail % MAX] = item;
item = buf[front % MAX]; tail++;
front++; }
} lock.release();
lock.release(); }

return item;

}

initially, front=tail=0, lock=FREE, buf [MAX]

for simplicity, assume no wraparound/overflow on array index

front = total number of items removed

tail = total number of items inserted/appended

a thread cannot know the state of the bounded queue/buffer

unless it’s holding the lock

Q If tryget () returns NULL, we can only conclude that the
buffer was empty

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Critical Section

ﬁ} A critical section is a sequence of code that atomically accesses
shared state
= a critical section with respect to lock L is code executed when
holding lock L (code between L. acquire () and L. release())

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.4) Condition Variables:
Waiting for a Change

Synchronization

. Semaphores Locks Condition Variables
Variables:

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Condition Variables (CV)

_) Busywaiting: get)
{
while ((data = tryget()) == NULL) ;
return data;

}

ﬁ} The right way to wait for a shared state variable to change value is
to go sleep on a queue (i.e., a condition variable queue) and wait for
a wake up call (i.e., a notification)
— these threads are working together and helping each other

> Waiting inside a critical section
= called only when holding a lock

ﬁ} Wait: atomically release lock, placing the thread on the CV queue,
and suspend the execution of the calling thread
= reacquire the lock when wakened

) Signal: wake up a waiting thread, if any
) Broadcast: wake up all waiting threads, if any

Copyright © William C. Cheng

methodThatWaits () {

}

lock.acquire();

// read/write shared state

while ('testSharedState())
cv.wait (lock);

}

// read/write shared state

lock.release();

methodThatSignals () {

Copyright © William C. Cheng

lock.acquire();
// read/write shared state
// if testSharedState () is
cv.signal (lock);
// read/write shared state
lock.release();

true

Introduction to Operating Systems - CSCI 350

Condition Variable Design Pattern

Introduction to Operating Systems - CSCI 350

Example: Bounded Queue/Buffer

get () { put (item) {
lock.acquire(); lock.acquire();
while (front==tail) { while ((tail-front)==MAX) {

empty.wait (lock); fullf.wait (lock);

} }
item = buf[front$MAX],; buf[tail$MAX] = item;
front++; tail++;
full.signal (lock); empty.signal (lock);
lock.release () ; lock.release();
return item; }

}

> Two CV queues
—= empty: threads sleep here because the buffer is empty (nothing

to get, nothing to work on)
Q empty.signal () if the buffer is no longer empty
—= full: threads sleep here because the buffer is full (cannot add

work, no space)

O full.signal () if the buffer is no longer full 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Pre/Post Conditions

methodThatWaits () {
lock.acquire();
// pre—condition: State is consistent
// read/write shared state
while (!'testSharedState()) {
cv.wait (lock) ;

}
// WARNING: shared state may have changed,
// but testSharedState () is true and
// pre—-condition is true

// read/write shared state

lock.release();

}

methodThatSignals () {
lock.acquire();
// pre—condition: State is consistent
// read/write shared state
// if testSharedState () is true
cv.signal (lock);
// NO WARNING: signal keeps lock
// read/write shared state

lock.release(); |
} 82

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Condition Variables

I:> Always hold lock when calling wait (), signal (), broadcast ()
= always hold lock when accessing shared state

ﬁ} Condition variable is memoryless
= if signal when no one is waiting, it’s as if nothing has happened
= [f wait before signal, waiting thread wakes up

) wait () atomically releases lock

ﬁ> When a thread is woken up from wait (), it may not run immediately
= signal () /broadcast () put the thread on the ready list
= when lock is released, any waiting thread might acquire it
= lock is reacquired before wait () returns

ﬁ> wait () must be called in a loop since spurious wakeup can occur

while (needToWait ()) {
cv.wait (lock);

}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(5.5) Designing and
Implementing
Shared Objects

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Structured Synchronization

ﬁ} Identify objects or data structures that can be accessed by multiple
threads concurrently

> Add locks to object/module
= grab lock on start to every method/procedure
— release lock on finish

ﬁ> If need to wait:

while (needToWait ()) {
cv.wait (lock);

}
= do not assume when you wake up, signaller just ran

) If do something that might wake someone up
= signal () OrF broadcast ()

ﬁ> Always leave shared state variables in a consistent state when lock

is released, or when waiting
N
S

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Remember The Rules

_) Use consistent structure

> Always use locks and condition variables

ﬁ> Always acquire lock at beginning of procedure, release at end
ﬁ> Always hold lock when using a condition variable

_) Always wait in while loop

_, Never spin in sleep ()

Copyright © William C. Cheng

