
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 7 - 6/12/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA2 is due at 11:45pm on Tuesday, 7/1/2025

if you include files that’s not part of the original

"make pa2-submit" command, the grader will delete them

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

although not recommended, you can do your development on a

different platform

you must test your code on the "standard" platform because

those are the only platforms the grader is allowed to grade on

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 7 - 6/12/2025)

PA2 and PA3 are sepeate assignments and they will be graded

separately

if you only make a PA3 submission, you will get a score of 0

for your PA2 submission

I would suggest that when you are done with PA2, make a

submission and keep the source in the cs350/pa2 directory and

don’t touch it

create a cs350/pa3 directory by copying everything from the

cs350/pa2 directory and start working on PA3 in the cs350/pa3

directory

when you are working on PA3 and discovered bugs in your PA2

code, you need modify your PA2 code in both the pa2 directory

and the pa3 directory and make another PA2 submission

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.8) Implementing

Multi-Threaded Processes

all thread-related function calls

are system calls

kernel does context switch

User thread = kernel thread

(Linux, MacOS)

simple, but a lot of transitions

between user and kernel mode

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Multi-threaded User Processes
Using Kernel Threads

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

TCB 1.A

Process 1

Stack

TCB 1.B

Stack

TCB 2.A

Process 2

Stack

TCB 2.B

Stack

PCB 1 PCB 2

Thread B

Stack

Thread A

Process 2

Stack

Globals

Code

Heap

Thread B

Stack

Thread A

Process 1

Stack

Globals

Code

Heap

User

e.g., green threads in the earliest implementation of Sun’s Java

Virtual Machine (JVM)

to the kernel, a multi-threaded application using green

threads appears to be a normal single-threaded process

Implement user-level threads completely at user level, without

any OS support

if a user thread makes a system call and get blocked waiting

for I/O, the kernel cannot run a different user thread

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
Without Kernel Support

to get true parallelism, you have to run multiple processes

Stack

TCB 1

Thread B

Stack

Thread A

Process 2

Heap

TCB 2

Code

Globals

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
Without Kernel Support

Kernel

Globals

Code

Heap

TCB 1

Kthread 1

Stack

TCB 2

Kthread 2

Stack

TCB 3

Kthread 3

Stack

Process 1 Process 2

User

Stack Stack

PCB 1 PCB 2

The kernel doesn’t know about

user-level threads

Stack

TCB 1

Thread B

Stack

Thread A

Process 1

Heap

TCB 2

Code

Globals

the signal handler chooses the next thread to run, re-enables the

signal handler (similar to re-enabling interrupts), and restores

the new thread’s state from its TCB into the processor;

execution with the state (newly) stored on the signal stack 0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
Without Kernel Support

Preemptive user-level threads: implementation for process P

user-level thread library makes a system call to register a timer

signal handler and signal stack with the kernel

when a hardware timer interrupt occurs, the hardware saves

P’s register state and runs the kernel’s handler

instead of restoring P’s register state and resuming P where it

was interrupted, the kernel’s handler copies P’s saved registers

onto P’s signal stack

the kernel resumes execution in P at the registered signal

handler on the signal stack

the signal handler copies the processor state of the preempted

user-level thread from the signal stack to that thread’s TCB

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
With Kernel Support

Today, most programs use kernel-supported threads rather than

pure user-level threads

major operating systems support threads using standard

abstractions, so the issue of portability is less of an issue than it

once was

Various systems take more of a hybrid model (best of both worlds)

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing User-Level Threads
With Kernel Support

hybrid thread join

per-processor kernel threads

scheduler activations (in Windows): user-level thread scheduler

is notified/activated for every kernel event that might affect the

user-level thread system

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(4.9) Alternative

Abstractions

Asynchronous I/O and event-driven programming

allows a single-threaded program to cope with high-latency I/O

devices by overlapping I/O with processing and other I/O

Data parallel programming

all processors perform the same instruction in parallel on

different parts of a data set

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

Ch 5: Synchronizing

Access to Shared Objects

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Synchronization Motivation

two threads write to the same variable; which one should win?

does it matter which thread runs first?

When threads concurrently read/write shared memory, program

behavior is undefined

when would it be considered the behavior wrong/incorrect?

behavior changes when re-run program

Thread schedule is non-deterministic

Compiler/hardware instruction reordering

Multi-word operations (such as memcmp()) are not atomic

programs need to work for any possible interleaving

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Compiler/Hardware Can Reorder Instructions

Modern compilers (and hardware) reorder instructions to

improve performance

Thread 1

p = someComputation()

pInitialized = true;

Thread 2

while (!pInitialized)

 ;

q = anotherComputation(p)

can thread 2 use p before p is initialized?

doesn’t look like it’s possible, right?!

If you have optimization turned on when you compile, the compiler

may decide to do the following (since it doesn’t understand that p

and pInitialized are semantically related):

Thread 1

pInitialized = true;

p = someComputation()

Thread 2

while (!pInitialized)

 ;

q = anotherComputation(p)

clearly, this is no good

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Why Reordering?

Why do compilers reorder instructions?

efficient code generation requires analyzing control/data

dependency

Why do CPUs reorder instructions?

write buffering: allow next instruction to execute while write

is being completed

Fix: memory barrier (a.k.a. membar or memory fence)

instruction to compiler/CPU

no operation after barrier starts until barrier returns

all operations before barrier complete before barrier returns

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.1) Challenges

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Race Condition

possible final values of x are 1 or 2

A race condition occurs when the behavior of a program depends

on the interleaving of operations of different threads

Thread 1

x = 1;

Thread 2

x = 2;

possible final values of x are 13 or 25

Ex: y is initialized to 12

Thread 1

x = y + 1;

Thread 2

y = y * 2;

possible final values of x are 1, 2, and 3

Ex: x is initialized to 0

Thread 1

x = x + 1;

Thread 2

x = x + 2;

x = x + 2;
 /*
 load r1,x
 add r2,r1,1
 store x,r2
 */

x = x + 1;
 /*
 load r1,x
 add r2,r1,1
 store x,r2
 */

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Race Condition

Thread 1: Thread 2:

they execute machine instructions

Unfortunately, processors do not execute high-level language

statements

if thread 1 executes the first (or two) machine instructions

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

x would end up to be 1

context switch can happen (to run a different thread)

Memory

memory bus

x

r1 and r2 are
inside here

this can happen if you have a preemptive scheduler

0

Note: load and store are atomic (indivisible) operations

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Problem

Two roommates want to make sure that the refrigerator is always

well stocked with milk

what’s the algorithm for each roommate?

Correctness property

liveness: the program eventually enters a good state

safety: the program never enters a bad state

if there is no milk, eventually someone would buy milk

must not end up with more than one milk

Unless otherwise specified, we will always assume that neither the

compiler nor the architecture reorders instructions

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #1: Leave A Note

Algorithm:

// thread A or thread B
if(milk == 0){ // if no milk
 if(note == 0){ // if no noke
 note = 1; // leave a note
 milk++; // buy milk
 note = 0; // remove note
 }
}

which statements are atomic?

the assumption here is that if a statement only access zero or

one memory location, it’s an atomic operation (because it

cannot be preempted in the middle of that operation)

Q: Does the above solution guarantees safety and liveness?

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #1: Leave A Note

This solution satisfies liveness but violates safety

// thread A
if(milk == 0){

 if(note == 0){
 note = 1;
 milk++;
 note = 0;
 }
}

// thread B

if(milk == 0){
 if(note == 0){
 note = 1;
 milk++;
 note = 0;
 }
}

time

in this scenario, milk is 2 at the end

Heisenbug!

occasionally fail in ways that may be difficult to reproduce

// thread A
noteA = 1; // leave note
if(noteB == 0){ // if no note
 if(milk == 0){ // if no milk
 milk++; // buy milk
 }
}
noteA = 0; // remove note

// thread B
noteB = 1; // leave note
if(noteA == 0){ // if no note
 if(milk == 0){ // if no milk
 milk++; // buy milk
 }
}
noteB = 0; // remove note

does this solution guarantees safety and liveness?
0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

Algorithm:

proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

To prove safety, need to look at all possible

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

 // thread A
 noteA = 1;
[A1] if(noteB == 0){
[A2] if(milk == 0){
[A3] milk++;
 }
 }
 noteA = 0;

 // thread B
 noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0){
[B3] milk++;
[B4] }
[B5] }
 noteB = 0;

given the assumption, thread A will be

at [A3] and thread B will be at [B3]

contradiction, thread B will not reach [B3] ¤

To prove safety, need to look at all possible

interleaving

Consider the state of the two variables

noteB and milk when thread A is at [A1]

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

 // thread A
 noteA = 1;
[A1] if(noteB == 0){
[A2] if(milk == 0){
[A3] milk++;
 }
 }
 noteA = 0;

 // thread B
 noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0){
[B3] milk++;
[B4] }
[B5] }
 noteB = 0;

proof by contradiction: assuming that

the algorithm is not safe, i.e., both A and

B will buy milk

given the assumption, thread A will be

at [A3] and thread B will be at [B3]

Case 1: noteB = 1, milk = don’t care

contradiction, thread A will not reach [A3]

Case 2: noteB = 0, milk > 0

contradiction, thread A will not reach [A3]

Case 3: noteB = 0, milk = 0

Canno prove liveness

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #2: Two Notes

 // thread A
[A0] noteA = 1;
[A1] if(noteB == 0){
[A2] if(milk == 0){
[A3] milk++;
 }
 }
 noteA = 0;

 // thread B
[B0] noteB = 1;
[B1] if(noteA == 0){
[B2] if(milk == 0){
[B3] milk++;
[B4] }
[B5] }
 noteB = 0;

if thread A executes [A0] and switch to

thread B to execute [B0], or vice versa,

both will not buy milk

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #3: Waiting

// thread A
noteA = 1; // leave noteA
while(noteB == 1){ // if no note from roommate
 ; // spin
}
if(milk == 0){ // if no milk
 milk++; // buy milk
}
noteA = 0; // remove noteA

// thread B
noteB = 1; // leave note
if(noteA == 0){ // if no note from roommate
 if(milk == 0){ // if no milk
 milk++; // buy milk
 }
}
noteB = 0; // remove note

does this solution guarantees safety and liveness?

Algorithm:

Can prove safety using a similar argument for

solution 2

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 1){
 ;
}
if(milk == 0){
 milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
 if(milk == 0){
 milk++;
 }
}
noteB = 0;

Liveness: since thread B has no loop, noteB

will eventually be 0 and thread A will get to

decide to buy milk or not

Solution 3 has both safety and liveness using

only atomic load and store operations

case 1: noteB = 1, milk = don’t care

contradiction, B will not buy milk

case 2: noteB = 0, milk > 0

contradiction, A will not buy milk

case 3: noteB = 0, milk = 0

contradiction, B will not buy milk ¤

Is solution 3 a "good" solution?

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk Try #3: Waiting

// thread A
noteA = 1;
while(noteB == 0){
 ;
}
if(milk == 0){
 milk++;
}
noteA = 0;

// thread B
noteB = 1;
if(noteA == 0){
 if(milk == 0){
 milk++;
 }
}
noteB = 0;

issues:

solution is complex (why the asymmetry?)

solution is inefficient: thread A is doing

busy-waiting and consuming CPU resource

solution may fail if the compiler or hardware

reorders instructions (although this

limitation can be addressed by using

memory barriers, which would increase

the implementation complexity of the

algorithm)

there is something called Peterson’s

algorithm that would work more generally

// thread A or thread B
Kitchen::buyIfNeeded() {
 mutex.lock();
 ...
 mutex.unlock();
}

Unless otherwise specified, we use the term lock and mutex

interchangeably (although in general, a lock may allow multiple

threads to have concurrent access to a resource)

Lock: a primitive that only one thread at a time can own

// thread A or thread B
Kitchen::buyIfNeeded() {
 lock.acquire();
 if (milk == 0) {
 milk++;
 }
 lock.release();
}

simple and symmetrical

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Milk: Use Synchronization Objects

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.2) Structuring

Shared Objects

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Threads And Shared Objects

shared objects contain both shared state and synchronization

variables (for controlling concurrent access to shared state)

In a multi-threaded program, threads are separate from shared

objects and operate concurrently on shared objects

Shared ObjectsThreads

P
u

b
li

c
 M

e
th

o
d

s

State

Variables

Synchronization

Variables

all shared state in a program should be encapsulated in

one or more shared objects

Shared objects: objects that can be accessed safely by multiple

threads

Early programming languages with monitors include Birnch

Hansen’s Concurrent Pascal and Xerox PARC’s Mesa

today, Java supports monitors via the synchronized keyword

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Monitors

When a programming language includes support for shared

objects, a shared object is often called a monitor

a monitor is a synchronization construct that allows executing

entities to have both mutual exclusion and the ability to

wait/block for a certain condition to become true

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Shared Objects Are Implemented In Layers

Shared

Objects:

Synchronization

Variables:

Atomic

Instructions:

Hardware:

Semaphores Locks Condition Variables

Interrupt Disable Test-and-Set

Multiple Processors Hardware Interrupts

Concurrent

Applications:

Bounded Buffer BarrierReaders/Writers

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.3) Locks:

Mutual Exclusion

Synchronization

Variables:
Semaphores Locks Condition Variables

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks

A lock is a synchronization variable that provides mutual exclusion

(when one thread holds a lock, no other thread can hold it, i.e.,

other threads are excluded)

A program associates each lock with some subset of shared state

and requires a thread to hold the lock when accessing that state

as a result, only one thread can access the shared state at a

time

while holding a lock, a thread can perform an arbitrary set of

operations

those operations appear to be atomic to other threads

no other thread can observe an intermediate state

other threads can only observe the state after the lock is

released

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks: API and Properties

a lock can be in one of two states: BUSY or FREE

A lock enables mutual exclusion by providing two methods:

Lock::acquite() and Lock::release()

a lock is initially in the FREE state

Lock::acquire() waits until the lock is FREE and then

atomically makes the lock BUSY

Lock::release() makes the lock FREE

if there are pending acquire() operations, this state change

causes one of them to proceed

seeing the state is FREE and setting the state to BUSY are

together an atomic operation

if multiple threads try to acquire the lock, at most one thread

will succeed

one thread observes that the lock is FREE and sets it to

BUSY while other threads just see that the lock is BUSY

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Locks: API and Properties

mutual exclusion: at most one thread holds the lock

A lock implementation should ensure the following three properties

progress: if no thread holds the lock and any thread attempts to

acquire the lock, then eveutually some thread succeeds in

acquiring the lock

bounded waiting: if a thread T attempts to acquire a lock, then

there exists a bound on the number of times other threads can

successfully acquire the lock before T does

this is a safety property - locks prevent more than one thread

from accessing shared state

this is a liveness property - if a lock is FREE, some thread

must be able to acquire it

this is a liveness property - any particular thread that wants

to acquire the lock must eventually succeed in doing so

Non-property: thread ordering

no promise that waiting threads acquire the lock in FIFO

order

tryget() {
 item = NULL;
 lock.acquire();
 if (front < tail) {
 item = buf[front % MAX];
 front++;
 }
 lock.release();
 return item;
}

Use a fixed size buffer to implement a FIFO queue

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Thread-Safe Bounded Queue

tryput(item) {
 lock.acquire();
 if ((tail - front) < size) {
 buf[tail % MAX] = item;
 tail++;
 }
 lock.release();
}

initially, front=tail=0, lock=FREE, buf[MAX]

for simplicity, assume no wraparound/overflow on array index

front = total number of items removed

tail = total number of items inserted/appended

a thread cannot know the state of the bounded queue/buffer

unless it’s holding the lock

if tryget() returns NULL, we can only conclude that the

buffer was empty

A critical section is a sequence of code that atomically accesses

shared state

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Critical Section

a critical section with respect to lock L is code executed when

holding lock L (code between L.acquire() and L.release())

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.4) Condition Variables:

Waiting for a Change

Synchronization

Variables:
Semaphores Locks Condition Variables

get()
{
 while ((data = tryget()) == NULL) ;
 return data;
}

Wait: atomically release lock, placing the thread on the CV queue,

and suspend the execution of the calling thread

these threads are working together and helping each other

The right way to wait for a shared state variable to change value is

to go sleep on a queue (i.e., a condition variable queue) and wait for

a wake up call (i.e., a notification)

called only when holding a lock

Waiting inside a critical section

reacquire the lock when wakened

Signal: wake up a waiting thread, if any

Broadcast: wake up all waiting threads, if any

Busy waiting:

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Condition Variables (CV)

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Condition Variable Design Pattern

methodThatWaits() {
 lock.acquire();
 // read/write shared state
 while (!testSharedState()) {
 cv.wait(lock);
 }
 // read/write shared state
 lock.release();
}

methodThatSignals() {
 lock.acquire();
 // read/write shared state
 // if testSharedState() is true
 cv.signal(lock);
 // read/write shared state
 lock.release();
}

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Bounded Queue/Buffer

get() {
 lock.acquire();
 while (front==tail){
 empty.wait(lock);
 }
 item = buf[front%MAX];
 front++;
 full.signal(lock);
 lock.release();
 return item;
}

put(item) {
 lock.acquire();
 while ((tail-front)==MAX){
 fullf.wait(lock);
 }
 buf[tail%MAX] = item;
 tail++;
 empty.signal(lock);
 lock.release();
}

empty: threads sleep here because the buffer is empty (nothing

to get, nothing to work on)

Two CV queues

full: threads sleep here because the buffer is full (cannot add

work, no space)

full.signal() if the buffer is no longer full

empty.signal() if the buffer is no longer empty

methodThatWaits() {
 lock.acquire();
 // pre-condition: State is consistent
 // read/write shared state
 while (!testSharedState()) {
 cv.wait(lock);
 }
 // WARNING: shared state may have changed,
 // but testSharedState() is true and
 // pre-condition is true
 // read/write shared state
 lock.release();
}

methodThatSignals() {
 lock.acquire();
 // pre-condition: State is consistent
 // read/write shared state
 // if testSharedState() is true
 cv.signal(lock);
 // NO WARNING: signal keeps lock
 // read/write shared state
 lock.release();
}

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pre/Post Conditions

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Condition Variables

Always hold lock when calling wait(), signal(), broadcast()

always hold lock when accessing shared state

if signal when no one is waiting, it’s as if nothing has happened

Condition variable is memoryless

if wait before signal, waiting thread wakes up

wait() atomically releases lock

signal()/broadcast() put the thread on the ready list

When a thread is woken up from wait(), it may not run immediately

when lock is released, any waiting thread might acquire it

while (needToWait()) {

 cv.wait(lock);

}

wait() must be called in a loop since spurious wakeup can occur

lock is reacquired before wait() returns

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(5.5) Designing and

Implementing

Shared Objects

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Structured Synchronization

Identify objects or data structures that can be accessed by multiple

threads concurrently

release lock on finish

Add locks to object/module

If need to wait:

grab lock on start to every method/procedure

do not assume when you wake up, signaller just ran

If do something that might wake someone up

signal() or broadcast()

Always leave shared state variables in a consistent state when lock

is released, or when waiting

while (needToWait()) {

 cv.wait(lock);

}

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Remember The Rules

Use consistent structure

Always use locks and condition variables

Always acquire lock at beginning of procedure, release at end

Always hold lock when using a condition variable

Always wait in while loop

Never spin in sleep()

