
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 5 - 6/5/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA2 is due at 11:45pm on Tuesday, 7/1/2025

if you include files that’s not part of the original

"make pa2-submit" command, the grader will delete them

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

although not recommended, you can do your development on a

different platform

you must test your code on the "standard" platform because

those are the only platforms the grader is allowed to grade on

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 5 - 6/5/2025)

read and understand the ticket in web page

make sure you follow the "Verify Your Ticket" and "Verify

Your Submission" procedure as if you are the grader

If you make a submission

save the web page as PDF as record of your submission

make sure your README file is perfect

if there is anything you are not sure about, please ask me and

don’t assume that whatever you do will be fine

you don’t need my permissions to use "free late days"

Remember that you can use your "free late days"

PA1 is only worth 2.4% of your overall grade and a step in

the grade is 6%

you need to decide if it’s worth it to use "free late days"

on something that may not affect your letter grade

once a "free late day" is used, if assignment is graded, you

cannot take back that "free late day"

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 5 - 6/5/2025)

If you cannot finish PA1, you need to try to get as much partial

credit as you can (or submit by PA2 deadline for -50%)

if you want the grader to skip a test, you should give yourself 0

points in the corresponding item in pa1-README.txt
if a grader runs a command and it doesn’t work, the grader

must deduct points according to the grading guidelines

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 5 - 6/5/2025)

PA2 and PA3 are sepeate assignments and they will be graded

separately

if you only make a PA3 submission, you will get a score of 0

for your PA2 submission

I would suggest that when you are done with PA2, make a

submission and keep the source in the cs350/pa2 directory and

don’t touch it

create a cs350/pa3 directory by copying everything from the

cs350/pa2 directory and start working on PA3 in the cs350/pa3

directory

when you are working on PA3 and discovered bugs in your PA2

code, you need modify your PA2 code in both the pa2 directory

and the pa3 directory and make another PA2 submission

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_join()

This function suspends the execution of the calling thread until the

target thread (of the same process), indicated by the argument

thread_id, terminates

if the thread has already exited, execution should not be

suspended

if successful, the function returns zero

otherwise, -1 should be returned to indicate an error

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

kthread_join()

kthread_join(int thread_id):

 check if thread_id is valid
 create a thread pointer t
 loop through all threads to find target thread id (parameter)
 make t points to target thread with thread_id
 if not found
 return -1
 while (t->tid == thread_id and t is not in the TZOMBIE state)
 make t sleep using sleep() function with a lock // read sleep() code
 if state of t is zombie
 clearThread(t);
 return 0

Note: the above is not the only way to join threads

also, this is not a complete pseudocode

you have to add locks if necessary

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

threadtest1.c
You are supposed to read the code of the test programs

threadtest2.c
threadtest3.c

You are supposed to be reading the XV6 book: xv6-rev11.pdf

and the XV6 source code to understand how the scheduler works

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

Make sure to implement system calls for all kthread functions

$ threadtest1
3 threadtest1: unknown sys call 23
thread in main -1,process 3
3 threadtest1: unknown sys call 22
3 threadtest1: unknown sys call 22
3 threadtest1: unknown sys call 25
Got id : -1
3 threadtest1: unknown sys call 25
Got id : -1
Finished.
3 threadtest1: unknown sys call 24
...

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

panic: acquire and panic: release errors mean that program fails to

acquire lock because it is already acquired earlier or it cannot

released lock because it is already released

cpu with apicid 0: panic: acquire
 80104b85 80104334 80100226 80101a78 80101c4a ...

cpu with apicid 0: panic: release
 80104cc8 80103b51 80105dec 80105129 80106338 801060eb ...

OR:

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Errors

this means process holding multiple locks

panic: sched locks

before calling sched() make sure to release all other locks

ac(ptable)
ac(mtable)

rel(mtable)
rel(ptable)

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(3.2) Input/Output

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Input/Output: UNIX I/O

How to interact with I/O

devices?

Portable OS Kernel

APPs: compilers, web servers,
databases, word processing,
web browsers, email clients

Portable OS Library

System Call Interface

HW: keyboard, mouse, disk
ethernet, wifi, display,

microphone, camera, etc.

When a new type of device is invented, it would be bad if new

system call interface has to be upgraded to handle that device

a disk is addressed in fixed

sized blocks/chunks

a network sends and receives

a stream of variable sized packets

keyboard returns individual

characters as keys are pressed

only returns data when asked

returns data unprompted

returns data unprompted

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(3.2) Input/Output: UNIX I/O

One of the primary innovation in UNIX was to regularize all device

input and output behind a single common interface

This approach was so successful and pretty much all systems

follow this today

UNIX tooks this one step further to use the same interface for

reading and writing files and for interprocess communication

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Basic Ideas In UNIX I/O Interface

Uniformity: all operations on all files, devices use the same set of

system calls: open(), close(), read(), write()

Open before use: open returns a handle (file descriptor) for use in

later calls on the file

Byte-oriented abstraction: even for block-oriented devices

Kernel-buffered read: allows the read() system calls to be the

same for devices with streaming read and block reads

Explicit close: to clean up the open file descriptor and related

kernel data structures

Kernel-buffered write: outgoing data is stored in a kernel buffer for

transmission when the device becomes available

if no data is available to be returned, read() blocks

this decouples the application from the device so they can

go at their own speeds

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

UNIX File System Interface

UNIX file open() system call is a Swiss Army knife:

open the file, return file descriptor

options:

if file doesn’t exist, return an error

if file doesn’t exist, create file and open it

if file does exist, return an error

if file does exist, open file

if file exist but isn’t empty, nix it then open

if file exist but isn’t empty, return an error

...

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interface Design Question

Why not have separate syscalls for open(), create(), exists()?

if (!exists(name)) {
 create(name); // can create fail?
}
fd = open(name); // does the file exist?

the problem with the above code is that in a multiuser system,

exists() and create() need to be done in an atomic operation

another user may create the file before your create() call

another user may delete the file before your open() call

UNIX’s approach is to implement an atomic open()

open() returns a file descriptor that will continue to work until

the application closes the file

even if another user has deleted the file from the file system

the file system does not actually reclaim the associated

disk blocks until the file is closed

The notion of a file is our Unix system’s sole abstraction for this

concept of "someplace outside the process"

it has no output!

Our primes program wasn’t too interesting

cannot even verify that it’s doing the right thing

other program cannot use its result

modern Unix systems have additional abstractions

how does a process write to someplace outside the process?

abstraction of persistent data storage

Files

means for fetching and storing data outside a process

including disks, another process, keyboard, display, etc.

need to name these different places

hierarchical naming structure

part of a process’s extended address space (i.e., data

structures in kernel space for this process) 0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Files

shared by all processes running on a computer

Directory system

although each process can have a different view

by redefining what "root" means for the process

Unix provides a means to restrict a process to a subtree

name space is outside the processes

a user process provides the name of a file to the OS

the OS returns a handle to be used to access the file

after it has verified that the process is allowed access

along the entire path, starting from root

user process uses the handle to read/write the file

avoid access checks

Using a handle to refer to an object managed by the kernel is an

important concept

handles are essentially an extension to the process’s

address space

can even survive execs!
0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Naming Files

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The File Abstraction

A file is a simple array of bytes

Files are made larger by writing beyond their current end

Files are named by paths in a naming tree

System calls on files are synchronous

File API

open(), read(), write(), close()
e.g., cat

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

File Descriptors

int fd;
char buffer[1024];
int count;
if ((fd = open("/home/bc/file", O_RDWR) == -1) {
 // the file couldn’t be opened
 perror("/home/bc/file");
 exit(1);
}
if ((count = read(fd, buffer, 1024)) == -1) {
 // the read failed
 perror("read");
 exit(1);
}
// buffer now contains count bytes read from the file

what is O_RDWR?

what does perror() do?

cursor position in an opened file depends on what

functions/system calls you use

what about C++?

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Standard File Descriptors

main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 (void)write(2, note, strlen(note));
 exit(EXIT_FAILURE);
 }
 return(EXIT_SUCCESS);
}

0 is stdin (by default, the keyboard)

Standard File Descriptors

1 is stdout (by default, the display)

2 is stderr (by default, the display)

The "cat" program:

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Back to Primes

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 if (write(1, prime, nprimes*sizeof(int)) == -1) {
 perror("primes output");
 exit(1);
 }
 return(0);
}

Have our primes program write out the solution, i.e., the primes[]
array

the output is not readable by human

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 for (i=0; i<nprimes; i++) {
 printf("%d\n", prime[i]);
 }
 return(0);
}

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Allocation of File Descriptors

will always associate "file" with file descriptor 0 (assuming

that the open succeeds)

Whenever a process requests a new file descriptor, the lowest

numbered file descriptor not already associated with an open

file is selected; thus

#include <fcntl.h>
#include <unistd.h>
...
close(0);
fd = open("file", O_RDONLY);

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Running It

if (fork() == 0) {
 /* set up file descriptor 1 in the child process */
 close(1);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 perror("/home/bc/Output");
 exit(1);
 }
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
 ;

close(1) removes file descriptor 1 from extended address

space

file descriptors are allocated lowest first on open()

new code is same as running

% primes 300 > /home/bc/Output

extended address space survives execs

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

I/O Redirection

If ">" weren’t there, the output would go to the display

The ">" parameter in a shell command that instructs the command

shell to redirect the output to the given file

% primes 300 > /home/bc/Output

when the "cat" program reads from file descriptor 0, it would

get the data byes from the file "/home/bc/Output"

Can also redirect input

% cat < /home/bc/Output

it also refers to the process’s current context for that file

includes how the file is to be accessed (how open() was

invoked)

A file descriptor refers not just to a file

cursor position

let’s say a user program opened a file with O_RDONLY

Context information must be maintained by the OS and not

directly by the user program

later on it calls write() using the opened file descriptor

how does the OS knows that it doesn’t have write access?

stores O_RDONLY in context

if the user program can manipulate the context, it can

change O_RDONLY to O_RDWR

therefore, user program must not have access to context!

all it can see is the handle

the handle is an index into an array maintained for the

process in kernel’s address space
0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

File Descriptor Table

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

File Descriptor Table

ref
count

access
mode

file
location

inode
pointer

File-descriptor
table (per process)

this is yet

another pointer

"cursor"

system file table (system-wide)

Kernel address space

User

address space

0
1
2
3

n-1

File
descriptor

open file context is not stored directly into the file-descriptor

table

one-level of indirection

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

trap

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

trap

check

access

rights...

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

trap

fd
setup

polymorphic

function pointers

at various levels

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

fd

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

fd

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

trap

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

≤ 100 bytes

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()
close()

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

fd

read()

trap

close()

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

read()
close()

file obj

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Put It All Together

file obj

int fd;
fd = open("foo.txt");
char buf[512];
read(fd, buf, 100);
close(fd);

Process
Subsystem

Files
Subsystem

Applications

open()

OS

read()
close()

file object not

deallocated if

ref count > 0

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirecting Output ... Twice

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child
 process */
 close(1);
 close(2);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 exit(1);
 }
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 exit(1);
 }
 execl("/home/bc/bin/program", "program", 0);
 exit(1);
}
/* parent continues here */

stdout and stderr both go into the same file

would it cause any problem?

Every call to open() creates a new entry in the system file table

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output

Kernel address space

File-descriptor
table (per process)

Child’s

address space

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
execl(...)

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output

Kernel address space

File-descriptor
table (per process)

Child’s

address space

1 WRONLY 0
inode

pointerFile descriptor 1

ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
execl(...)

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output

Kernel address space

1 WRONLY 0
inode

pointer

File-descriptor
table (per process)

Child’s

address space

File descriptor 2

1 WRONLY 0
inode

pointerFile descriptor 1

ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
execl(...)

Kernel address space

1 WRONLY 0
inode

pointer

File-descriptor
table (per process)

Child’s new

address space

1 WRONLY 0
inode

pointer

ref mode loc inode

remember, extended address space survives execs

File descriptor 2

File descriptor 1

let’s say we write 100 bytes to stdout 0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output

Kernel address space

1 WRONLY 0
inode

pointer

File-descriptor
table (per process)

Child’s new

address space

File descriptor 2

1 WRONLY 100
inode

pointerFile descriptor 1

write() to fd=2 will wipe out data in the first 100 bytes

that may not be the intent

ref mode loc inode

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output After Writing 100 Bytes

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Sharing Context Information

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child
 process */
 close(1);
 close(2);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 exit(1);
 }
 dup(1);
 execl("/home/bc/bin/program", "program", 0);
 exit(1);
}
/* parent continues here */

use the dup() system call to share context information

if that’s what you want

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space
...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup(1);
...

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space

1 WRONLY 0
inode

pointer

File descriptor 1 ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup(1);
...

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space

File descriptor 2

2 WRONLY 0
inode

pointer

File descriptor 1 ref mode loc inode

...
close(1);
close(2);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup(1);
...

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Redirected Output After Dup

Kernel address space

File-descriptor
table (per process)

Child’s

address space

File descriptor 2

2 WRONLY 0
inode

pointer

File descriptor 1 ref mode loc inode

dup2(oldfd,newfd) specifies a new file descriptor (if newfd
is currently open, close it first)

...
close(1);
if (open(
 "/home/bc/Output",
 O_WRONLY) == -1) {
 exit(1);
}
dup2(1, 2);
...

int logfile = open("log", O_WRONLY);
if (fork() == 0) {
 /* child process computes something, then does: */
 write(logfile, LogEntry, strlen(LogEntry));
 ...
 exit(0);
}
/* parent process computes something, then does: */
write(logfile, LogEntry, strlen(LogEntry));
...

remember, extended address space survives execs

also fork()

It would be useful to be able to share file context information with

a child process

when fork() is called, the child process gets a copy of the

parent’s file descriptor table

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Parent And Child Communicate Over A File

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Parent And Child Communicate Over A File

Kernel address space

Parent’s

address space

parent and child processes get separate file descriptor

table but share extended address space

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Parent And Child Communicate Over A File

Kernel address space

Parent’s

address space

1 WRONLY 0
inode

pointer

logfile

parent and child processes get separate file descriptor

table but share extended address space

ref mode loc inode

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Parent And Child Communicate Over A File

Kernel address space

Parent’s

address space

2 WRONLY 0
inode

pointer

logfile

Child’s

address space

logfile

parent and child processes get separate file descriptor

table but share extended address space indirectly

ref mode loc inode

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Parent And Child Communicate Over A File

Kernel address space

Parent’s

address space

2 WRONLY 0
inode

pointer

logfile

Child’s

address space

logfile

parent and child processes can communicate using such a

shared file descriptor, although difficult to synchronize

ref mode loc inode

int logfile = open("log",
 O_WRONLY);
if (fork() == 0) {
 write(logfile, LogEntry,
 strlen(LogEntry));
 ...
 exit(0);
}
write(logfile, LogEntry,
 strlen(LogEntry));

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interprocess Communication With Pipes

Pipes: a UNIX pipe is a kernel buffer with two file descriptors,

one for writing and one for reading

the producer process behaves as if it has a file descriptor to a

file that has been opened for writing

producer
process

consumer
process

the consumer process behaves as if it has a file descriptor to a

file that has been opened for reading

The pipe() system call creates a pipe object in the kernel and

returns (via an output parameter) the two file descriptors that

refer to the pipe

one, set for write-only, refers to the input side

the other, set for read-only, refers to the output side

a pipe has no name, cannot be passed to another process

write read

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

int p[2]; // array to hold pipe’s file descriptors
pipe(p); // creates a pipe, assume no errors
 // p[0] refers to the read/output end of the pipe
 // p[1] refers to the write/input end of the pipe
if (fork() == 0) {
 char buf[80];
 close(p[1]); // not needed by the child
 while (read(p[0], buf, 80) > 0) {
 // use data obtained from parent
 ...
 }
 exit(0); // child done
} else {
 char buf[80];
 close(p[0]); // not needed by the parent
 for (;;) {
 // prepare data for child
 ...
 write(p[1], buf, 80);
 }
}

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

parent creates a pipe object in the kernel

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

Kernel address space

Parent’s

address space

p[0]

parent creates a pipe object in the kernel

p[1]

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

p[0]
p[1]

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

child processes gets a copy of the parent’s file descriptor

table and end up sharing the pipe object

p[1]

(read)
(write)

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

if the child just wants to read from the pipe, it must close

the write-end of the pipe

p[0]
p[1]

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

p[1]

(read)
(write)

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

if the parent just wants to write into the pipe, it must close

the read-end of the pipe 0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

p[0]
p[1]

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

p[1]

(read)
(write)

(read)
(write)

int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

65

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Pipes

p[0]
p[1]

Kernel address space

Parent’s

address space

p[0]

Child’s

address space

p[1]
(write)

(read)

(read)

(write)
int p[2];
pipe(p);
if (fork() == 0) {
 close(p[1]);
 while (read(p[0],
 buf, 80) > 0) {
 ...
 }
 exit(0);
} else {
 close(p[0]);
 for (;;) {
 ...
 write(p[1], buf, 80);
 }
}

0123

66

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(3.3) Case Study:

Implementing a Shell

0123

67

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(3.3) Implementing a Shell

char *prog, **args;

while (readAndParseCmdLine(&prog, &args)) {
 int child_pid = fork();
 if (child_pid == 0) {
 execv(prog, args);
 exit(1);
 } else {
 while(child_pid != wait(0))
 ;
 }
}

A basic shell:

A program can send its output to a file (using I/O redirection)

A program can read its input from a file (using I/O redirection)

0123

68

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing a Shell

the first line of a shell script must be "#!interpreter", e.g.,

A program can be a file of commands (i.e., a shell script)

#!/bin/bash
#!/bin/tcsh

#!/usr/bin/perl
#!/usr/bin/python
#!/usr/bin/python3

#!/bin/tcsh -f

the shell would pass the content of the file to the interpreter

The output of one program can be the input to another program

if user types, "ls -l | wc", the code in the shell will be more

complicated since you have to create two child processes

and a pipe object and hook things up just right

can use this trick to create a pipeline

Ex: "cpp file.c | cparse | cgen | as > file.o"

pipelined parallelism (at the process level)

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

69

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

70

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

71

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

72

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

73

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

(read)
(write)

Child 2

pipefd[0]
pipefd[1]

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

74

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

(read)
(write)

Child 2

pipefd[0]
pipefd[1]

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

75

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

(read)
(write)

Child 2

pipefd[0]
pipefd[1]

User

int pipefd[2];
pid_t ls_pid, wc_pid;

pipe(pipefd);
// CHILD PROCESS: ls
if ((ls_pid = fork()) == 0) {
 close(1);
 dup2(pipefd[1], 1);
 close(pipefd[1]);
 close(pipefd[0]);
 execl("/bin/ls", "ls", "-l", NULL);
 exit(1);
}
// CHILD PROCESS: wc
if ((wc_pid = fork()) == 0) {
 close(0);
 dup2(pipefd[0], 0);
 close(pipefd[0]);
 close(pipefd[1]);
 execl("/usr/bin/wc", "wc", NULL);
 exit(1);
}
// PARENT PROCESS
close(pipefd[0]);
close(pipefd[1]);

Kernel

Parent

pipefd[0]
pipefd[1]

(write)
(read)

0123

76

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

ls -l | wc

Child 1

pipefd[0]
pipefd[1]

(write)
(read)

(read)
(write)

Child 2

pipefd[0]
pipefd[1]

User

0123

77

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(3.4) Case Study:

Interprocess

Communication

0123

78

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interprocess Communication

producer-consumer: one-way communication, i.e., producer

writes date and consumer reads data

can use pipes and get pipelined parallelism

How to communicate with a print server on the same machine?

client-server: two-way communication, i.e., client makes

requests and server sends responses

file system: one program creates a file to be processed by

another program at a later time

these programs do not have to be running at the same time

data needs to be stored persistently (e.g., on disk) and needs

to be named so that it can be located

How to communicate with a print server on a remote machine?

producer-consumer: e.g., Google MapReduce

client-server: e.g., the web

file system: e.g., distributed file server

0123

79

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Producer-Consumer Communication

Kernel

pipe / kernel buffer

write()

read()

data being written and read can be of different sizes

The pipe is implemented with a finite buffer

write() returns immediately if there is space in the buffer

write() blocks if there isn’t enough space in the buffer

read() returns immediately if there is data in the buffer

read() blocks if the buffer is empty

may return less data

ssize_t write(int fd,
 const void *buf,
 size_t count);
ssize_t read(int fd,
 void *buf,
 size_t count);

User

0123

80

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Producer-Consumer Communication

User

Kernel

pipe / kernel buffer

write()

read()

The pipe is implemented with a finite buffer

ssize_t write(int fd,
 const void *buf,
 size_t count);
ssize_t read(int fd,
 void *buf,
 size_t count);

producer and consumer can run at their own pace (they don’t

have to be synchronized or run in lock steps)

producer and consumer may run in parallel, if permitted (see

last page)

when producer finishes, it closes the write end of the pipe

when consumer finishes, it closes the read end of the pipe

0123

81

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Producer-Consumer Communication

User

Kernel

pipe / kernel buffer

write()

read()

The pipe is implemented with a finite buffer

ssize_t write(int fd,
 const void *buf,
 size_t count);
ssize_t read(int fd,
 void *buf,
 size_t count);

there is no difference reading from the pipe or writing to the pipe

but there are differences regarding what system calls are more

likely to work on a file

rewind() and lseek() may return error on pipes if you try to

move the file cursor position beyond the end of the buffer

0123

82

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Client-Server Communication

char req[ReqSize];
char rsp[RspSize]
// ..compute..
// put the request into the buffer
// send the buffer to the server
write(output, req, ReqSize);
// wait for response
read(input, rsp, RspSize);
// ..compute..

char req[ReqSize];
char rsp[RspSize];
// loop waiting for requests
while (1) {
 // read incoming command
 read(input, req, ReqSize);
 // do operation
 // send result
 write(output, rsp, RspSize);
}

Client code: Server code:

assuming that

requests and

responses are

fixed-size

User

Kernel

kernel
buffers

write()
read()read()

write()

(1)

(4) (2)

(3)

What if you want to allow multiple clients to talk to the same

server at the same time?

0123

83

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Client-Server Communication

the server can use the select() system call to identify the

pipe containing the request

char req[ReqSize];
char rsp[RspSize];
FileDescriptor clientInput[NumClients];
FileDescriptor clientOutput[NumClients];
// loop waiting for a req from any client
while ((int index=select(clientInput, NumClients)) >= 0) {
 // read incoming command from a specific client
 read(clientInput[index], req, ReqSize);
 // do operation
 // send result
 write(clientOutput[index], rsp, RspSize);
}

Server code:

client code stays the same

the real select() system call is more messy

Windows has WaitForMultipleObjects()

0123

84

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(3.5) Operating System

Structure

0123

85

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Operating System Structure

e.g., shell, print server, file server

As demonstrated, some OS functionalities can be done in user

space

natural question: how much OS functionalities should be done in

user space

advantage of keeping things in the kernel: fast

disadvantage of keeping things in the kernel: less flexible,

more difficult to innovate

not so easy because modules in kernel have dependencies, and

some require frequent interactions

Is it easy to move OS modules into user space?

Monolithic Kernels

We will take a look at some OS architectures

Microkernel

0123

86

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Monolithic Kernels

System Calls
Exceptions
Interrupts

Hardware Abstraction Layer

Virtual
Memory

File
System

Device Drivers

NetworkingWindow Manager

Buffer Allocation

Processor Scheduling/Synchronization

OS Kernel Structure

Monolithic Kernel: most of the OS functionalities is linked

together inside the kernel

