Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 5 - 6/5/2025)

_) PA2is due at 11:45pm on Tuesday, 7/1/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pa2-submit’ command, the grader will delete them

ﬁ} Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
= although not recommended, you can do your development on a

different platform
Q you must test your code on the "standard" platform because
those are the only platforms the grader is allowed to grade on

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 5 - 6/5/2025)

_) lf you make a submission

= read and understand the ticket in web page
Q save the web page as PDF as record of your submission

— make sure you follow the "Verify Your Ticket" and "Verify
Your Submission' procedure as if you are the grader

— make sure your README file is perfect
Q Iif there is anything you are not sure about, please ask me and

don’t assume that whatever you do will be fine

ﬁ> Remember that you can use your "free late days”
= you don’t need my permissions to use "free late days"
= PA1 is only worth 2.4% of your overall grade and a step in
the grade is 6%
Q you need to decide if it’s worth it to use "free late days"
on something that may not affect your letter grade
= once a "free late day” is used, if assignment is graded, you

cannot take back that "free late day" (AR

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 5 - 6/5/2025)

ﬁ} If you cannot finish PA1, you need to try to get as much partial
credit as you can (or submit by PA2 deadline for -50%)
= if you want the grader to skip a test, you should give yourself 0
points in the corresponding item in pal-README . txt
Q if a grader runs a command and it doesn’t work, the grader
must deduct points according to the grading guidelines

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 5 - 6/5/2025)

ﬁ} PA2 and PA3 are sepeate assignments and they will be graded

separately

= if you only make a PA3 submission, you will get a score of 0
for your PA2 submission

= | would suggest that when you are done with PA2, make a
submission and keep the source in the cs350/pa2 directory and
don’t touch it

= create a ¢s350/pa3 directory by copying everything from the
cs350/pa2 directory and start working on PA3 in the ¢s350/pa3
directory

= Wwhen you are working on PA3 and discovered bugs in your PA2
code, you need modify your PA2 code in both the pa2 directory
and the pa3 directory and make another PA2 submission

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
kthread_join ()

ﬁ} This function suspends the execution of the calling thread until the
target thread (of the same process), indicated by the argument
thread_id, terminates
= [f the thread has already exited, execution should not be

suspended
= [f successful, the function returns zero
= otherwise, -1 should be returned to indicate an error

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_join ()

kthread_join(int thread_id):

check if thread_id is wvalid

create a thread pointer t

loop through all threads to find target thread id (parameter)
make t points to target thread with thread_id

if not found
return -1

while (t->tid == thread_id and t is not in the TZOMBIE state)
make t sleep using sleep() function with a lock // read sleep() code

if state of t is zombie
clearThread(t) ;

return 0

= Note: the above is not the only way to join threads
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Errors

ﬁ} You are supposed to read the code of the test programs
= threadtestl.c
= threadtest2.c
= threadtest3.c

ﬁ> You are supposed to be reading the XV6 book: xv6-revi1.pdf
and the XV6 source code to understand how the scheduler works

Copyright © William C. Cheng

$ threadtestl
3 threadtestl:
thread in main
3 threadtestl:
3 threadtestl:
3 threadtestl:
Got id : -1

3 threadtestl:
Got id : -1
Finished.

3 threadtestl:

Introduction to Operating Systems - CSCI 350

Common Errors

unknown sys call

-1,process 3

unknown
unknown
unknown

unknown

unknown

sys
sys
sys

sys

sys

call
call
call

call

call

23
22
22
25

25

24

ﬁ} Make sure to implement system calls for all kthread functions

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Errors

cpu with apicid 0: panic: acquire
80104b85 80104334 80100226 80101a78 8010l1lc4a ...

OR:

cpu with apicid 0: panic: release
80104cc8 80103b51 80105dec 80105129 80106338 801060eb ...

ﬁ} panic: acquire and panic: release errors mean that program fails to
acquire lock because it is already acquired earlier or it cannot
released lock because it is already released

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Errors

panic: sched locks

G> this means process holding multiple locks
—= before calling sched () make sure to release all other locks

ac (ptable)
ac (mtable)

rel (mtable)
rel (ptable)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(3.2) Input/Output

Copyright © William C. Cheng

Input/Output: UNIX I/O

Introduction to Operating Systems - CSCI 350

devices?

) How to interact with I/O \

APPs: compilers, web servers,
databases, word processing,
web browsers, email clients

/

= a disk is addressed in fixed
sized blocks/chunks
Q only returns data when asked
= a hetwork sends and receives

Portable OS Library

System Call Interface

Portable OS Kernel

a stream of variable sized packets
Q returns data unprompted /

HW: keyboard, mouse, disk
ethernet, wifi, display,
microphone, camera, etc.

= keyboard returns individual
characters as keys are pressed
Q returns data unprompted

ﬁ> When a new type of device is invented, it would be bad if new

system call interface has to be upgraded to handle that device

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(3.2) Input/Output: UNIX I/O

ﬁ} One of the primary innovation in UNIX was to regularize all device
input and output behind a single common interface
= UNIX tooks this one step further to use the same interface for
reading and writing files and for interprocess communication

ﬁ> This approach was so successful and pretty much all systems
follow this today

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Basic Ideas In UNIX I/O Interface

ﬁ} Uniformity: all operations on all files, devices use the same set of
system calls: open (), close (), read (), write ()

ﬁ} Open before use: open returns a handle (file descriptor) for use in
later calls on the file

ﬁ> Byte-oriented abstraction: even for block-oriented devices

ﬁ} Kernel-buffered read: allows the read () system calls to be the
same for devices with streaming read and block reads
= |f no data is available to be returned, read () blocks

ﬁ> Kernel-buffered write: outgoing data is stored in a kernel buffer for
transmission when the device becomes available
= this decouples the application from the device so they can
go at their own speeds

ﬁ> Explicit close: to clean up the open file descriptor and related
kernel data structures (D

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

UNIX File System Interface

— UNIX file open () system call is a Swiss Army knife:
= open the file, return file descriptor
= options:

Q

© 0 0O O 0O O

Copyright © William C. Cheng

if file doesn’t exist, return an error

iIf file doesn’t exist, create file and open it
If file does exist, return an error

If file does exist, open file

iIf file exist but isn’t empty, nix it then open
iIf file exist but isn’t empty, return an error

Introduction to Operating Systems - CSCI 350

Interface Design Question
I:> Why not have separate syscalls for open (), create (), exists () ?

if (!exists(name)) {
create(name); // can create fail?

fd = open(name); // does the file exist?

= the problem with the above code is that in a multiuser system,
exists () and create () heed to be done in an atomic operation
Q another user may create the file before your create () call
Q another user may delete the file before your open () call

_) UNIX’s approach is to implement an atomic open ()

ﬁ> open () returns a file descriptor that will continue to work until

the application closes the file
= even if another user has deleted the file from the file system
= the file system does not actually reclaim the associated

disk blocks until the file is closed gy

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Files

> Our primes program wasn’t too interesting
= it has no output!
= cannot even verify that it's doing the right thing
= other program cannot use its resulit
= how does a process write to someplace outside the process?

ﬁ} The notion of a file is our Unix system’s sole abstraction for this
concept of "someplace outside the process"
= modern Unix systems have additional abstractions

_ Files

= abstraction of persistent data storage
—= means for fetching and storing data outside a process
Q including disks, another process, keyboard, display, etc.
Q need to name these different places
<& hierarchical naming structure
Q part of a process’s extended address space (i.e., data |
structures in kernel space for this process) 3
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Naming Files

) Directory system
= shared by all processes running on a computer
Q although each process can have a different view
Q Unix provides a means to restrict a process to a subtree
& by redefining what "root"” means for the process
— name space is outside the processes
Q a user process provides the name of a file to the OS
Q the OS returns a handle to be used to access the file
& after it has verified that the process is allowed access
along the entire path, starting from root
Q user process uses the handle to read/write the file
& avoid access checks

ﬁ} Using a handle to refer to an object managed by the kernel is an
important concept
— handles are essentially an extension to the process’s

address space / @!,}_
=

Q can even survive execs!
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The File Abstraction
_) Afile is a simple array of bytes

ﬁ> Files are made larger by writing beyond their current end
ﬁ> Files are named by paths in a naming tree

) System calls on files are synchronous

) File API

= open (), read (), write (), close()
= e.(J., cat

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

File Descriptors

int £d;

char buffer[1024];

int count;

if ((fd = open("/home/bc/file", O_RDWR)
// the file couldn’t be opened
perror (" /home/bec/£file") ;
exit (1) ;

}

if ((count = read(fd, buffer, 1024)) == -1) {
// the read failed
perror ("read") ;
exit (1) ;

}

// buffer now contains count bytes read from the file

= what is O_ RDWR?

= what does perror () do?

= cursor position in an opened file depends on what
functions/system calls you use |
O what about C++? 3 2?2;

Copyright © William C. Cheng

-1) {

Introduction to Operating Systems - CSCI 350

Standard File Descriptors

_, Standard File Descriptors
= 0 is stdin (by default, the keyboard)
= 1 is stdout (by default, the display)
= 2 is stderr (by default, the display)

_) The "cat" program:

main () {
char buf[BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read (0, buf, sizeof(buf))) > 0)
if (write(l, buf, n) !'= n) {
(void)write (2, note, strlen(note));
exit (EXIT_FAILURE) ;

}
return (EXIT_SUCCESS) ;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Back to Primes

ﬁ} Have our primes program write out the solution, i.e., the primes|[]
array

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}

if (write(l, prime, nprimes*sizeof(int)) == -1) {
perror ("primes output");
exit (1) ;

}

return (0) ;

}

= the output is not readable by human

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}
for (i=0; i<nprimes; i++) {

printf ("%d\n", prime[i]);
}

return (0) ;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Allocation of File Descriptors

ﬁ} Whenever a process requests a new file descriptor, the lowest
numbered file descriptor not already associated with an open
file is selected; thus

#include <fcntl.h>
#include <unistd.h>

close (0);
fd = open("file", O_RDONLY),;

= will always associate "file" with file descriptor 0 (assuming
that the open succeeds)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Running It

if (fork() == 0) {
/* set up file descriptor 1 in the child process */
close(1l);
if (open("/home/bc/Output”", O_WRONLY) == -1) {
perror (" /home/bc/Output") ;
exit (1) ;
}

execl ("/home/be/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid '= wait (0)) /* ignore the return code */

= close (1) removes file descriptor 1 from extended address

space

file descriptors are allocated /owest first on open ()

extended address space survives execs

new code is same as running |
% primes 300 > /home/bc/Output ﬂgg?

Copyright © William C. Cheng

[

[

[

Introduction to Operating Systems - CSCI 350

/O Redirection

% primes 300 > /home/bc/Output

ﬁ> The ">" parameter in a shell command that instructs the command
shell to redirect the output to the given file
= [If ">" weren’t there, the output would go to the display

G> Can also redirect input
% cat < /home/bc/Output
—= when the "cat"” program reads from file descriptor 0, it would
get the data byes from the file "/home/bc/Output”

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

File Descriptor Table

_) Afile descriptor refers not just to a file
= [t also refers to the process’s current context for that file
Q includes how the file is to be accessed (how open () was
invoked)
Q cursor position

ﬁ} Context information must be maintained by the OS and not

directly by the user program

= |et’s say a user program opened a file with O_RDONLY

= |ater on it calls write () using the opened file descriptor

—= how does the OS knows that it doesn’t have write access?
QO stores O RDONLY in context

= if the user program can manipulate the context, it can
change O _RDONLY to O _ RDWR

= therefore, user program must not have access to context!
Q all it can see is the handle
O the handle is an index into an array maintained for the (/7

brocess in kernel’s address space
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

File Descriptor Table

File-descriptor “:LS is Ye_tt
table (per process) another pointer
0

"cursor"

File

riptor
descripto \» ref |access| file | inode

count | mode |location| pointer

1
2
3
-

User
address space

nh-1

system file table (system-wide)

Kernel address space

= open file context is not stored directly into the file-descriptor
table

I
Q one-level of indirection y ..’
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Copyright © William C. Cheng

()
int £d;
open () = fd = open ("foo.txt");
char buf[512];
read (fd, buf, 100);
close (£d) ;
_ J - -
Applications
OS
4) 4)
Process Files o o o
Subsystem Subsystem
_ J _

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read(fd, buf, 100);
close (£d) ;

Applications

open ()
_
trap
()
Process
| Subsystem |

Copyright © William C. Cheng

Files

| Subsystem

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

= £d = open ("foo.txt");
char buf[512];
read (fd, buf, 100);
close (£d) ;

trap Applications

())
check
access
rights...
Process Files © o o
Subsystem Subsystem
_ J _ J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read (fd, buf, 100);
close (£d) ;

Applications

open ()
_ J
trap
()
Process
| Subsystem |

Copyright © William C. Cheng

e ; h
= setup
—FK polymorphic
_ file obj function pointers
Files e o o -
at various levels
| Subsystem

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read(fd, buf, 100);
close (£d) ;

Applications

Process

| Subsystem |

Copyright © William C. Cheng

de!!!!!—}

file obj

Files

| Subsystem

/

open ()

fd

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

= £d = open ("foo.txt");

char buf[512];
read (fd, buf, 100);
close (£d) ;

Applications

Process

| Subsystem |

W

Copyright © William C. Cheng

fd=—+

Files

file obj

| Subsystem }

Introduction to Operating Systems - CSCI 350

Put It All Together

Copyright © William C. Cheng

()
open () int £d;
r d() fd = open("foo.txt");
&S char buf[512];
= read(fd, buf, 100);
close (£d);
_ J . .
Applications
OS
() ()
a—='
file obj
Process Files o o o
Subsystem Subsystem
_ J _

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;
fd = open("foo.txt");
char buf[512];

= read(fd, buf, 100);

close (£d) ;

Applications

open ()
read ()
_
trap
()
Process
| Subsystem |

Copyright © William C. Cheng

de!!!!!—}

file obj

Files

| Subsystem

/

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;
fd = open("foo.txt");
char buf[512];

= read(fd, buf, 100);

close (£d) ;

Applications

<100 bytes
Process
| Subsystem |

Copyright © William C. Cheng

de!!!!!—}

file obj

Files

| Subsystem

/

Introduction to Operating Systems - CSCI 350

Put It All Together

Process

Copyright © William C. Cheng

| Subsystem |

e A
open() int £d;
read () fd = open("foo.txt");
ea char buf[512];
close () read (fd, buf, 100);
= close (£d) ;
\ Y, . .
Applications
OS
e) e)

fd=—+

file obj

Files

| Subsystem

/

Introduction to Operating Systems - CSCI 350

Put It All Together

open ()
read ()

close ()

trap

int £d;

fd = open("foo.txt");
char buf[512];

read (fd, buf, 100);

= close (£4) ;

Applications

Process

Copyright © William C. Cheng

| Subsystem |

de!!!!!—}

file obj

Files

| Subsystem

/

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

fd = open("foo.txt");
char buf[512];

read (fd, buf, 100);

= close (£4) ;

Applications

Process

| Subsystem |

Copyright © William C. Cheng

file obj

Files

| Subsystem

/

Introduction to Operating Systems - CSCI 350

Put It All Together

int £d;

fd = open("foo.txt");
char buf[512];
close () read (fd, buf, 100);
= close (£fd) ;

Applications
0S
= file object not
deallocated if
file obj ref count > 0
Process Files e o o g
| Subsystem | | Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redirecting Output ... Twice

ﬁ} Every call to open () creates a new entry in the system file table

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child
process */
close(1l);
close (2);

if (open("/home/bc/Output", O_WRONLY) == -1) {
exit (1) ;

}

if (open("/home/bc/Output", O_WRONLY) == -1) {
exit (1) ;

}

execl ("/home/bc/bin/program", "program", 0);
exit (1) ;
}

/* parent continues here */

—= stdout and stderr both go into the same file
Q would it cause any problem? i

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redirected Output

File-descriptor
table (per process)
X
X
-
c.:]..;se (1);
close(2);
Ch“d’S -> if (open (
"/home/bc/Output",
address space O_WRONLY) == -1) {
exit (1);
}
if (open (
"/home/bc/Output",
O_WRONLY) == -1) {
exit(1l);
Kernel address space }
execl(...)
-

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redirected Output

ref mode loc inode

File-descriptor

inode
File descriptor 1 ﬁ table (per proceSS)I> 1 WRONLY | 0 pointer

~T—>
X

close (1) ;

close (2);

Child’s if (open(

"/home/bc/Output",

address space O_WRONLY) == -1) {
exit (1);

}

-» if (open (
"/home/bc/Output",
O_WRONLY) == -1) {

exit (1) ;

Kernel address space }

execl(...)

L

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redirected Output

ref mode loc inode
File-descriptor inode
File descriptor 1 ﬁ table (per proceSS)I> 1 WRONLY | 0 pointer
\»
_J/» \»
. . inode
File descriptor 2 1 WRONLY 0 pointer
4
c.:]..;se (1) ;
close (2);
Child,s if (open (
"/home/bc/Output",
address space O_WRONLY) == -1) {
exit (1);
}
if (open (
"/home/bc/Output",
O_WRONLY) == -1) {
exit (1) ;
Kernel address space }

-ﬁ execl(...)

Copyright © William C. Cheng

Redirected Output

Introduction to Operating Systems - CSCI 350

File descriptor 1 ﬁ
File descriptor 2 —J

Child’s new
address space

[

\

File-descriptor

table (per process)f>

i ~__

ref mode loc inode
inode
1 WRONLY 0 pointer
1 | wRONLY | o | Inode
pointer

Kernel address space

= remember, extended address space survives execs
= let’'s say we write 100 bytes to stdout

Copyright © William C. Cheng

Redirected Output After Writing 100 Bytes

Introduction to Operating Systems - CSCI 350

File descriptor 1 ﬁ
File descriptor 2 —J

Child’s new

[

\

address space

File-descriptor

table (per process)f>

i ~__

ref mode loc inode
inode
1 WRONLY | 100 pointer
1 | wRONLY | o | Inode
pointer

Kernel address space

—= write () to fd=2 will wipe out data in the first 100 bytes
Q that may not be the intent

Copyright © William C. Cheng

Sharing Context Information

if (fork() == 0) {

}

/* set up file descriptors 1 and 2 in the child
process */

close(1l);

close (2);

if (open("/home/bc/Output”", O_WRONLY) == -1) {

exit (1) ;

}

dup (1) ;

execl ("/home/bec/bin/program", "program", O0);

exit (1) ;

/* parent continues here */

Copyright © William C. Cheng

= use the dup () system call to share context information
Q if that’s what you want

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Redirected Output After Dup

Child’s
address space

Copyright © William C. Cheng

File-descriptor
table (per process)

X
X

Kernel address space

close(1l);

close (2);

= if (open (
"/home/bc/Output",
O_WRONLY) == -1) {

exit (1);

}
dup (1) ;

Introduction to Operating Systems - CSCI 350

Redirected Output After Dup

File-descriptor
File descriptor 1 . table (per process) ref mode loc inode
T inode
% 1| WRONLY | 0 | Joec,
s -
Child’s
address space PP
if (open (
"/home/bc/Output”,
O_WRONLY) == -1) ({
exit (1);
}
Kernel address space = dup();
.

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redirected Output After Dup

File-descriptor
File descriptor 1 . table (per process) ref mode loc inode
T 2 | wronLy | o | Inode
M pointer
File descriptor 2
s -
Child’s
address space PP
if (open (
"/home/bc/Output",
O_WRONLY) == -1) ({
exit (1);
}
Kernel address space >l ek

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Redirected Output After Dup

File-descriptor
File descriptor 1 ﬁ table (per process) ref mode loc inode
T 2 | wRoNLY | o [node
_J/"’ pointer
File descriptor 2
- -
Child’s
address space PR
"/home/bc/Output",
O_WRONLY) == -1) {
exit(1l);
}
dup2 (1, 2);
Kernel address space
_

ﬁ} dup2 (o1ld£fd, newfd) specifies a new file descriptor (if newfd (i\
@ —

is currently open, close it first) NS

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Parent And Child Communicate Over A File

ﬁ} It would be useful to be able to share file context information with
a child process
— wWhen fork () is called, the child process gets a copy of the
parent’s file descriptor table

int logfile = open("log", O_WRONLY);

if (fork() == 0) {
/* child process computes something, then does: */
write (logfile, LogEntry, strlen(LogEntry));

é;it(O);
}

/* parent process computes something, then does: */
write(logfile, LogEntry, strlen (LogEntry));

= remember, extended address space survives execs
Q also fork ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Parent And Child Communicate Over A File

Parent’s
address space

J int logfile = open("log",

O_WRONLY) ;
if (fork() == 0) {
write (logfile, LogEntry,
strlen (LogEntry));

<.a:.::|:.t (0);
}
Kernel address Space write (logfile, LogEntry,

strlen (LogEntry));

L

= parent and child processes get separate file descriptor
By
table but share extended address space NN

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Parent And Child Communicate Over A File

logfile ——< ref mode loc inode
— inode
1 WRONLY | 0 pointer

Parent’s
address space

r

int logfile = open("log",
O_WRONLY) ;

mf- if (fork() == 0) {

write (logfile, LogEntry,
strlen (LogEntry));

exit (0);

}
write (logfile, LogEntry,
Kernel address space rton (tosEneaa Y
.
= parent and child processes get separate file descriptor (i\
table but share extended address space 553 }"’J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Parent And Child Communicate Over A File

logfile ——

Parent’s
address space

4

logfile -J

Child’s
address space

Kernel address space

ref mode loc inode
inode
2 WRONLY)
O 0 pointer
p
int logfile = open("log",
O_WRONLY) ;
if (fork() == 0) {

write (logfile, LogEntry,
strlen (LogEntry));
exit (0);
}

== write(logfile, LogEntry,

L

strlen (LogEntry));

= parent and child processes get separate file descriptor

|
table but share extended address space indirectly 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Parent And Child Communicate Over A File

logfile ——< ref mode loc inode
— inode
2 | WRONLY | 0 | oooe,
Parent’s
address space
i —

logfile -J (

int logfile = open("log",
O_WRONLY) ;

if (fork() == 0) {

Ch i Id ,S write (logfile, LogEntry,

strlen (LogEntry));
address space

<.a:.::|:.t (0);
}
Kernel address Space * write (logfile, LogEntry,

strlen (LogEntry));

L

= parent and child processes can communicate using such a :
shared file descriptor, although difficult to synchronize "
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Interprocess Communication With Pipes

ﬁ} Pipes: a UNIX pipe is a kernel buffer with two file descriptors,
one for writing and one for reading

producer | write E) read |consumer
) process

process

= the producer process behaves as if it has a file descriptor to a

file that has been opened for writing
= the consumer process behaves as if it has a file descriptor to a

file that has been opened for reading

ﬁ> The pipe () system call creates a pipe object in the kernel and
returns (via an output parameter) the two file descriptors that
refer to the pipe
= onhe, set for write-only, refers to the input side
= the other, set for read-only, refers to the output side

= a pipe has no name, cannot be passed to another process [//AA\
PIp P P B @’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Pipes

int p[2]; // array to hold pipe’s file descriptors
pipe(p); // creates a pipe, assume no errors

// p[0] refers to the read/output end of the pipe

// P[1l] refers to the write/input end of the pipe
if (fork() == 0) {

char buf[80];

close(p[l]); // not needed by the child

while (read(p[0], buf, 80) > 0) {

// use data obtained from parent

}
exit (0); // child done

} else {
char buf[80];
close(p[0]); // not needed by the parent
for (;;) {
// prepare data for child

Q;ite(p[l], buf, 80);
}
}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Parent’s
p

address space int pl2];
== pipe (p);
if (fork() == 0) {
close(p[1]);
while (read(p[O],
buf, 80) > 0) {

}
exit (0);

} else {
close(p[0]);
for (;;) {

write (p[1], buf, 80);

Kernel address space)
}
.

= parent creates a pipe object in the kernel |
)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Pipes

— (read) 4—{ b
p[1] ——
Parent’s
-
address space int pl2];
pipe (p);
== if (fork() == 0) {
close(p[1l]);
while (read(p[O],
buf, 80) > 0) {

,
exit (0);

} else {
close(p[0]);
for (;;) {

Q;ite(p[ll, buf, 80);
Kernel address space)
}
§
= parent creates a pipe object in the kernel Cl}
(o)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

— (read) <
p{?} — f_» (write) \j))E
p ——
Parent’s)
g
address space > (read) - / -
/‘> (write) T pipe (p) ; ’
{/ > if (fork() == 0) {
- close(p[1]);
p[O]-/ while (read(p[O],
p[1]—/ buf, 80) > 0) {
ot
. , exit (0);
Chlld S } else {
close(p[0]);
address space for (;;)
v.n'::l:.te(p[ll, buf, 80);
Kernel address space)
}

3

table and end up sharing the pipe object o2 /.,2;

Copyright © William C. Cheng

= child processes gets a copy of the parent’s file descriptor @\
0 A

pP[0] —
p[1] —

Parent’s
address space

Introduction to Operating Systems - CSCI 350

Child’s
address space

~—\

= if the child just wants to read from the pipe, it must close

napy

r

— (read)
'—r_» (erte)

L —P> (read) <

/‘» (e) \

/

Kernel address space

-

the write-end of the pipe

Copyright © William C. Cheng

L

int p[2];
pipe (p) ;
if (fork() == 0) {
close(p[1]);
while (read(p[O],
buf, 80) > 0) {

}
exit (0);

} else {
close(p[0]);
for (;;) {

write (p[1], buf, 80);
}
}

Introduction to Operating Systems - CSCI 350

Pipes

(r&) *
TR < e o L AN
b[] —— -
Parent’s }
(
address space || » (read) - . a1
] (wifle) —— int pl2];
’ pipe (p) ;
{/ if (fork() == 0) {
close(p[1l]);
p[O]-/ while (read(p[O],
p[1]—/ buf, 80) > 0) {
e
- ’ exit (0);
Chlld S } else {
address space SN
v.n':':l:.te(p[ll, buf, 80);
Kernel address space)
}
.
= |f the parent just wants to write into the pipe, it must close (i\
the read-end of the pipe 643 @

Copyright © William C. Cheng

pP[0] —
p[1] —

Parent’s
address space

Pipes

Introduction to Operating Systems - CSCI 350

Child’s
address space

Copyright © William C. Cheng

-—f_» (write) —
r
//—> ((read))] int p[2];
L~ e pipe (p) ;
if (fork() == 0) {
close(p[1]);
while (read(p[O],
buf, 80) > 0) {
}
exit (0);
} else {
close(p[0]);
for (;;) {
write(p[1l], buf, 80);
Kernel address space)
}
_

Introduction to Operating Systems - CSCI 350

(3.3) Case Study:
Implementing a Shell

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(3.3) Implementing a Shell
_) A basic shell:

char *prog, **args;

while (readAndParseCmdLine (&prog, &args)) {
int child_pid = fork();
if (child_pid == 0) {
execv (prog, args),;
exit (1) ;
} else {
while (child_pid != wait (0))
}
}

ﬁ> A program can send its output to a file (using I/O redirection)

ﬁ> A program can read its input from a file (using I/O redirection)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing a Shell

ﬁ} A program can be a file of commands (i.e., a shell script)
= the first line of a shell script must be "#!interpreter", e.g.,
Q #!'/bin/bash
#!/bin/tcsh
#!'/bin/tecsh -£
#!/usr/bin/perl
#!/usr/bin/python
#!/usr/bin/python3
he shell would pass the content of the file to the interpreter

© 0 0O O O

im

frm—

ﬁ} The output of one program can be the input to another program
= if user types, "1s -1 | wc", the code in the shell will be more
complicated since you have to create two child processes
and a pipe object and hook things up just right
= cah use this trick to create a pipeline
Q Ex:"cpp file.c | cparse | cgen | as > file.o"

<& pipelined parallelism (at the process level)
S

Copyright © William C. Cheng

1ls

int pipefd[2];
pid_t 1s_pid, wc_pid;

pipe (pipefd);

// CHILD PROCESS: 1s

if ((1ls_pid = fork())
close(1l);
dup2 (pipefd[1], 1);
close (pipefd[1]);
close (pipefd[0]);
execl ("/bin/1s",
exit(1l);

== 0) {

"ls", "_l"

}
// CHILD PROCESS: wc

if ((wec_pid fork())
close (0);
dup2 (pipefd[0], O0);
close (pipefd[0]);
close (pipefd[1]);
execl ("/usr/bin/wec",
exit (1);

0) {

"WC w ,

}
// PARENT PROCESS

close (pipefd[0]);
close (pipefd[1]);

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

-1

wWC

pipefd[0] —
pipefd[1] —

(read)
(write)

'

Parent

NULL) ;

14

—

NULL) ;

1ls

int pipefd[2];
pid_t 1s_pid, wc_pid;

pipe (pipefd);

// CHILD PROCESS: 1s

if ((1s_pid = fork()) == 0) {
close(1l);
dup2 (pipefd[1], 1);
close (pipefd[1]);
close (pipefd[0]);
execl ("/bin/1s",
exit(1l);

"ls", "_l"

}
// CHILD PROCESS: wc

if ((wec_pid = fork()) == 0) {
close (0);
dup2 (pipefd[0], O0);
close (pipefd[0]);
close (pipefd[1]);
execl ("/usr/bin/wec",
exit (1);

"WC w ,

}
// PARENT PROCESS

close (pipefd[0]);
close (pipefd[1]);

Copyright © William C. Cheng

-1

, NULL) ;

NULL) ;

Introduction to Operating Systems - CSCI 350

wWC

pipefd[0] —
pipefd[1] —J\
N\

(read)
(write)

'

Parent

pipefd[0] —<
pipefd[1] —\
N\

Child 1

(read) -
(write)

—

1ls

int pipefd[2];
pid_t 1s_pid, wc_pid;

pipe (pipefd);

// CHILD PROCESS: 1s

if ((1s_pid = fork()) == 0) {
close(1l);
dup2 (pipefd[1], 1);
close (pipefd[1]);
close (pipefd[0]);
execl ("/bin/1s",
exit(1l);

"ls", "_l"

}
// CHILD PROCESS: wc

if ((wec_pid = fork()) == 0) {
close (0);
dup2 (pipefd[0], O0);
close (pipefd[0]);
close (pipefd[1]);
execl ("/usr/bin/wec",
exit (1);

"WC w ,

}
// PARENT PROCESS

close (pipefd[0]);
close (pipefd[1]);

Copyright © William C. Cheng

-1

, NULL) ;

NULL) ;

Introduction to Operating Systems - CSCI 350

wC
p!pefd[O] \\
pipefd[1] \\\» (read) -
p!pefd[O] \\
pipefd[1] _» (read) <

—

1ls

int pipefd[2];
pid_t 1s_pid, wc_pid;

pipe (pipefd);

// CHILD PROCESS: 1s

if ((1s_pid = fork()) == 0) {
close(1l);
dup2 (pipefd[1], 1);
close (pipefd[1]);
close (pipefd[0]);
execl ("/bin/1s",
exit(1l);

"ls", "_l"

}
// CHILD PROCESS: wc

if ((wec_pid = fork()) == 0) {
close (0);
dup2 (pipefd[0], O0);
close (pipefd[0]);
close (pipefd[1]);
execl ("/usr/bin/wec",
exit (1);

"WC w ,

}
// PARENT PROCESS

close (pipefd[0]);
close (pipefd[1]);

Copyright © William C. Cheng

-1

, NULL) ;

NULL) ;

Introduction to Operating Systems - CSCI 350

wWC

pipefd[0] —
pipefd[1] —J\
N\

(read)
(write)

'

Parent

pipefd[0] —<

phﬁdﬁ}—-}r_*> ﬁgﬁ)
_>

Child 1
—)

ls -1
int pipefd[2];
pid_t 1s_pid, wc_pid;
pipe (pipefd);
// CHILD PROCESS: 1ls
if ((1s_pid = fork()) == 0) {

}

close(1l);

dup2 (pipefd[1], 1);

close (pipefd[1]);

close (pipefd[0]);
execl("/bin/1ls", "1ls", "-1"
exit(1l);

// CHILD PROCESS: wc
if ((wec_pid = fork()) == 0) {

}

close (0);

dup2 (pipefd[0], O0);

close (pipefd[0]);

close (pipefd[1]);

execl (" /usr/bin/wc", "wc",
exit (1);

// PARENT PROCESS
close (pipefd[0]);

close (pipefd[1]);

Copyright © William C. Cheng

, NULL) ;

NULL) ;

wWC

Introduction to Operating Systems - CSCI 350

pipefd[0] —
pipefd[1] —

Parent

pipefd[0] —<
pipefd[1] —

Child 1

pipefd[0] —<
pipefd[1] —

Child 2

User

(read)

'

(write)

~—p|

(read)

(write)

Kernel

ls -1
int pipefd[2];
pid_t 1s_pid, wc_pid;
pipe (pipefd);
// CHILD PROCESS: 1ls
if ((1s_pid = fork()) == 0) {

}

close(1l);

dup2 (pipefd[1], 1);

close (pipefd[1]);

close (pipefd[0]);
execl("/bin/1ls", "1ls", "-1"
exit(1l);

// CHILD PROCESS: wc
if ((wec_pid = fork()) == 0) {

}

close (0);

dup2 (pipefd[0], O0);

close (pipefd[0]);

close (pipefd[1]);

execl (" /usr/bin/wc", "wc",
exit (1);

// PARENT PROCESS
close (pipefd[0]);

close (pipefd[1]);

Copyright © William C. Cheng

, NULL) ;

NULL) ;

wWC

Introduction to Operating Systems - CSCI 350

pipefd[0] —
pipefd[1] —

Parent

pipefd[0] —<
pipefd[1] —

Child 1

pipefd[0] —<
pipefd[1] —

Child 2

User

(read)

'

(write)

~—p|

(read)

(write)

Kernel

Introduction to Operating Systems - CSCI 350

ls -1 wC
int pipefd[2];
pid_t 1s_pid, wc_pid;
pipefd[0] —
pipe (pipefd) ; pipetd[i] \§~> (read) _|+——
// CHILD PROCESS: 1s ~—> (write)
if ((ls_pid = fork()) == 0) { Parent
close(1l);
dup2 (pipefd[1], 1);
close (pipefd[1]);
close (pipefd[0]); _ .
execl ("/bin/1ls", "1ls", "-1", NULL); P;ngm\\
exit (1) ; T (‘:E)
) Child1 ||| —=2
// CHILD PROCESS: wc I
if ((wec_pid = fork()) == 0) {
close (0); _é)) I
dup2 (pipefd[0], 0);
close (pipefd[0]); -——
execl ("/usr/bin/wec", "wc", NULL); pipefd[1]\\. ; TS
exit (1) ; . \\> (&)
} Child 2
// PARENT PROCESS
close (pipe£d[0]) ; User |Kernel
close (pipefd[1]); 3 ‘g

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

ls -1 wC
int pipefd[2];
pid_t 1s_pid, wc_pid;
p!pefd[O]\

pipe (pipefd) ; P'Pefd["]\{\» ST
// CHILD PROCESS: ls ~—> (&)
if ((1ls_pid = fork()) == 0) { Parent

close(1l);

dup2 (pipefd[1], 1);

close (pipefd[1]);

close (pipefd[0]); :

execl("/bin/ls", "lS", "—l", NULL); p!pefd[O]\

exit (1) ; Pipefd[i] \§\> ((‘:E))
} : ' =
// CHILD PROCESS: wc Chlld1
if ((wec_pid = fork()) == 0) {

close (0); _é))

dup2 (pipefd[0], 0);

close (pipefd[0]); -———
close (pipefd[1]); pipefd[0] —
execl ("/usr/bin/wec", "wc", NULL); pipefd[1]\\. ; 5
exit(1l); . \\> (v@)
} Child 2
// PARENT PROCESS
close (pipe£d[0]); User |Kernel
close (pipefd[1]); 3 ‘g

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(3.4) Case Study:
Interprocess

Communication

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Interprocess Communication

ﬁ} How to communicate with a print server on the same machine?

= producer-consumer: one-way communication, i.e., producer
writes date and consumer reads data
Q can use pipes and get pipelined parallelism

= client-server: two-way communication, i.e., client makes
requests and server sends responses

= file system: one program creates a file to be processed by
another program at a later time
Q these programs do not have to be running at the same time
Q data needs to be stored persistently (e.g., on disk) and needs

to be named so that it can be located

ﬁ> How to communicate with a print server on a remote machine?
= producer-consumer: e.g., Google MapReduce
= client-server: e.g., the web
= file system: e.g., distributed file server

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Producer-Consumer Communication

| | [1]
1 []
write ()
User
Kernel -
ssize_t write(int £d,
— const void *buf,
size_t count);
i ssize_t read(int £d,
pipe / kernel buffer void *buf,
size_t count);

ﬁ> The pipe is implemented with a finite buffer
= data being written and read can be of different sizes
—= write () returns immediately if there is space in the buffer
— write () blocks if there isn’t enough space in the buffer
—= read () returns immediately if there is data in the buffer
Q may return less data
= read () blocks if the buffer is empty

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Producer-Consumer Communication

| | [1]
1 []
write ()
User
Kernel -
ssize_t write(int £d,
— const void *buf,
size_t count);
i ssize_t read(int £d,
pipe / kernel buffer void *buf,
size_t count);

ﬁ> The pipe is implemented with a finite buffer
= producer and consumer can run at their own pace (they don’t
have to be synchronized or run in lock steps)
= producer and consumer may run in parallel, if permitted (see
last page)
= when producer finishes, it closes the write end of the pipe
= when consumer finishes, it closes the read end of the pipe (;’\

3

80

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Producer-Consumer Communication

| | [1]
1 []
write ()
User
Kernel -
ssize_t write(int £d,
— const void *buf,
size_t count);
i ssize_t read(int £d,
pipe / kernel buffer void *buf,
size_t count);

) The pipe is implemented with a finite buffer

= there is no difference reading from the pipe or writing to the pipe
= but there are differences regarding what system calls are more
likely to work on a file
Q rewind() and lseek () may return error on pipes if you try to
move the file cursor position beyond the end of the buffer

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Client-Server Communication

(1) read () [(3) read()
write() | (4) write() | (2) []
User]]
Kernel p
< = assuming that
kernel requests and
buffers responses are
| - i
fixed-size
.
Client code: Server code:
char req[RegSize]; char req[ReqgSize];
char rsp[RspSize] char rsp[RspSize];
// ..compute.. // loop waiting for requests
// put the request into the buffer while (1) {
// send the buffer to the server // read incoming command
write (output, req, ReqgSize); read (input, req, ReqgSize);
// wait for response // do operation
read (input, rsp, RspSize); // send result

// ..compute..

write (output, rsp, RspSize); |
(B
82 J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Client-Server Communication

ﬁ} What if you want to allow multiple clients to talk to the same
server at the same time?
= the server can use the select () system call to identify the
pipe containing the request
= client code stays the same

Server code:

char req[ReqgSize];
char rsp[RspSize];
FileDescriptor clientInput [NumClients];
FileDescriptor clientOutput [NumClients];
// loop waiting for a req from any client
while ((int index=select (clientInput, NumClients)) >= 0) {
// read incoming command from a specific client
read (clientInput [index], req, ReqgSize);
// do operation
// send result
write (clientOutput [index], rsp, RspSize);

}

= the real select () system call is more messy |
Q Windows has waitForMultipleObjects () 3 @J
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(3.5) Operating System
Structure

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Operating System Structure

ﬁ} As demonstrated, some OS functionalities can be done in user

space
= e.g., shell, print server, file server
= natural question: how much OS functionalities should be done in

user space
Q advantage of keeping things in the kernel: fast
Q disadvantage of keeping things in the kernel: less flexible,

more difficult to innovate

ﬁ> Is it easy to move OS modules into user space?
= nhot so easy because modules in kernel have dependencies, and

some require frequent interactions

ﬁ> We will take a look at some OS architectures
= Monolithic Kernels
= Microkernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Monolithic Kernels

OS Kernel Structure
[Window Manager] [Networking]

File
System
Virtual I >[Device Drivers]
Memory
(™\ v r/
System Calls —:l _
Exceptions Buffer Allocation]4—

Interrupts |

k J BE:

Processor Scheduling/Synchronization

y
Hardware Abstraction Layer
ﬁ} Monolithic Kernel: most of the OS functionalities is linked |
together inside the kernel 3534

Copyright © William C. Cheng

