Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 4 - 6/3/2025)

_) PA1is due at 11:45pm on Tuesday, 6/3/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pal-submit’ command, the grader will delete them

ﬁ} Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
= the grading guidelines is part of the spec
= although not recommended, you can do your development on a

different platform
Q you must test your code on the "standard” platform because
those are the only platforms the grader is allowed to grade on
= if you make submission, make sure you run through the Verif

Your Submission procedure as if you are the grader (A
P y g 1 @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Ch 3: The Programming
Interface

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

What Should OS Kernel Provide To Applications?

ﬁ} What functions an operating system needs to provide applications?
= process management: Can a program create an instance of

Copyright © William C. Cheng

another program? Wait for it to complete? Stop or resume
another running program? Send it an asynchronous event?
input/output: How do processes communicate with devices
attached to the computer and through them to the physical
world? Can processes communicate with each other?

thread management: Can we create multiple activities or threads
that share memory or other resources within a process? Can we
stop and start threads? How do we synchronize their use of
shared data structures?

memory management: Can a process ask for more (or less)
memory space? Can it share the same physical memory region
with other processes?

(cont...)

Introduction to Operating Systems - CSCI 350

What Should OS Kernel Provide To Applications?

ﬁ} What functions an operating system needs to provide applications?

= file systems and storage: How does a process store the user’s
data persistently so that it can survive machine crashes and disk
failures? How does the user name and organize their data?

= networking and distributed systems: How do processes
communicate with processes on other computers? How do
processes on different computers coordinate their actions
despite machine crashes and network problems?

= graphics and window management: How does a process control
pixels on its portion of the screen? How does a process make
use of graphics accelerators?

= authentication and security: What permissions does a user or a
program have, and how are these permissions kept up to date?
On what basis do we know the user (or program) is who they say
they are?

This chapter focuses on the first two (AR
> This cha @&

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

OS Functionalities

APP Login Window
User mode Manager

OS Library OS Library OS Library

Kernel mode Operating System Kernel

ﬁ} OS functionalities can be implemented in user-level programs, in
user-level libraries, in the kernel , or in a user-level server invoked

by the kernel

ﬁ> How do you choose where to implement an OS function then?
—= sometimes there is no clear winner
—= tradeoff between
Q safety - cannot be implemented in user-level library
Q reliability - monolithic kernel vs. microkernel design
Q performance - goes against safety and reliability |
o flexibility Wy

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

OS Functionalities

Ij\> FIeXib"ity: APPs: compilers, web servers,
= much easier to change code databases, word processing,

Copyright © William C. Cheng

web browsers, email clients, etc.

outside the kernel

try not to change the system
call interface System Call Interface
UNIX design philosophy is to Portable OS Kernel

k_eep system call interface HW- 236, ARM. GPU,
simple and powerful so that ethernet, wifi, SCSI, IDE,
almost all innovation can graphics accelerators, etc.
happen in user code

the result is that UNIX system call interface is highly portable to

new hardware without needing to rewrite application code

Portable OS Library

Introduction to Operating Systems - CSCI 350

(3.1) Process
Management

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Process Management: Main Points

ﬁ} Creating and managing processes
= fork (), exec (), wait ()

) Performing I/0

= open (), read(),write (), close()

_, Communicating between processes
= pipe(),dup(), select (), connect ()

_, Example: implementing a shell

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shell

_) Ashellis a job control system
= allows programmer to create and manage a set of programs to do
some task
= Windows, MacOS, Linux all have shells

_, Example: to compile a C program

cc —c sourcefilel.c
cc —c sourcefile2.c
1n -o program sourcefilel.o sourcefile2.o

= OF.

gce —c sourcefilel.c
gce —c sourcefile2.c
gce —o program sourcefilel.o sourcefile2.o

ﬁ} Q: If the shell runs at user-level, what system calls does it make to

run each of the programs
|
2

= EX: cc, 1n

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shell Script

ﬁ} You can put a bunch of commands into a file and have the shell
execute from the file; this file is called a "shell script"
= e.g., foo.sh"

gce —c sourcefilel.c
gce —c sourcefile2.c
gce —o program sourcefilel.o sourcefile2.o

= to execute all the commands in "foo.sh", do

source foo.sh

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Windows CreateProcess ()

ﬁ} Windows has a CreateProcess () system call to create a new
process to run a program
= create and initialize the process control block (PCB) in the kernel
= create and initialize a new address space

load the program into the address space

copy arguments into memory in the address space

initialize the hardware context to start execution at start ()

inform the scheduler that the new process is ready to run

0 0 0 [

> Windows lets the parent process to control things like:
= privileges of child process

where it sends its input and output

where to store its files

what to use as a scheduling priority

etc.

[

0 0 [

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Windows CreateProcess () API (Simplified)
_, End results for Windows:

if (!CreateProcess(

NULL, // No module name (use command line)
argv[l], // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
0, // No creation flags
NULL, // Use parent’s environment block
NULL, // Use parent’s starting directory
&si, // Pointer to STARTUPINFO structure
&pi) // Pointer to PROCESS__INFORMATION
// structure

)

) UNIX does this in two steps
—= fork () system call
—= exec system call (A
x ’ 2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

UNIX Process Management

ﬁ} UNIX fork () : system call to create a complete copy of the current
process, and runs it at the same place as the current process
— fork () takes no arguments
= when fork () returns, code written in the parent can set up
privileges, priorities, and I/O to set up context for the child

ﬁ} UNIX exec: a family of system calls to change the program being
run by the current process
—= "man exec' on Linux shows:

int execl (char *path, char *arg, ..., NULL);
int execlp(char *file, char *arg, ..., NULL);
int execle (char *path, char *arg, ..., NULL, char *envp|[]);

int execv(char *path, char *argv[]);
int execvp(char *file, char *argv|[]);
int execvpe (char *file, char *argv|[], char *envp[]);

ﬁ} UNIX wait () : system call to wait for a process to finish

ﬁ} UNIX signal () : system call to send a notification to another (i\
(0) b=

process /3 /-2
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The fork () System Call

ﬁ} The kernel performs the following in the fork () system call
implementation:
= create and initialize the process control block (PCB) in the kernel
= create a new address space
= [nitialize the address space with a copy of the entire contents of

the address space of the parent

= inherit the execution context of the parent (e.g., any open files)
= inform the scheduler that the new process is ready to run

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The fork () System Call

) Creating a process is deceptively simple process control block
= make a copy of a process PID
Q pid_t fork (void) ... (other stuff) ...

Q the process where fork () is called is
the parent process

Q the copy is the child process

in a way, fork () returns twice

& once in the parent, the returned value is the
process ID (PID) of the child process

<& once in the child, the returned value is 0

& aPID is 16-bit long

= this is the only way to create a process

@

ﬁ} Ex: relationship between a commandline shell (e.g., /bin/bash)
and /bin/1s (when you type "1s" and press <ENTER>)

|
2y

15

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Creating a Process

fork ()

parent proces

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Creating a Process

fork () fork ()
// returns p // retuns 0

parent proces child proces

(pid = p) 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The exit () System Calls

) The exit () system call process control block
: g PID
void exit (int status) oxit status
= your process can call exit (n) to (other stuff)

self-terminate
Q set n to be the "exit/return code” of this process
Q this sytem call does not return (your process will die inside
the kernel)
= eXit/return code is 8 bits long
Q so that the parent process can know how the child process
died

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The wait () System Calls

_) The wait () system call process control block
PID
exit status

pid_t wait (int *status)

= your process can call only wait () to wait
for any child process to die (and cannot wait
for a specific child process to die)
Q the wait () system call returns two values
& C does not support pass-by-reference, so you have to pass
the address of a variable (i.e., pass-by-pointer)
Q returns the PID of a dead child process and (*status) is the
exit/return code of that child process
<& if there are more than one dead child processes, one of
them will be chosen at random
Q If status is the NULL pointer, it means that the caller is not
interested in the child exit/return code
—= wait () IS a blocking call, i.e., the calling process may get

suspended (in this case, inside the kernel) if this call (A
p () | (\

cannot return yet (i.e., no dead child processes)
Copyright © William C. Cheng

... (other stuff) ...

Introduction to Operating Systems - CSCI 350

Fork and Wait

short pid;

if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);

} else {
int ReturnCode;

while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

= e.g., this is the first step when /bin/bash forks /bin/1s
what does exit (n) do other than copying n into PCB?
Q least significant 8-bits of n
= what happens when main () calls return(n)?

Q the startup function will call exit (n)
= pid_t wait (int *status) is a blocking call

Q It reaps dead child processes one at a time

|
= parent and child are the same "program™ here! Y l,y
Copyright © William C. Cheng

[

Introduction to Operating Systems - CSCI 350

Process Termination Issues

) PID is only 16-bits long
= OS must not reuse PID too quickly or there may be ambiguity

> When exit () is called, the OS must not free up PCB too quickly
= parent needs to get the return code
= [t’s okay to free up everything else (such as address space)

ﬁ> Solutions for both is for the terminated child process to go into

a zombie state

= only after wait () returned with the child’s PID can the PID
be reused and the PCB can be freed up

= but what if the parent calls exit () while the child is in the

zombie state?
Q process 1 (the process with PID=1) inherits all the children of

this parent process
& this is known as "reparenting”

Q process 1 keeps calling wait () to reap the zombies |
KB

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Exec

int pid;
if ((pid = fork()) == 0) {
/* we’ll discuss what might take place before
exec is called */
execl ("/home/bec/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid != wait(0)) /* ignore the return code */

4

= what does execl () do?
Q "man execl” says:
int execl (const char *path,
const char *arg, ...);
Q isn’'t "primes" in the 2nd argument kind of redundent?
Q what’s up with "..."?
& this is called "varargs" (similar to print£ ())

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Loading a New Image

fork () exec (prog,
// returns p args)

parent proces child process
Before

@

Copyright © William C. Cheng

fork ()
// returns p

Introduction to Operating Systems

Loading a New Image

exec (prog,
args)

prog’s text

prog’s data

prog’s bss

Copyright © William C. Cheng

parent proces

l

T

child process
Before

args

child process
After

24

- CSCI 350

@

Introduction to Operating Systems - CSCI 350

Exec
int pid;
if ((pid = fork()) == 0) {
execl ("/home/bec/bin/primes", "primes", "300", 0);
exit (1) ;
}
while (pid !'= wait (0)) /* ignore the return code */

% primes 300

ﬁ> Your login shell forks off a child process, load the primes program
on top of it, wait for the child to terminate

— the same code as before
= exit (1) would get called if somehow execl () returned
Q if execl () is successful, it cannot return since the code is
gone (i.e., the code segment has been replaced by the

code segment of "primes") @!’}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent e oid
int pid;
(shell) =P if ((pid = fork()) == 0) {
f h execl (" /home/bec/bin/primes",
fork () "primesll , "300" , 0) ;
exit(1l);
}
while (pid !'= wait (0))
. J . .
Applications
0S
() ()
Process Files ©c o o
Subsystem Subsystem
J L J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent e ooig
int pid;
(shell) =P if ((pid = fork()) == 0) {
() execl (" /home/bc/bin/primes",
fork () "primes", "300", 0);
exit(1l);
}
while (pid !'= wait (0))
G y, . .
trap Applications

context(P)

Process Files e o o
Subsystem | Subsystem |

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child _ »
) (shell) . (shell) . S izt (I.()::;ic,i = fork()) == 0) {
fork (S e
exit (1) ;
ihile(pid 1= wait (0))
|))

Applications

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child _ "
) (shell) . (shell) . S izt (1?;151 = fork()) == 0) {
fork () O i, 30t 57
exit (1) ;
pid v}while (pid !'= wait (0))
L J _ J

Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e big
int pid;
) (shell) - (shell) . =P if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fork () "primes" , "300" , 0) ;
exit(1l);
}
pid 0 while (pid !'= wait (0))
. J . J . .
Applications

(\) ()
? ?
context(P) context(C)
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e big
int piq;
) (shell) . (shell) . if ((pid = fork()) == 0) {
o execl (" /home/bec/bin/primes",
fork () "primes" , 1130011 , 0) ;
exit(1l);
}
pid 0 while (pid !'= wait (0))
. y, . J . -
Applications

(\ {) ()
? ?
context(P) context(C)
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e oiq
int pid;
) (shell) . (shell) . >if ((pid = fork()) == 0) {
- execl (" /home/bec/bin/primes",
fork () execl () nprimes", "300", 0);
exit(1l);
}
while (pid !'= wait (0))
\ J \ J . .
Applications
0S
() ()
? ?
context(P) context(C)
Process Files ©c o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e oiq

int pid;

) (shell) . (shell) . if ((pid = fork()) == 0) {

= execl (" /home/bec/bin/primes",
fork () execl () nprimes", "300", 0);
exit(1l);

}
while (pid !'= wait (0))

\ J \ y, . .

trap Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e bid
. int pid;
) (shell) . (primes) . _ if ((pi == 0) {
- execl ("Noome /fc/bin/primes",
fork() "pr s", "300", 0);
exit(1l);
}
while (p#d !'= wait¥%0))
_ J . } J . .
tra Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child _ _

) (shell) - (primes) . it (1?;1;1 = fork()) == 0) {
fork) | | main0 oy
wait () exit (1) ;

ihile(pid = wait (0))

U J U J

Applications

? ?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child it ooia
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fO?k () "primeS" , "300" , 0) ;
wait () exit (1) ;
}
=P while (pid != wait (0))
. v, . V, . .
Applications
0S
() ()
? ?
context(P) context(C)
Process Files ©c o o
Subsystem] | Subsystem |

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e big
. int pid;
) (shell) _ (primes) . if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fO?k () "primesll , "300" , 0) ;
wait () exit (1) ;
}
=P while (pid != wait (0))
. J . J . .
trap Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e oiq
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() exit () nprimes", "300", 0);
wait () exit (1) ;
}
while (pid !'= wait (0))
\ \ J - J i .
tra Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e oiq
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() exit () nprimes", "300", 0);
wait () exit (1) ;
}
while (pid !'= wait (0))
\ \ J \ J . .
tra trap Applications

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e oiq
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1) ;
}
=P while (pid != wait (0))
_ \ J - -
tra tra Applications

(* ‘) 4)
4 Y 4
LI 4
N
context(P) cpfitexf(Q)
Y 2 £ -
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e big
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1) ;
}
pid =P while (pid != wait (0))
. J . .
tra Applications

?

context(P)

Process Files e o o
Subsystem | Subsystem |

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Put It All Together

Parent Child e big
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1); /* never here */
}
pid while (pid !'= wait (0))
_ J/ . .
tra Applications

?

context(P)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Unpredictable
ﬁ} Q: What does this code print?

int main(int argc, char *argv([])

{
int child_pid = fork();
if (child_pid == 0) {
printf ("I am process #%d\n", getpid());
exit (0) ;
} else {

printf ("I am the parent of process #%d\n",
child_pid);
}

return O;

}

= unpredictable: parent could print first, or child could print first
Q on your machine, even if the order looks fixed after every run,
there is no guarantee that the order would be the same the

next time you run this program |
&

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Questions?
ﬁ} Can UNIX fork () return an error? Why?
ﬁ> Can UNIX exec () return an error? Why?
ﬁ> Can UNIX wait () ever return immediately? Why?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing UNIX fork ()

) Steps to implement UNIX fork ()
= create and initialize the process control block (PCB) in the kernel
= create a new address space
= [nitialize the address space with a copy of the entire contents of
the address space of the parent
inherit the execution context of the parent (e.g., any open files)
inform the scheduler that the new process is ready to run

[

[

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing UNIX execl ()

) Steps to implement UNIX exec1 ()
= load the program into the current address space

= Ccopy arguments into memory in the address space
= initialize the hardware context to start execution at start ()

ﬁ> An exec system call does not create a new process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

exec and wait ()

) Call towait () is optional
= command shell can run a program/job in the background

(signified by appending "&" to the command line)

Q in the background means not waiting for it to die

Q use the "jobs" shell command to list all jobs running in the
background for your command shell

Q use the "£g" shell command to bring a background process to
the foreground (and wait for it to die)

Q use the "%2" shell command to bring background job [2] to
the foreground (and wait for it to die)

Q press <Ctrl+Z> to suspend the foreground job
& use the "bg" shell command to run the suspended job in the

background

—, In Windows, you can call WaitForSingleObject () to wait for a
process to die or a thread to die

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

UNIX Notifications

—, In UNIX, a notification is sent by sending a signal
= signhals are used for a variety of purposes
Q terminate an application

suspending an application temporarily for debugging
resuming after a suspension
timer expiration
keyboard interrupts
& <Ctrl+C>
& <Ctrl+Z>

Q etc.
= if an application does not specify a signal handler, the kernel

implements a standard one on its behalf

©C O 0O O

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

CS 350
PA2: Kernel Level
Threads

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PA2

_ Setup a standard 32-bit Ubuntu 16.04 system
= download xv6 for PA2

ﬁ} Part 1 - add threads to the kernel

= fork (), exec (), exit ()

) Part 2 - thread system calls

—= kthread_create (), kthread_id (), kthread_exit (),
kthread_join ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Download XV6 For PA2
) Follow the instructions on the PA2 spec

G> Open a terminal and type the following

cd

cd c¢s350

mkdir pa2

cd pa2

wget ——-user=USERNAME --password=PASSWORD \
http://merlot.usc.edu/cs350-m25/programming/pa2/xv6-pa2-src.tar.gz

tar xvf xvé6-pa2-src.tar.gz

cd xvé6—-pa2-src

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Submission

> Which files do you need to modify?
= open a terminal and type the following:

pwd
cd cs350/pal/xv6-pa2-src
make —-n pa2-submit

Q you should see:

tar cvzf pa2-submit.tar.gz \
Makefile \
pa2-README . txt \
proc.c \
proc.h \
syscall.c \
sysproc.c \
kthread.h \
exec.c

& ldon’t think you need to modify Makefile at all

= these are the only files are are supposed to submit
Q if you submit additional files, the grader will have to delete
them before grading @!’}

Q if you submit binary files, points will be deducted
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add Threads To The Kernel

ﬁ} Change the implementation of some existing system calls
= fork (), exec (), exit ()
Q fork(),and exit () arein "proc.c"

Q exec() Isin "exec.c"
= nhote: some functions might not need changes (you need to pick

which ones to change)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Background: growproc ()

ﬁ} growproc () is responsible for retrieving more memory when
the process asks for it

// Grow current process’s memory } else if (n < 0){
// by n bytes. if ((sz = deallocuvm(
// Return 0 on success, proc—>pgdir, sz,
// -1 on failure. sz + n)) == 0){
int release (&ptable.lock);
growproc (int n) return -1;
{ }
uint sz; }
acquire (&ptable.lock); proc—>sz = sz;
Sz = proc—->sz; switchuvm (proc) ;
if (n > 0){ release (&ptable.lock);
if ((sz = allocuvm(return O;
proc—->pgdir, sz, }
sz + n)) == 0){

release (&ptable.lock);
return -1;

}

= to access any PCB, must acquire the ptable. lock spinlock
= heed to synchronize accesses t0 proc—>sz

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Background: growproc ()

ﬁ} growproc () is responsible for retrieving more memory when

Copyright © William C. Cheng

the process asks for it

// Grow current process’s memory } else if (n < 0){
// by n bytes. if ((sz = deallocuvm(
// Return 0 on success, proc—>pgdir, sz,
// -1 on failure. sz + n)) == 0){
int o release (&ptable.lock);
growproc (int n) return -1;
{ }
uint sz; }
= acquire (&ptable.lock); proc—->sz = sz;
Sz = proc—->sz; switchuvm (proc) ;
if (n > 0){ = release (&ptable.lock);
if ((sz = allocuvm(return O;
proc—->pgdir, sz, }
sz + n)) == 0){
- release (&ptable.lock) ;

return -1;

}
— always release locks before return statement if it is not released

previously |
553

Introduction to Operating Systems - CSCI 350

Background: growproc ()

ﬁ} growproc () is responsible for retrieving more memory when
the process asks for it

// Grow current process’s memory } else if (n < 0){
// by n bytes. if ((sz = deallocuvm(
// Return 0 on success, proc—>pgdir, sz,
// -1 on failure. sz + n)) == 0){
int release (&ptable.lock);
growproc (int n) return -1;
{ }
uint sz; }
acquire (&ptable.lock); proc—>sz = sz;
Sz = proc—->sz; switchuvm (proc) ;
if (n > 0){ release (&ptable.lock);
if ((sz = allocuvm(return O;
proc—->pgdir, sz, }
sz + n)) == 0){

release (&ptable.lock);
return -1;

}

= you might need to think more about synchronization and find
where to put functions/methods, locks, etc.

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

fork ()

ﬁ} fork () should duplicate only the calling thread, if other threads
exist in the process they will notexist in the new process

ﬁ} Questions to ask:
= are there any conflicts between shared variables?
—= do we need to kill any threads after calling fork?
= is the acquired the lock enough for synchronization or should we
put more locks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

exit ()

ﬁ} exit () should kill the process and all of its threads, remember
while a single threads executing exit (), others threads of the
same process might still be running

kill_alil (),

// jump into the scheduler, never to return
thread—->state = TINVALID;

proc—>state = ZOMBIE;

sched () ;

panic("zombie exit");

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kill all ()

) We have to create akill_all() function to kill all the alive
threads:

kill_all():
create thread pointer *t
for each thread t:
if (thread t is not the current thread and
not running and not unused) then
make t a zombie
end-if
end-for
make current thread zombie
kill process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

exec ()

ﬁ} The thread performing exec should "tell” other threads of the same

process to destroy themselves and only then complete the exec ()
task

) modify kill_all () method and create kill_others ()
= kill_others () Kills all alive threads but itself

kill_others () :
create thread pointer *t
for each thread t:
if (thread t is not the current thread and
not running and not unused) then
make t a zombie
end-if
end-for

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 2: Thread System Calls

) Implement thread API for kernel
= kthread_create (), kthread_id (), kthread_exit (),
kthread_join()
= you will implement these functions in "proc.c" and add the
following to "kthread.h"

int kthread_create (void* (*start__func) (),
void* stack, int stack_size);
int kthread_id();
void kthread_exit (void);
int kthread_join (int thread_id);

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Changing Thread States

t->state = TZOMBIE;

= in "proc.h"

enum threadstate { enum procstate ({
TUNUSED, UNUSED,
TEMBRYO, USED,
TSLEEPING, ZOMBIE
TRUNNABLE, };
TRUNNING,
TZOMBIE,
TINVALID

};

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Changing Thread States

t->tid != thread->tid;

= thread, proc, and cpu are global variables that point to the
current thread, the current process, and the current CPU
= in "proc.h"

struct thread {

int tid; // Thread ID

enum threadstate state; // thread state

char *kstack; // Bottom of kernel stack for this thread
struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall

struct context *context; // swtch() here to run process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

};

) Read the code in allocthread() to see how every field is
initialized
= e.g., since the trap frame is the bottom of the kernel stack, yog |
don’t need to allocate memory for the trap frame

Copyright © William C. Cheng

63

Introduction to Operating Systems - CSCI 350

How To Loop Through Threads?

I:> Look at allocthread () in "proc.c"

struct thread*

allocthread(struct proc * p)

{
struct thread *t;

for(t = p—>threads; found != 1 && t < &p—>threads[NTHREAD]; t++) ({

}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

How To Loop Through Processes?

I:> Look at allocproc() In "proc.c"

struct thread*
allocproc()

{

struct proc *p;
struct thread *t;

for(p = ptable.proc; && p < &ptable.proc[NPROC]; p++) {

}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kill_alil ()

kill_all():
create thread pointer *t
for each thread t: // loop through threads
if (t is not current thread and not running
and not unused) then // check its state
make t a zombie // change its state
end-if
end—-for
make current thread zombie // find current thread
// and change its state
kill process // proc—->killed =1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_create ()

_) Calling kthread_create () will create a new thread within the

context of the calling process

= the newly created thread state will be TRUNNABLE

= the caller of kthread_create () must allocate a user stack for
the new thread to use (it should be enough to allocate a single
page i.e., 4K for the thread stack)

= this does not replace the
kernel stack for the thread

ﬁ> start_func is a pointer to the entry function, which the thread wili
start executing
= Upon success, the identifier of the newly created thread is
returned
= in case of an error, a non-positive value is returned

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_create ()

ﬁ} The kernel thread creation system call on real Linux does not
receive a user stack pointer
= In Linux the kernel allocates the memory for the new thread stack
= you will need to create the stack in user mode and send its
pointer to the system call in order to be consistent with current
memory allocator of xv6

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_create ()

kthread_create (void* (*start_func) (), void* stack, int stack_size):

create a thread pointer

allocate the thread using allocthread() function

check if t is 0 // allocated correctly?
if not, return -1

else
copy current thread’s trap frame
find stack address of the thread using stack pointer given parameter
make stack pointer inside trap frame stack address + stack size
update base pointer inside trap frame as stack pointer
find address of the start function which is given in parameter
make instruction pointer inside trap frame start address
return tid

= stack pointer: t—>tf->esp
= base pointer: t->t f->ebp
= instruction pointer: t—>tf->eip

ﬁ> Note: the above is not the only way to create a thread

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

esp, eip, ebp

I:> t—>tf->esp
= we have to change the stack address of new thread
= SO We use given parameter to make stack address different than
current thread
— add given stack’s address with stack size to find where to put
stack pointer

I:> t->tf->ebp
= [nitially base pointer and stack pointer point the same place

I:> t—->tf->eip
= instruction pointer points the instructions which will be
implemented by thread

= this pointer has to point stack function at the beginning

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

More Information In Ch 3 Of XV6 Book

ﬁ} Figure 3.1 of xv6 book (with low address on top and high address on
the bottom) shows the kernel stack after an INT instruction
= also in Ch 2 slides for the x86 CPU

CPU kernel
SS: ESP — handler () {
pushad
CS: EIP y T

interrupt stack

.
Error trap
ICE:ISP frame
EFLAGS || (Saved
only present on ESP user]
privilege change{ SS) state) 713 @7

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

More Information In Ch 3 Of XV6 Book

ﬁ} Figure 3.1 of xv6 book (with low address on top and high address on
the bottom) shows the kernel stack after an INT instruction

= also in Ch 2 slides for the x86 CPU

CPU kernel
SS: ESP handler () {
pushad
CS: EIP I . y T

-
all

general-
purpose
registers

1

only present on {
privilege change

Copyright © William C. Cheng

EAX, EBX,

ECX, EDX
ESP, EBP
ESI, EDI

Error

EIP

CS

EFLAGS

ESP

SS

interrupt stack

Xv6
- trap
frame

Introduction to Operating Systems - CSCI 350

kthread_id()

) Easiest function to implement in PA2
= Uupon success, this function returns the caller thread’s id

= In case of error, a non-positive error identifier is returned
= remember, thread id and process id are not the same thing

kthread_id() :

if process and thread exists
return t->tid

else
return -1

> Note: this is not the only way to return a thread id

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_exit ()

ﬁ} This function terminates the execution of the calling thread
= if called by a thread (even the main thread) while other threads
exist within the same process, it shouldn’t terminate the whole
process
= [f it is the last running thread, process should terminate
= each thread must explicitly call kthread_exit () in order to
terminate normally

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

kthread_exit ()

kthread_exit () :

create a thread pointer
create a found flag
loop through all threads to find another thread running
if t is not current thread // because calling thread is current
if t is not unused, not a zombie, and not inwvalid
make found flag true
break // only one running is enough

if found // I am not the last thread in my process
wakeup all waiting using wakeupl() // read wakeupl () code
else // found flag is false, therefore, I'm the last thread
exit ()
make this thread zombie
call sched() to schedule another thread

= Note: the above is not the only way to exit a thread
= also, this is not a complete pseudocode
Q you have to add locks if necessary

Copyright © William C. Cheng

