
0123

1

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Housekeeping (Lecture 4 - 6/3/2025)

if you have code from current or a previous semester, do not 

look at/copy/share any code from it

it’s best if you just get rid of it

PA1 is due at 11:45pm on Tuesday, 6/3/2025

Grading guidelines is the ONLY way we will grade and we can only 

grade on a standard 32-bit Ubuntu Linux 16.04 inside 

VirtualBox/UTM or on AWS Free Tier

although not recommended, you can do your development on a 

different platform

the grading guidelines is part of the spec

you must test your code on the "standard" platform because 

those are the only platforms the grader is allowed to grade on

if you make  submission, make sure you run through the Verify 

Your Submission procedure as if you are the grader

if you include files that’s not part of the original 

"make pa1-submit" command, the grader will delete them



0123

2

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Ch 3: The Programming 

Interface

Bill Cheng

http://merlot.usc.edu/william/usc/



0123

3

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

What Should OS Kernel Provide To Applications?

What functions an operating system needs to provide applications?

process management: Can a program create an instance of 

another program? Wait for it to complete? Stop or resume 

another running program? Send it an asynchronous event?

input/output: How do processes communicate with devices 

attached to the computer and through them to the physical 

world? Can processes communicate with each other?

thread management: Can we create multiple activities or threads 

that share memory or other resources within a process? Can we 

stop and start threads? How do we synchronize their use of 

shared data structures?

memory management: Can a process ask for more (or less) 

memory space? Can it share the same physical memory region 

with other processes?

(cont...)



0123

4

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

What Should OS Kernel Provide To Applications?

file systems and storage: How does a process store the user’s 

data persistently so that it can survive machine crashes and disk 

failures? How does the user name and organize their data?

networking and distributed systems: How do processes 

communicate with processes on other computers? How do 

processes on different computers coordinate their actions 

despite machine crashes and network problems?

graphics and window management: How does a process control 

pixels on its portion of the screen? How does a process make 

use of graphics accelerators?

authentication and security: What permissions does a user or a 

program have, and how are these permissions kept up to date? 

On what basis do we know the user (or program) is who they say 

they are?

This chapter focuses on the first two

What functions an operating system needs to provide applications?



0123

5

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

OS Functionalities

OS functionalities can be implemented in user-level programs, in 

user-level libraries, in the kernel , or in a user-level server invoked 

by the kernel

Operating System KernelKernel mode

User mode
Login

OS Library

Window

Manager

OS Library

APP

OS Library

How do you choose where to implement an OS function then?

tradeoff between

sometimes there is no clear winner

reliability - monolithic kernel vs. microkernel design

performance - goes against safety and reliability

safety - cannot be implemented in user-level library

flexibility



0123

6

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

OS Functionalities

UNIX design philosophy is to 

keep system call interface 

simple and powerful so that 

almost all innovation can 

happen in user code

Flexibility:

much easier to change code 

outside the kernel

try not to change the system 

call interface

the result is that UNIX system call interface is highly portable to 

new hardware without needing to rewrite application code

Portable OS Kernel

APPs: compilers, web servers, 
databases, word processing, 

web browsers, email clients, etc.

Portable OS Library

System Call Interface

HW: x86, ARM, GPU, 
ethernet, wifi, SCSI, IDE, 

graphics accelerators, etc.



0123

7

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

(3.1) Process

Management



0123

8

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Process Management: Main Points

Creating and managing processes

fork(), exec(), wait()

Performing I/O

open(), read(), write(), close()

Communicating between processes

pipe(), dup(), select(), connect()

Example: implementing a shell



0123

9

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Shell

A shell is a job control system

allows programmer to create and manage a set of programs to do

some task

Example: to compile a C program

Windows, MacOS, Linux all have shells

cc -c sourcefile1.c

cc -c sourcefile2.c

ln -o program sourcefile1.o sourcefile2.o

Q: If the shell runs at user-level, what system calls does it make to 

run each of the programs

Ex: cc, ln

or:

gcc -c sourcefile1.c

gcc -c sourcefile2.c

gcc -o program sourcefile1.o sourcefile2.o



0123

10

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Shell Script

You can put a bunch of commands into a file and have the shell 

execute from the file; this file is called a "shell script"

e.g., "foo.sh"

gcc -c sourcefile1.c

gcc -c sourcefile2.c

gcc -o program sourcefile1.o sourcefile2.o

to execute all the commands in "foo.sh", do

source foo.sh



0123

11

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Windows CreateProcess()

Windows has a CreateProcess() system call to create a new 

process to run a program

create and initialize the process control block (PCB) in the kernel

create and initialize a new address space

load the program into the address space

copy arguments into memory in the address space

initialize the hardware context to start execution at start()

inform the scheduler that the new process is ready to run

Windows lets the parent process to control things like:

privileges of child process

where it sends its input and output

where to store its files

what to use as a scheduling priority

etc.



0123

12

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Windows CreateProcess() API (Simplified)

if (!CreateProcess(

    NULL,    // No module name (use command line)

    argv[1], // Command line

    NULL,    // Process handle not inheritable

    NULL,    // Thread handle not inheritable

    FALSE,   // Set handle inheritance to FALSE

    0,       // No creation flags

    NULL,    // Use parent’s environment block

    NULL,    // Use parent’s starting directory

    &si,     // Pointer to STARTUPINFO structure

    &pi )    // Pointer to PROCESS_INFORMATION 

             //     structure

)

End results for Windows:

UNIX does this in two steps

fork() system call

exec system call



0123

13

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

UNIX Process Management

fork() takes no arguments

UNIX fork(): system call to create a complete copy of the current 

process, and runs it at the same place as the current process

UNIX exec: a family of system calls to change the program being 

run by the current process

UNIX wait(): system call to wait for a process to finish

UNIX signal(): system call to send a notification to another 

process

int execl(char *path, char *arg, ..., NULL);

int execlp(char *file, char *arg, ..., NULL);

int execle(char *path, char *arg, ..., NULL, char *envp[]);

int execv(char *path, char *argv[]);

int execvp(char *file, char *argv[]);

int execvpe(char *file, char *argv[], char *envp[]);

"man exec" on Linux shows:

when fork() returns, code written in the parent can set up 

privileges, priorities, and I/O to set up context for the child



0123

14

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

The fork() System Call

create and initialize the process control block (PCB) in the kernel

The kernel performs the following in the fork() system call 

implementation:

create a new address space

initialize the address space with a copy of the entire contents of 

the address space of the parent

inherit the execution context of the parent (e.g., any open files)

inform the scheduler that the new process is ready to run



0123

15

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

The fork() System Call

Ex: relationship between a commandline shell (e.g., /bin/bash) 

and /bin/ls (when you type "ls" and press <ENTER>)

make a copy of a process

Creating a process is deceptively simple

this is the only way to create a process

pid_t fork(void)

the process where fork() is called is 

the parent process

the copy is the child process

in a way, fork() returns twice

once in the parent, the returned value is the 

process ID (PID) of the child process

once in the child, the returned value is 0

a PID is 16-bit long

PID

... (other stuff) ...

process control block



0123

16

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Creating a Process

parent proces

fork()



fork()

// returns p

parent proces

fork()

// retuns 0

child proces
(pid = p)

0123

17

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Creating a Process



0123

18

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

The exit() System Calls

void exit(int status)

The exit() system call

your process can call exit(n) to 

self-terminate

set n to be the "exit/return code" of this process

this sytem call does not return (your process will die inside 

the kernel)

exit status

PID

... (other stuff) ...

process control block

exit/return code is 8 bits long

so that the parent process can know how the child process 

died



returns the PID of a dead child process and (*status) is the 

exit/return code of that child process

pid_t wait(int *status)

The wait() system call

your process can call only wait() to wait 

for any child process to die (and cannot wait

for a specific child process to die)

if there are more than one dead child processes, one of 

them will be chosen at random

0123

19

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

The wait() System Calls

exit status

PID

... (other stuff) ...

process control block

the wait() system call returns two values

wait() is a blocking call, i.e., the calling process may get 

suspended (in this case, inside the kernel) if this call 

cannot return yet (i.e., no dead child processes)

C does not support pass-by-reference, so you have to pass 

the address of a variable (i.e., pass-by-pointer)

if status is the NULL pointer, it means that the caller is not 

interested in the child exit/return code



0123

20

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Fork and Wait

what does exit(n) do other than copying n into PCB?

least significant 8-bits of n

what happens when main() calls return(n)?

the startup function will call exit(n)

pid_t wait(int *status) is a blocking call

it reaps dead child processes one at a time

e.g., this is the first step when /bin/bash forks /bin/ls

short pid;
if ((pid = fork()) == 0) {
  /* some code is here for the child to execute */
  exit(n); 
} else {
  int ReturnCode;
  while(pid != wait(&ReturnCode))
     ;
  /* the child has terminated with ReturnCode as
     its return code */
}

parent and child are the same "program" here!



0123

21

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Process Termination Issues

OS must not reuse PID too quickly or there may be ambiguity

PID is only 16-bits long

parent needs to get the return code

When exit() is called, the OS must not free up PCB too quickly

Solutions for both is for the terminated child process to go into 

a zombie state

only after wait() returned with the child’s PID can the PID 

be reused and the PCB can be freed up

it’s okay to free up everything else (such as address space)

but what if the parent calls exit() while the child is in the 

zombie state?

process 1 (the process with PID=1) inherits all the children of 

this parent process

process 1 keeps calling wait() to reap the zombies

this is known as "reparenting"



0123

22

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Exec

int execl(const char *path,
          const char *arg, ...);

int pid;
if ((pid = fork()) == 0) {
  /* we’ll discuss what might take place before
     exec is called */
  execl("/home/bc/bin/primes", "primes", "300", 0);
  exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
  ;

what does execl() do?

"man execl" says:

what’s up with "..."?

this is called "varargs" (similar to printf())

isn’t "primes" in the 2nd argument kind of redundent?



0123

23

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Loading a New Image

fork()

// returns p

parent proces

exec(prog, 

args)

child process

Before



fork()

// returns p

parent proces

exec(prog, 

args)

child process

Before

child process

After

prog’s data

prog’s text

prog’s bss

args

0123

24

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Loading a New Image



0123

25

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Exec

the same code as before

Your login shell forks off a child process, load the primes program 

on top of it, wait for the child to terminate

% primes 300

exit(1) would get called if somehow execl() returned

if execl() is successful, it cannot return since the code is 

gone (i.e., the code segment has been replaced by the 

code segment of "primes")

int pid;
if ((pid = fork()) == 0) {
  execl("/home/bc/bin/primes", "primes", "300", 0);
  exit(1);
}
while(pid != wait(0)) /* ignore the return code */
  ;



0123

26

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Process
Subsystem

Files
Subsystem

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

Applications

Parent
(shell)

fork()

OS



Process
Subsystem

Files
Subsystem

context(P)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

27

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

trap



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

28

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

29

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid

?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

30

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid 0

??



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

31

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid 0

??



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

32

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

execl()

??



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

33

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

trap

execl()

?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

34

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

35

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

?

main()

?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

36

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

? ?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

37

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

38

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()
exit()

?



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

39

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

trap

exit()



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

40

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

trap

exit()



Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1);

}

while(pid != wait(0))

  ;

0123

41

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

trap

pid

?

exit()



int pid;

if ((pid = fork()) == 0) {

  execl("/home/bc/bin/primes", 

        "primes", "300", 0);

  exit(1); /* never here */

}

while(pid != wait(0))

  ;

0123

42

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Put It All Together

Process
Subsystem

Files
Subsystem

Applications

Parent
(shell)

fork()

OS

Child
(primes)

exit()
wait()

trap

pid

context(P) context(C)

?



0123

43

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Unpredictable

Q: What does this code print?

int main(int argc, char *argv[])
{
  int child_pid = fork();
  if (child_pid == 0) {
    printf("I am process #%d\n", getpid());
    exit(0);
  } else {
    printf("I am the parent of process #%d\n", 
        child_pid);
  }
  return 0;
}

unpredictable: parent could print first, or child could print first

on your machine, even if the order looks fixed after every run, 

there is no guarantee that the order would be the same the 

next time you run this program



0123

44

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Questions?

Can UNIX fork() return an error?  Why?

Can UNIX exec() return an error?  Why?

Can UNIX wait() ever return immediately?  Why?



0123

45

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Implementing UNIX fork()

Steps to implement UNIX fork()

create and initialize the process control block (PCB) in the kernel

create a new address space

initialize the address space with a copy of the entire contents of 

the address space of the parent

inherit the execution context of the parent (e.g., any open files)

inform the scheduler that the new process is ready to run



0123

46

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Implementing UNIX execl()

Steps to implement UNIX execl()

load the program into the current address space

copy arguments into memory in the address space

initialize the hardware context to start execution at start()

An exec system call does not create a new process



use the "jobs" shell command to list all jobs running in the 

background for your command shell

0123

47

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

exec and wait()

Call to wait() is optional

command shell can run a program/job in the background 

(signified by appending "&" to the command line)

use the "fg" shell command to bring a background process to 

the foreground (and wait for it to die)

use the "%2" shell command to bring background job [2] to 

the foreground (and wait for it to die)

press <Ctrl+Z> to suspend the foreground job

use the "bg" shell command to run the suspended job in the 

background

in the background means not waiting for it to die

In Windows, you can call WaitForSingleObject() to wait for a 

process to die or a thread to die



terminate an application

0123

48

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

UNIX Notifications

In UNIX, a notification is sent by sending a signal

signals are used for a variety of purposes

suspending an application temporarily for debugging

resuming after a suspension

timer expiration

keyboard interrupts

<Ctrl+C>

<Ctrl+Z>

etc.

if an application does not specify a signal handler, the kernel 

implements a standard one on its behalf



CS 350

PA2: Kernel Level

Threads

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

49

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 



0123

50

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

PA2

download xv6 for PA2

Set up a standard 32-bit Ubuntu 16.04 system

kthread_create(), kthread_id(), kthread_exit(), 
kthread_join()

Part 2 - thread system calls

Part 1 - add threads to the kernel

fork(), exec(), exit()



0123

51

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Download XV6 For PA2

Follow the instructions on the PA2 spec

Open a terminal and type the following

cd

cd cs350

mkdir pa2

cd pa2

wget --user=USERNAME --password=PASSWORD \

  http://merlot.usc.edu/cs350-m25/programming/pa2/xv6-pa2-src.tar.gz

tar xvf xv6-pa2-src.tar.gz

cd xv6-pa2-src



0123

52

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Submission

pwd

cd cs350/pa1/xv6-pa2-src

make -n pa2-submit

open a terminal and type the following:

Which files do you need to modify?

you should see:

tar cvzf pa2-submit.tar.gz \

        Makefile \

        pa2-README.txt \

        proc.c \

        proc.h \

        syscall.c \

        sysproc.c \

        kthread.h \

        exec.c

these are the only files are are supposed to submit

if you submit additional files, the grader will have to delete 

them before grading

if you submit binary files, points will be deducted

I don’t think you need to modify Makefile at all



0123

53

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Part 1: Add Threads To The Kernel

fork(), exec(), exit()

Change the implementation of some existing system calls

fork(), and exit() are in "proc.c"

exec() is in "exec.c"

note: some functions might not need changes (you need to pick 

which ones to change)



growproc() is responsible for retrieving more memory when 

the process asks for it

0123

54

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Background: growproc()

to access any PCB, must acquire the ptable.lock spinlock

// Grow current process’s memory 

//     by n bytes.

// Return 0 on success, 

//     -1 on failure.

int

growproc(int n)

{

  uint sz;

  acquire(&ptable.lock);

  sz = proc->sz;

  if (n > 0){

    if ((sz = allocuvm(

        proc->pgdir, sz,

        sz + n)) == 0){

      release(&ptable.lock);

      return -1;

    }

  } else if (n < 0){

    if ((sz = deallocuvm(

        proc->pgdir, sz,

        sz + n)) == 0){

      release(&ptable.lock);

      return -1;

    }

  }

  proc->sz = sz;

  switchuvm(proc);

  release(&ptable.lock);

  return 0;

}

need to synchronize accesses to proc->sz



0123

55

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Background: growproc()

growproc() is responsible for retrieving more memory when 

the process asks for it

always release locks before return statement if it is not released 

previously

// Grow current process’s memory 

//     by n bytes.

// Return 0 on success, 

//     -1 on failure.

int

growproc(int n)

{

  uint sz;

  acquire(&ptable.lock);

  sz = proc->sz;

  if (n > 0){

    if ((sz = allocuvm(

        proc->pgdir, sz,

        sz + n)) == 0){

      release(&ptable.lock);

      return -1;

    }

  } else if (n < 0){

    if ((sz = deallocuvm(

        proc->pgdir, sz,

        sz + n)) == 0){

      release(&ptable.lock);

      return -1;

    }

  }

  proc->sz = sz;

  switchuvm(proc);

  release(&ptable.lock);

  return 0;

}



0123

56

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Background: growproc()

growproc() is responsible for retrieving more memory when 

the process asks for it

you might need to think more about synchronization and find 

where to put functions/methods, locks, etc.

// Grow current process’s memory 

//     by n bytes.

// Return 0 on success, 

//     -1 on failure.

int

growproc(int n)

{

  uint sz;

  acquire(&ptable.lock);

  sz = proc->sz;

  if (n > 0){

    if ((sz = allocuvm(

        proc->pgdir, sz,

        sz + n)) == 0){

      release(&ptable.lock);

      return -1;

    }

  } else if (n < 0){

    if ((sz = deallocuvm(

        proc->pgdir, sz,

        sz + n)) == 0){

      release(&ptable.lock);

      return -1;

    }

  }

  proc->sz = sz;

  switchuvm(proc);

  release(&ptable.lock);

  return 0;

}



0123

57

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

fork()

fork() should duplicate only the calling thread, if other threads 

exist in the process they will notexist in the new process

are there any conflicts between shared variables?

Questions to ask:

do we need to kill any threads after calling fork?

is the acquired the lock enough for synchronization or should we 

put more locks?



0123

58

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

exit()

exit() should kill the process and all of its threads, remember 

while a single threads executing exit(), others threads of the 

same process might still be running

kill_all();

// jump into the scheduler, never to return
thread->state = TINVALID;
proc->state = ZOMBIE;
sched();
panic("zombie exit");



0123

59

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kill_all()

We have to create a kill_all() function to kill all the alive 

threads:

kill_all():
  create thread pointer *t
  for each thread t:
    if (thread t is not the current thread and 
        not running and not unused) then
      make t a zombie
    end-if
  end-for
  make current thread zombie
  kill process



0123

60

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

exec()

The thread performing exec should "tell" other threads of the same 

process to destroy themselves and only then complete the exec() 

task

modify kill_all() method and create kill_others()

kill_others():
  create thread pointer *t
  for each thread t:
    if (thread t is not the current thread and 
        not running and not unused) then
      make t a zombie
    end-if
  end-for

kill_others() kills all alive threads but itself



kthread_create(), kthread_id(), kthread_exit(), 
kthread_join()

0123

61

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Part 2: Thread System Calls

Implement thread API for kernel

you will implement these functions in "proc.c" and add the 

following to "kthread.h"

int kthread_create(void*(*start_func)(),

                   void* stack, int stack_size);

int kthread_id();

void kthread_exit(void);

int kthread_join(int thread_id);



0123

62

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Changing Thread States

t->state = TZOMBIE;

in "proc.h"

enum threadstate {

  TUNUSED,

  TEMBRYO,

  TSLEEPING, 

  TRUNNABLE,

  TRUNNING,

  TZOMBIE,

  TINVALID

};

enum procstate {

  UNUSED,

  USED,

  ZOMBIE

};



0123

63

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

Changing Thread States

t->tid != thread->tid;

in "proc.h"

struct thread {

  int tid;                     // Thread ID

  enum threadstate state;      // thread state

  char *kstack;                // Bottom of kernel stack for this thread 

  struct proc *parent;         // Parent process

  struct trapframe *tf;        // Trap frame for current syscall

  struct context *context;     // swtch() here to run process

  void *chan;                  // If non-zero, sleeping on chan

  int killed;                  // If non-zero, have been killed

};

Read the code in allocthread() to see how every field is 

initialized

e.g., since the trap frame is the bottom of the kernel stack, you 

don’t need to allocate memory for the trap frame

thread, proc, and cpu are global variables that point to the 

current thread, the current process, and the current CPU



0123

64

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

How To Loop Through Threads?

Look at allocthread() in "proc.c"

struct thread*

allocthread(struct proc * p)

{

  struct thread *t;

  for(t = p->threads; found != 1 && t < &p->threads[NTHREAD]; t++) {

    ...

  }

  ...

}



0123

65

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

How To Loop Through Processes?

Look at allocproc() in "proc.c"

struct thread*

allocproc()

{

  struct proc *p;

  struct thread *t;

  for(p = ptable.proc; && p < &ptable.proc[NPROC]; p++) {

    ...

  }

  ...

}



0123

66

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kill_all()

kill_all():
  create thread pointer *t
  for each thread t: // loop through threads
    if (t is not current thread and not running
        and not unused) then // check its state
      make t a zombie // change its state
    end-if
  end-for
  make current thread zombie // find current thread
                             // and change its state
  kill process // proc->killed = 1



0123

67

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kthread_create()

the newly created thread state will be TRUNNABLE

Calling kthread_create() will create a new thread within the 

context of the calling process

the caller of kthread_create() must allocate a user stack for 

the new thread to use (it should be enough to allocate a single

page i.e., 4K for the thread stack)

this does not replace the 

kernel stack for the thread

upon success, the identifier of the newly created thread is 

returned

start_func is a pointer to the entry function, which the thread will 

start executing

in case of an error, a non-positive value is returned



0123

68

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kthread_create()

in Linux the kernel allocates the memory for the new thread stack

The kernel thread creation system call on real Linux does not 

receive a user stack pointer

you will need to create the stack in user mode and send its 

pointer to the system call in order to be consistent with current 

memory allocator of xv6



Note: the above is not the only way to create a thread

0123

69

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kthread_create()

kthread_create(void* (*start_func)(), void* stack, int stack_size):

  create a thread pointer

  allocate the thread using allocthread() function

  check if t is 0 // allocated correctly?

    if not, return -1

  else

    copy current thread’s trap frame

    find stack address of the thread using stack pointer given parameter

    make stack pointer inside trap frame stack address + stack size

    update base pointer inside trap frame as stack pointer

    find address of the start function which is given in parameter

    make instruction pointer inside trap frame start address

    return tid

stack pointer: t->tf->esp

base pointer: t->tf->ebp

instruction pointer: t->tf->eip



0123

70

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

esp, eip, ebp

we have to change the stack address of new thread

t->tf->esp

so we use given parameter to make stack address different than

current thread

add given stack’s address with stack size to find where to put

stack pointer

initially base pointer and stack pointer point the same place

t->tf->ebp

instruction pointer points the instructions which will be 

implemented by thread

t->tf->eip

this pointer has to point stack function at the beginning



only present on

privilege change
0123

71

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

More Information In Ch 3 Of XV6 Book

interrupt stack

SS

ESP

EFLAGS

CS

EIP

Error
trap

frame

(saved

user

state)

Figure 3.1 of xv6 book (with low address on top and high address on 

the bottom) shows the kernel stack after an INT instruction

also in Ch 2 slides for the x86 CPU
CPU

SS: ESP handler() {

  pushad

  ...

}
CS: EIP

kernel



interrupt stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers xv6

trap

frame

0123

72

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

More Information In Ch 3 Of XV6 Book

Figure 3.1 of xv6 book (with low address on top and high address on 

the bottom) shows the kernel stack after an INT instruction

also in Ch 2 slides for the x86 CPU
CPU

SS: ESP handler() {

  pushad

  ...

}
CS: EIP

only present on

privilege change

kernel



0123

73

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kthread_id()

Easiest function to implement in PA2

upon success, this function returns the caller thread’s id

in case of error, a non-positive error identifier is returned

remember, thread id and process id are not the same thing

kthread_id():

  if process and thread exists

    return t->tid

  else

    return -1

Note: this is not the only way to return a thread id



0123

74

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kthread_exit()

This function terminates the execution of the calling thread

if called by a thread (even the main thread) while other threads 

exist within the same process, it shouldn’t terminate the whole 

process

if it is the last running thread, process should terminate

each thread must explicitly call kthread_exit() in order to 

terminate normally



0123

75

 Introduction to Operating Systems - CSCI 350 

 Copyright © William C. Cheng 

kthread_exit()

kthread_exit():

  create a thread pointer

  create a found flag

  loop through all threads to find another thread running

    if t is not current thread // because calling thread is current

      if t is not unused, not a zombie, and not invalid

        make found flag true

        break // only one running is enough

  if found // I am not the last thread in my process

    wakeup all waiting using wakeup1() // read wakeup1() code

  else // found flag is false, therefore, I’m the last thread

    exit()

  make this thread zombie

  call sched() to schedule another thread

Note: the above is not the only way to exit a thread

also, this is not a complete pseudocode

you have to add locks if necessary


