
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 3 - 5/29/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA1 is due at 11:45pm on Tuesday, 6/3/2025

get started soon

if you are stuck, make sure you come to see me during office

hours, send me email, or post in the class Piazza Forum

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 3 - 5/29/2025)

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

due to our fairness policy

although not recommended, you can do your development on a

different platform

the grading guidelines is part of the spec

you must test your code on the "standard" platform because

those are the only platforms the grader is allowed to grade on

if you make submission, make sure you run through the Verify

Your Submission procedure as if you are the grader

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Thread

Most OS allocate a kernel interrupt stack for every user-level

thread

when a user-level thread is running, the hardware interrupt

stack points to that thread’s kernel stack and the kernel stack is

empty

we refer to the interrupt stack simply as the "kernel stack"

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

the code for crt0.s is simply:

exit(main());

main() is called by crt0.s

some would call crt0.s the

startup function

if main() returns N, then the

main thread would call exit(N)

to terminate the process

you don’t see crt0.s because

it’s written for you already

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

User Stack

ready to run

proc2

proc1

main

Kernel Stack

user CPU

state

crt0.s

running

proc2

proc1

main

crt0.s

in this example, the user

thread was suspended

due to timer expiration,

(i.e., hardware interrupt)

timer

ISR

SP

waiting for syscall return

proc2

proc1

main

syscall

user CPU

state

syscall

handler

crt0.s

SP
0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

in this example, the user

thread made a system

call and the system call

started an I/O operation

User Stack

Kernel Stack

running

proc2

proc1

main

crt0.s

I/O driver

(top half)

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Two Stacks Per Process

waiting for I/O

...

syscall

user CPU

state

syscall

handler

handling I/O completion

interrupt

"top half" refers to code

the kernel executes

("bottom half" is executed

by hardware)

SP SP

waiting for syscall return

proc2

proc1

main

syscall

user CPU

state

syscall

handler

crt0.s

kernel CPU

state
SP

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interrupt Masking

re-enabled when interrupt completes

Interrupt handler runs with interrupts disabled

e.g., when determining the next process/thread to run

CLI: disable interrrupts

OS kernel can also turn interrupts off

on x86

STI: enable interrrupts

only applies to the current CPU (on a multicore)

We will need this to implement synchronization in Ch 5

when interrupt is enabled, all pending interrupt will be delivered

in a certain sequence

If an interrupt is generated when interrupt is disabled, the new

interrupt becomes pending (and deferred, but not lost)

usually, the hardware will buffer one interrupt of each type

interrupt handler needs to check with the device to see

if multiple interrupts of the same type has occurred

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.5) Putting It

All Together:

x86 Mode Transfer

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

x86 Mode Transfer

Case Study: x86 Interrupt

vector through interrupt table

interrupt handler saves registers it might clobber

mask interrupts and switch to kernel mode1)

save current stack pointer, program counter, and Processor

Status Word (condition codes) to internal registers

2)

the hardware switchs to interrupt/kernel stack (information

stored in a special hardware register)

3)

pushd saved SP, PC, PSW from internal registers on to stack4)

save error code that caused the interrupt)5)

invoke the interrupt handler6)

other registers:

EAX, EBX, ...

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Before Interrupt

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stackuser stack

other registers:

EAX, EBX, ...

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Got Interrupt

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stackuser stack

SS

ESP

EFLAGS

CS

EIP

Error
trap

frame

(saved

user

state)

other registers:

EAX, EBX, ...

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

After Interrupt Handler Starts

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stack

user stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers

one points to interrupt stack, one points to user stack

Note: two ESPs saved inside the interrupt stack

trap

frame

(saved

user

state)

handler

frame

other registers:

EAX, EBX, ...

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

After Interrupt Handler Starts

foo() {

 while (...) {

 x = x + 1;

 y = y - 2;

 }

}

handler() {

 pushad

 ...

}

registers

SS: ESP

CS: EIP

EFLAGS

kerneluser-level process

interrupt stack

user stack

SS

ESP

EFLAGS

CS

EIP

Error

EAX, EBX,

ECX, EDX

ESP, EBP

ESI, EDI

all

general-

purpose

registers

one points to interrupt stack, one points to user stack

Note: two ESPs saved inside the interrupt stack

xv6

trap

frame

xv6 calls this the

trap frame

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

At End Of Handler

Handler restores saved registers

restore program counter

iret: atomically return to interrupted process/thread

restore program stack

restore processor status word/condition codes

switch to user mode

handler() {

 pushad

 ...

 popad

 iret

}

kernel

iret is the only way to go/return from kernel to user mode for the

x86 CPU

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.6) Implementing

Secure System Calls

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Secure System Calls

System calls provide the illusion that the OS kernel is simply a

set of user space library routines

user space program needs not be concerned itself with how

the kernel implements system calls

All system calls follow a certain calling convention

e.g., how to name them, how to pass arguments, how to receive

return values

information is passed in registers and on the executiong stack

a trap instruction is eventually invoked to transfer control to

the kernel

for x86, the machine instruction to trap into the kernel is a

software interrupt machine instruction

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Typical Structure Of System Call Implementation

In the OS kernel, each system

call is implemented by a different

function

one main difference between

this type of function and other

OS kernel functions is that it

must not trust the values

passed from user space

bad arguments must not

crash the kernel

computer virus must not be able to user a system call to take

control of the OS kernel

Portable OS Kernel

Applications

Portable OS Library

System Call Interface

Hardware

(CPU/Devices)

#TRAPCODE is the index into the

x86 interrupt vector table for

the system call handler

file_open_handler() {

 // copy arguments

 // from user memory

 // check arguments
 file_open(arg1, args);

 // copy return value

 // into user memory
 return;

}

Kernel Stub

main() {

 file_open(arg1,args);

}

file_open(arg1, args) {

 // do operation

}

KernelUser Program

User Stub

file_open(arg1, args) {

 push #SYSCALL_OPEN

 int #TRAPCODE

 return

}

(5)

trap return

(2)

hardware trap

(1) (6) (3) (4)

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

User Stub & Kernel Stub In A System Call

for xv6, it’s 0x40

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Kernel Stub

Kernel stub has four tasks

locate system call arguments

in registers or on user stack

translate user addresses into kernel addresses (again, must

not trust user addresses)

copy arguments from user memory into kernel memory

protect kernel from malicious code evading checks (must do

this before validating arguments to protect the kernel from a

TOCTOU attack)

validate arguments

protect kernel from errors (or attacks) in user code

copy results back from the kernel into user memory

must verify user space addresses before copying

user stack pointer may be bad (must not trust user)

every byte of user data must be valid and file access rights

must be verified

Server

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example: Network Server

(5) file
read

(8) kernel
copy

reply
buffer

 (4) parse
request

Kernel

Hardware

network interface

disk interface

(7) disk
data (DMA)

(6) disk
request

(2) copy arriving
packet (DMA)

(11) format outgoing
packet and DMA

(1) network
socket read

(3) kernel
copy

request
buffer

(10) socket write and
copy to kernel buffer

(9) format reply

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.7) Starting A

New Process

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Starting A New Process

Step 1: Create a new process

allocate and initialize a new PCB

allocate memory for the new process

copy program data from disk into the newly allocated memory

allocate user-level stack for user-level code execution

allocate kernel-level stack to handle system calls, interrupts,

and processor exceptions

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Starting A New Process

Step 2: Start running the new process

copy arguments into memory

by convention, arguments of a process are copied to the base

of the user-level stack (i.e., pushed onto the stack)

in C, set up argv[] to point there

transfer control to user mode

as if it’s returning from a system call (set up the bottom of the

kernel stack just right then execute popad and iret)

the starting point of a user program is not main()

start(argc, argv) {

 exit(main(argc, argv));

}

the start() function doesn’t return and it’s identical for all

programs (and that’s why you don’t need to write code for

this function)

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.8) Implementing

Upcalls

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Upcalls

e.g., be notified about I/O completion interrupt

of course, user space program should not be allowed to

provide actual interrupt handler (or should it?!)

It would be nice to have OS-like functionality in user space

there is a need to "virtualize" some part of the OS kernel so that

applications can behave more like the OS

We call virtualized interrupts and exceptions upcalls

in Unix/Linux, they are called signals

in Windows, they are called asynchronous events

Upcalls from kernel to user processes are not always needed

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcalls

preemptive user-level threads (e.g., timer upcall)

There are several uses for immediate event delivery with upcalls

asynchronous I/O notification (e.g., I/O completion upcall)

interprocess communication (e.g., debugger upcall to suspend

or resume a process, logout upcall to safely self-terminate)

user-level exception handling (e.g., divide-by-zero upcall to

safely self-terminate)

used in asynchronous I/O

user-level resource allocation (e.g., Java garbage collection

upcall when amount of available memory changes for a process)

event-driven applications don’t need upcalls since OS events

can be virtualized

until recently, Microsoft Windows had no support for

immediate delivery of upcalls to user-level programs since

application programs are all event-driven

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Unix Signals

Signal delivery to a user space program is similar to hardware

interrupt delivery to the kernel

instead of interrupt vector, Unix has signal handlers

instead of using an interrupt stack, some OSes use a signal stack

registers are automatically saved and restored, transparent

to user processes or kernel

signal masking: signals disabled while in signal handler (since

there is only one signal stack per process)

processor state: kernel copies onto the signal stack the saved

state (i.e., PC, SP, general purpose registers at the point when

the user process stopped)

this is a design choice; alternatively, can use a normal

execution stack

difficult to modify the stack you are using

the signal handler can modify the saved state (e.g., so

that the kernel can resume a different user-level task

when the signal handler returns)

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcall: Before

...

x = y + z;

...

signal_handler() {

 ...

}

CPU

Stack Pointer

Program Counter

signal stack

user stack

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcall: During

...

x = y + z;

...

signal_handler() {

 ...

}

CPU

Stack Pointer

Program Counter

signal stack

user stack

SP

PC

Saved

Registers

the bottom of the signal stack is set up by the kernel (e.g., copied

from the interrupt stack)

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Upcall: Implementation

e.g., timer interrupt upcall

kernel copies save state to the bottom of the signal stack

To implement upcall only requires a small modification to the

"return from system call" or "return from interrupt" mechanism

reset the saved state to point to the signal handler and and

signal stack

use iret to exit the kernel handler and resume user-level

execution at the signal handler

when signal handler returns, these steps are unwound (i.e.,

processor state is copied back from the singal handler into

the interrupt stack)

use iret to resume original user-level computation

the hardware and the interrupt handler save the state of the

user-level computation

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.9) Case Study:

Booting An OS Kernel

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

BIOS

Physical Memory (RAM)
BIOS in ROM (or EPROM)

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

bootloader

OS kernel

login app

bootloader

OS kernel

login app

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)
BIOS in ROM (or EPROM)

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

BIOS loads the bootloader into memory and jumps to it

on newer hardware, BIOS would first verify the integrity of

bootloader

Bootloader loads the OS kernel into memory and jumps to it

bootloader

OS kernel

login app

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

accessed via physical addresses

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)

OS kernel

code & data

(2) bootloader

copies

OS kernel

BIOS in ROM (or EPROM)

bootloader would first verify the integrity of OS kernel

bootloader knows how to access file system on disk

bootloader

OS kernel

login app

boot code in BIOS is small and

simple (not a good idea to put

the entire kernel in ROM)

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Booting An OS Kernel

How does the OS bootstrap itself?

Ex: running Linux or Windows on a PC

(1) BIOS

copies

bootloader

BIOS

bootloader

code & data

Physical Memory (RAM)

OS kernel

code & data

login app

code & data

(2) bootloader

copies

OS kernel

(3) OS kernel

copies

login application

BIOS in ROM (or EPROM)

accessed via physical addresses

When OS kernel starts running, it would first

initialize some kernel data structures (including

setting up interrupt vector table)

OS kernel needs to communicate with physical devices

Devices operate asynchronously from the CPU

polling: kernel polls to see if I/O is done

interrupts: kernel can do other work in the meantime

Device access to memory

Programmed I/O (PIO): CPU reads and writes to device

Direct Memory Access (DMA) by device

buffer descriptor: sequence of DMA’s

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Booting

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.10) Case Study:

Virtual Machines

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Case Study: Virtual Machines

large, monolithic system

TSS (Time-Sharing System) project

IBM wants to build a multiuser time-sharing system

In the 60s, IBM had a single-user time-sharing system called CMS

virtual machine monitor (VMM)

CP67

lots of people working on it

for years

total, complete flop

a (working) multiuser time-sharing system

Put the two together ...

supports multiple virtual IBM 360s

it’s a very difficult system to build

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines

A "monitor" is a synchronization construct that allows executing

entities to have both mutual exclusion and the ability to wait (block)

for a certain condition to become true

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

What abstraction does a virtual machine provide?

hardware

today, we call the VMM a hypervisor

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

and it can be tested on a real machine (which behaves

identical to the VM)

A single user time-sharing system could be developed

independently of the VMM

no ambiguity about the interface VMM must provide to

its applications - identical to the real machine!

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine: run one OS inside (or on-top-of) another OS

run (not emulate/simulate) OSx on-top-of OSy

we will refer to OSx as the guest OS and OSy as the host OS

(a host can have multiple guests)

make the guest OS think that it’s running on hardware, but in

reality, it is running inside a virtual machine

a virtual machine is not an OS emulator

must execute guest OS code on the real processor directly

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

How?

guest OS runs in the (virtual) privileged mode of the VM

Privileged

User

User

Privileged

Real/Host Machine

Virtual/Guest Machine
(VM)

VMM/hypervisor runs in the privileged mode of the real machine

Run the entire VM in user mode of the real machine

VMM keeps track of whether each VM is in the

virtual/guest privileged mode or in the virtual/guest user mode

VMM/hypervisor

"Guest" OS

Application

applications runs in the (virtual) user mode of the VM

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

HOW?

VMM/hypervisor provides the illusion that

the guest OS is running on real hardware

e.g., VMM must manage mode transfer

between guest processes and guest OS

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

e.g., to provide a guest disk, VMM can

simulate a virtual disk as a file on real disk

e.g., to provide network access to guest

OS, VMM can simulate a virtual network

using physical network packets

e.g., host kernel must manage memory to

provide the illusion that the guest kernel is

managing its own memory protection

"Virtual Machine" in the picture contains: virtual CPU, virtual disk,

virtual display, virtual keyboard, etc.

data structures and code that represent real hardware

components

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #1

Mode transfer example #1:

when host kernel starts the virtual machine, the guest kernel

starts running as if it’s being booted:

1) host loads the guest bootloader from the virtual disk and

starts it running

2) guest bootloader loads the guest kernel from the virtual

disk and starts it running

3) guest kernel initializes its interrupt vector table as it

normally would

4) guest kernel loads a process from the virtual disk into

guest memory

5) to start a process, guest kernel issues instructions to

resume execution at user level (use iret on x86) and traps

into host kernel (since this is a privileged instruction)

during boot the host kernel initializes its interrupt vector table as

usual

6) ...

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #1

Mode transfer example #1:

6) host kernel simulates the requested mode transfer as if the

processor had directly executed the iret instruction

it restores the PC, SP, and processor status word

exactly as the guest kernel had intended

host kernel must protect itself from bugs in guest OS

needs to verify the validity of the mode transfer (i.e., make

sure that the mode transfer will not end up in the host kernel)

Mode transfer example #2:

trap machine instruction would trap into the host kernel (and it

needs to be delivered to the trap handler in the guest kernel)

1) host kernel saves user space IP, SP, and processor status

register on the interrupt stack of the guest kernel

2) host kernel transfers control to the guest kernel at the

beginning of the interrupt handler, but with the guest

kernel running with user-mode privilege

guest user process makes a system call

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #2

host kernel simulates what would have happened had the system

call instruction occurred on real hardware running the guest OS:

3) guest kernel performs the system call, starts with saving

user state and checking arguments

4) when guest kernel attempts to return from the system call

back to user level, this causes a processor exception,

dropping back into the host kernel

5) cont...

Mode transfer example #2:

5) host kernel can then restore the state of the user process,

running at user level, as if the guest OS had been able to

return there directly

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #2

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Mode Transfer Example #2

host
interrupt
vector
table

timer
handler

syscall
handler

host
interrupt
stack

host PC

host SP

host flags

physical
disk

virtual
disk

guest
interrupt
vector
table

timer
handler

syscall
handler

guest
interrupt
stack

guest PC

guest SP

guest flags

guest file system
and other kernel
services

guest
process

guest
process
...
trap
...

guest
program
counter

Host KernelHost
Kernel
Mode

Hardware

Guest Kernel
Guest
Kernel
Mode

Guest
User
Mode

Host
User
Mode

Virtual Machine

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Exception Handling

exceptions generated in the guest user mode needs to be

delivered to the guest kernel

Host kernel handles processor exceptions similarly

exceptions generated in the guest kernel mode needs to be

simulated by the host kernel (if they do not have handlers in

the guest kernel)

therefore, the host kernel must track whether the virtual machine

is in the virtual/guest user mode or virtual/guest kernel mode

if yes, the job of the host kernel is to deliver trap/interrupt to the

guest kernel handler

If you got into the host kernel, think about whether there is a

handler in the guest kernel or not

if no, the job of the host kernel is to emulate the trap/interrupt

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: Timer Interrupt Handling

Timer interrupts need special handling

while servicing a timer interrupt in host kernel, enough virtual

time may have passed that the guest kernel is due for a timer

interrupt

in this case, host kernel needs to invoke the interrupt handler

for the guest kernel

guest kernel may switch guest user processes

this would cause a processor exception (since iret is

executed) and returning to the host kernel

host kernel can then resume the correct guess user process

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Machines: I/O Interrupt Handling

Handling I/O interrupts is similar to handling timer interrupts

when guest kernel makes a request to a virtual disk, it would

write instructions to the buffer descriptor ring for the virtual

disk device

in this case, host kernel would translate and perform these

instructions on the virtual disk

guest kernel expects to receive I/O completion interrupt

when the host kernel finishes performing operations

on the virtual disk, it needs to invoke the disk interrupt

handler for the guest kernel

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

User-Level Virtual Machine

How does VMware Workstation Player work?

run as a user-level application

how does it catch privileged instructions, interrupts, I/O

operations?

VMware installs a kernel driver (called VMDriver) into host kernel

requires administrator privileges

modifies interrupt table to redirect to VMDriver code

if interrupt is for VM, upcall

if interrupt is for another process, reinstalls interrupt table

and resumes kernel

Modern OSes allow 3rd party kernel drivers (kind of like device

drivers with no corresponding devices)

these drivers can intercept hardware and software interrupts to

execute its own ISR

interpositioning: they can even call the original ISR (similar to

DLL injection attack in Windows)

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

User-Level Virtual Machine

VMAppprocessprocess

Host OS

DevicesProcessor(s)

Device drivers

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

