
if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA1 is due at 11:45pm on Tuesday, 6/3/2025

get started soon

if you are stuck, make sure you come to see me during office

hours, send me email, or post in the class Piazza Forum

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 2 - 5/27/2025)

If you haven’t received Lecture 1 material, you should watch the

recorded video as early as possible so you won’t get surprised

about grading

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 2 - 5/27/2025)

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

due to our fairness policy

although not recommended, you can do your development on a

different platform

the grading guidelines is part of the spec

you must test your code on the "standard" platform because

those are the only platforms the grader is allowed to grade on

if you make submission, make sure you run through the Verify

Your Submission procedure as if you are the grader

I have change the PA2 submission deadline to be the same as the

PA3 submission deadline

this makes it similar to Prof. Ryutov’s class in fall/spring

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 2 - 5/27/2025)

I will be out of town this Thursday (to be at my daughter’s

graduation on the east coast)

I will record about 120 minutes of Lecture 3 on Zoom and will get

them posted on the class website (around 40-45 minutes each)

sorry about the inconvenience

no live class in KAP 146 12:30pm - 2:50pm this Thursday

I will make a Piazza post when the videos are available

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Ch 1: Introduction

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(1.1) What Is An

Operating System?

Software to manage a

computer’s resources for

its users and applications

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is An Operating System?

Hardware (HW)

APP APP APP

Operating System (OS)

generally, there are 3 types of HW

1) CPU/processor (including GPU)

2) RAM

3) devices

we use the terms CPU, core, and

processor interchangeably

although technically speaking,

a multicore processor has multiple CPUs in it

if we assume that we only have a single-core processor,

then processor = core = CPU

therefore, unless otherwise specified, this class only talks

about single-core processors (multi-core processor

system = multi-processor system)

Software to manage a

computer’s resources for

its users and applications

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is An Operating System?

kernel is part of the OS

that can perform

privileged operations

e.g., execute privileged

machine instructions

e.g., talk to HW

does OS = kernel?

yes for some old OS

(e.g., Sixth Edition Unix)

no for modern OSes (many

OS components can run

as user applications that

do not require privilege

at all time  not our focus)

Hardware-Specific Software

and Device Drivers

Kernel-user Interface

 (Abstract Virtual Machine)

 Hadrware Abstractino Layer

Virtual Memory

Scheduling

File System

Networking

Users

User-mode

(non-privileged)

Kernel-mode

(privileged)

Hardware

System

Library

APP

System

Library

APP

System

Library

APP

NIC

CPU/Processors

RAM

MMU

Disk
GPU

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is An Operating System?

There are things an application cannot do

they make system calls to ask

the OS for assistance

OS does not trust applications

they don’t know how to talk to HW

therefore, they are not permitted

to talk to HW

they don’t know how to share HW

and system resources (such as

CPU and RAM)

applications can only enter

the kernel through there

controlled entry points

Operating System

APP APPAPP

System Calls

Hardware Abstraction Layer

Disk

Interface

Network

Interface

Display

Interface
RAMCPU

Disk

e.g., it cannot run another application

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is An Operating System?

Hardware Abstractino Layer (HAL)

makes the OS independent of the

hardware

e.g., same OS code can run on

different CPU types (just need

to recompile the OS)

e.g., same OS code can talk to

keyboards from any keyboard

manufacturer
Operating System

APP APPAPP

System Calls

Hardware Abstraction Layer

Disk

Interface

Network

Interface

Display

Interface
RAMCPU

Disk

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(1.2) Operating System

Evaluation

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is Kernel?

The kernel is the core component of the OS

it has full access to all of the HW

it’s responsible for

process management

CPU scheduling

memory management

storage management

protection and security

device and I/O management

(not discussed in this class)

Our focus is on the kernel

most of the time, we use the term "kernel" and "OS"

interchangeably (since the kernel is the focus of this class)

Hardware (HW)

APP APP APP

Operating System (OS)

Kernel

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

OS Challenges

Reliability: does the system do what it was designed to do?

Availability: what portion of the time is the system performing

useful work?

Security: can the system be compromised by an attacker?

Performance

latency (or response time): how long does an operation take to

complete?

throughput: how many operations can be done per unit of time?

overhead: how much extra work is done by the OS?

fairness: how equal is the performance received by different

users?

predictability: how consistent is the performance over time?

Portability

for programs: API and the Abstract Virtual Machine (AVM)

for OS: Hardware Abstraction Layer

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

OS Is Complex

How can we build and understand a complex, messy system?

come up with some structure

1) manage complexity through abstraction (e.g., address

space, process, file)

2) apply good design principles (e.g., separation of policy

from mechanism)

3) consider tradeoffs (e.g., optimize for common case)

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(1.3) Operating System:

Past, Present, and Future

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

OS History

Multics

Unix

Linux

Android

Mach

NeXT

MacOS X

iOS

MacOS

BSD Unix

VMware

VM/370VMS

MVS

Windos NT

Windows 8

Windows

MS/DOS

Influence

Descendant

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Computer Performance Over Time

CPU speed (MIPs)

CPUs per computer

CPU $/MIPs

DRAM capacity (MB/$)

Disk capacity (GB/$)

Home Internet

Machine room network

Users/computer

1

1

$100K

0.002

0.003

300 bps

10 Mbps

(shared)

100:1

200

1

$25

2

7

256 Kbps

100 Mbps

(switched)

1:1

2500

10+

$0.20

1K

25K

20 Mbps

10 Gbps

(switched)

1:several

2.5K

10+

500K

500K

10M

100K

1000

100+

1981 1997 2014
Factor

(2014/1981)

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Ch 2: The Kernel

Abstraction

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Challenge: Protection

A central role of OS is protection

isolating bad applications and users so that they do not corrupt

other applications or the OS (which is the protector of other

applications)

Protection is essential to achiving some of the OS goals

reliability - when an application crashes, it must not affect the OS

security - protect other applications and the OS from malicious

applications

privacy - on a multi-user system, one user must not be able

to access information of another user

fair resource allocation - an application must not be allowed to

use an unfair amount of shared resources (e.g., CPU time,

memory, disk space, etc.)

trusted code vs. untrusted code

Implementing protection is the job of the OS kernel

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Challenge: Protection

The OS kernel is the lowest level of software running on the system

and has full access to all machine hardware

must trust the OS kernel to do anything with the hardware

everything else is untrusted and must run in a restricted

environment

Hardware

APP APP APP

Operating System Kernel

Trusted

Untrusted

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Main Points

Process concept

a process is the OS abstraction for executing a program with

limited privileges

Dual-mode operation: user vs. kernel

kernel-mode: execute with complete privileges

user-mode: execute with fewer privileges

Safe control transfer

how do we switch from one mode to the other?

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Concept

A process is the execution of an application program with restricted

rights

the process is the abstraction for protected execution provided

by the OS kernel

a process needs permission from the OS kernel before accessing

memory of any other process, before reading/writing to disk,

before changing hardware settings, etc.

The OS kernel runs directly on the processor with unlimitted rights

what about applications?

in order to have good performance, applications also need to run

directly on the processor

but with all potentially dangerous operations disabled

hardware can help to improve performance

in general, the more hardware help the better/faster

how much can and should hardware help?

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Dual-mode Operation

Split personality of a process

when running the OS kernel, it’s in charge of everything and

can do anything it wants

when running applicatino code, it needs to ask permissions

to do anything potentially harmful to other applications or

the OS kernel

remember that they are running on the same processor,

sometimes completely trustworthy and other times completely

untrusted

Safe Control Transfer

Application to OS kernel: make system call

return from system call

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.1) The Process

Abstraction

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

OS

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

A process is a running program

it has an address space that’s made up

of memory segments

machine instructions are kept inside the

text segment

global variables are kept inside the data

segment

the heap holds dynamically allocated

data structures that the process might

need

the stack holds the state of local

variables and function arguments during procedure calls

conceptually, the OS kernel has its own address space

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

What’s to keep the process from modifying

data in the OS kernel or other processes?

What’s to keep the process from modifying

data on disk?

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

OS

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

OS

Copies

machine

instructions

data

heap

stack

machine

instructions

data

heap

stack

process

kernel

Physical

Memory (RAM)
Source

Code

Executable

Image:

Instructions

and Data

compileredits

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

process concept

Solution:

safe control transfer

dual-mode operation: user vs. kernel

user-mode: execute with fewer

privileges

how do we switch from one mode to the other?

kernel-mode: execute with

complete privileges

a process is the OS abstraction for

executing a program with limited

privileges

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Process Abstraction

Process: an instance of a program, running with limited rights

thread: a sequence of instructions within a process

potentially many threads per process (for now 1:1)

address space: set of rights of a process

memory that a process can access

other permissions the process has (e.g., what memory is

shared with another process)

OS maintains information about every process in a data structure

called a Process Control Block (PCB)

where the process data (e.g., code, global variabls, stack, heap)

is stored in memory

PCB contains information such as:

where its executable image resides on disk

which user asked to execute the program

what privileges the process has

...

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Process Control Block (PCB)

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.2) Dual-Mode

Operation

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.2) Dual-Mode Operation

Kernel mode

execution with the full privileges of the hardware

read/write to any memory, access any I/O device, read/write

any disk sector, send/read any packet

User mode

limited privileges

only those granted by the operating system kernel

On the x86, mode stored in EFLAGS register

On the MIPS, mode in the status register

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

A Model of a CPU

branch address

CPU

instructions

fetch &

execute

Program

Counter

(PC)

Select

PC

new PC
+4

opcode

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

A CPU with Dual-Mode Operation

branch address

CPU

instructions

fetch &

execute

Program

Counter

(PC)

Select

PC

new PC

handler PC

+4

Select

Mode

new mode
mode

opcode

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

A CPU with Dual-Mode Operation

Privileged instructions

available to kernel

not available to user code

Limits on memory accesses

to prevent user code from overwriting the kernel

Timer

Safe way to switch from user mode to kernel mode, and vice versa

to regain control from a user program in a loop

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Privileged Instructions

What would be an example of a privileged instruction?

change mode bit in EFLAGS register

change which memory location a user program can access

send commands to I/O devices

read data from or write data to I/O devices

jump into kernel code

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Privileged Instructions

What should happen if a user program attempts to execute a

privileged instruction?

would cause a processor exception (in hardware)

which would cause the processor to transfer control to an

exception handler in the OS kernel

usually, the kernel simply halts the process after a

privilege violation

What bad thing can happen if an application can jump into kernel

mode at any location in the kernel?

it may crash the kernel

it may allow the application to access privileged data

it may allow the application to bypass security checks

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Simple Memory Protection: Base & Bound Registers

raise

exception

base

Physical

Memory

base

bound

<

bound

≥

Processor

physical

address

Can only modify these registers using privileged instructions

otherwise, application can access data that belongs to the

kernel or other processes

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Towards Virtual Addresses

addresses used by an application must be contiguous (cannot

have gaps)

it would be nice if the stack and heap can grow and shrink

What’s are the problems with base and bound?

cannot share code between processes

absolute addresses are difficult to use

how to load the same program at two different memory

locations?

e.g., "jmp 0x12345678"

memory fragmentation

the (virtual) memory

of every process

starts at the same

place, i.e., 0

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Addresses

Translation done in hardware (on every address), using a table set

up by the OS kernel
Physical

Memory

Virtual Addresses

(process layout)

code

code

heap

data

heap

data

stack

stack

0

these memory

"segments" can

be located

anywhere in

physical memory

If you run two instances of this program simultaneously, you would

get the same printout from them if virtual addresses are used

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Address Example

int staticVar = 0; // a static variable

main() {

 staticVar += 1;

 sleep(10); // sleep for 10 seconds

 printf("static address: %x, value: %d\n",

 &staticVar, staticVar);

}

if you don’t have support for virtual addresses and have to use

physical addresses, the printout will be different

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtual Address Example

If you run two instances of this program simultaneously, you would

get the same printout from them if virtual addresses are used

int staticVar = 0; // a static variable

main() {

 staticVar += 1;

 sleep(10); // sleep for 10 seconds

 printf("static address: %x, value: %d\n",

 &staticVar, staticVar);

}

if you don’t have support for virtual addresses and have to use

physical addresses, the printout will be different

my color codes for code

reserved/key words are

in blue

numeric and string

constants are in red

comments are in green

black otherwise

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Hardware Timer

What if a programming bug causes a user process to go into an

infinite loop and never give up the processor?

we need a way for the OS kernel to gain control periodically

Hardware timer is a device that periodically interrupts the

processor

returns control to the kernel handler

interrupt frequency set by the kernel

not by user code

interrupts can be temporarily deferred

not by user code

interrupt deferral crucial for implementing mutual exclusion

expires every few milliseconds (human reaction time is a

few hundred of milliseconds)

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.3) Types of

Mode Transfer

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Types of Mode Transfer

User Mode To Kernel Mode

Kernel Mode To User Mode

Interrupts (if we don’t say "software interrupt", we mean "hardware

interrupt")

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mode Switch: User Mode To Kernel Mode

triggered by timer and I/O devices

Exceptions

triggered by unexpected program behavior

or malicious behavior!

e.g., divide by zero, execute a privileged instruction

System calls (aka protected procedure call)

request by program for kernel to do some operation on its behalf

only limited number of very carefully coded kernel entry points

e.g., read data from disk, create another process

when such an exception occurs, the thread in the user process

"traps" into the kernel

also "trap" into the kernel

when a thread in a user process makes a system call, it

"traps" into the kernel

Interrupts (if we don’t say "software interrupt", we mean "hardware

interrupt")

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mode Switch: User Mode To Kernel Mode

triggered by timer and I/O devices

Exceptions

triggered by unexpected program behavior

or malicious behavior!

e.g., divide by zero, execute a privileged instruction

System calls (aka protected procedure call)

request by program for kernel to do some operation on its behalf

only limited number of very carefully coded kernel entry points

e.g., read data from disk, create another process

when such an exception occurs, the thread in the user process

"traps" into the kernel

also "trap" into the kernel

when a thread in a user process makes a system call, it

"traps" into the kernel

trap is a synchronous

event (to transfer from

user mode to kernel mode)

interrupt is an

asynchronous event (can

happen at any time)

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Mode Switch: Kernel Mode To User Mode

New process (or new thread) starts

jump to first instruction in program (or thread)

Return from interrupt, exception, system call

resume suspended execution

Process (or thread) context switch

resume some other process (or thread)

User-level upcall (UNIX signal)

asynchronous notification to user program

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(2.4) Implementing

Safe Mode Transfer

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementing Safe Mode Transfer

Context switch code must be carefully crafted

relies on hardware support

limited entry into the kernel

Most OS has a common sequence of instructions for enter the

kernel and for returning to user level, regardless of cause

at a minimum, this common sequence must provide

atomic changes to processor state

transparent, restartable execution

an entry point must be set up by the kernel and not allow

entry into the kernel at arbitrary points

processor mode, program counter, stack pointer, memory

protection registers all change at the same time

an interrupt must be invisible to the user process (i.e.,

serviced transparently)

if an interrupt is serviced in the middle of an instruction

execution, the CPU needs to be able to restart or

finish the execution of that instruction seamlessly

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Common Interrupt / Exception Handling

On an interrupt (or exception), the following happens

1) the processor saves its current state to memory

2) further events are deferred

3) changes to kernel mode

4) jump to the interrupt or exception handler

When the handler finishes, the steps are reversed and the

processor state is restored from its saved location

the interrupted entity has no idea that an interrupt has occurred

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interrupt Vector (Table)

Table set up by OS kernel

the interrupt vector is an array of function pointers, pointing to

code to run on different events

a special purpose processor register stores the address of this

array
Interrupt

Vector

...

handleTimerInterrupt() {

 ...

}...

handleDivideByZero() {

 ...

}...

handleSystemCall() {

 ...

}...

Processor

Register

on a multi-processor system, another thread in the same process

that runs in a different processor may modify the saved state

user-level stack pointer may be invalid (malicious user)

Why can’t you use the process’s user-level stack to store the saved

state?

the hardware automatically saves some of the interrupted

thread’s registers by pushing them onto the interrupt stack

before calling the handler

On most processors, a special hardware register points to an

interrupt stack

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Interrupt Stack

when an interrupt or a trap causes a context switch into the

kernel, the hardware changes the stack pointer to point to the

interrupt stack

