Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 2 - 5/27/2025)

_) PA1is due at 11:45pm on Tuesday, 6/3/2025
= if you have code from current or a previous semester, do not

look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= get started soon
Q if you are stuck, make sure you come to see me during office

hours, send me email, or post in the class Piazza Forum

ﬁ> If you haven’t received Lecture 1 material, you should watch the
recorded video as early as possible so you won’t get surprised

about grading

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 2 - 5/27/2025)

_) Grading guidelines is the ONLY way we will grade and we can only

Copyright © William C. Cheng

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

= due to our fairness policy

= the grading guidelines is part of the spec

— although not recommended, you can do your development on a
different platform
Q you must test your code on the "standard” platform because

those are the only platforms the grader is allowed to grade on

= if you make submission, make sure you run through the Verify

Your Submission procedure as if you are the grader

| have change the PA2 submission deadline to be the same as the

PA3 submission deadline
= this makes it similar to Prof. Ryutov’s class in fall/spring

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 2 - 5/27/2025)

) 1 will be out of town this Thursday (to be at my daughter’s
graduation on the east coast)
= | will record about 120 minutes of Lecture 3 on Zoom and will get
them posted on the class website (around 40-45 minutes each)
Q | will make a Piazza post when the videos are available
= ho live class in KAP 146 12:30pm - 2:50pm this Thursday
= sorry about the inconvenience

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Ch 1: Introduction

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(1.1) What Is An
Operating System?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

What Is An Operating System?

) Software to manage a
computer’s resources for

8 &

its users and applications
= generally, there are 3 types of HW

APP APP APP

1) CPU/processor (including GPU)

2) RAM
3) devices

Operating System (OS)

QO we use the terms CPU, core, and
processor interchangeably
& although technically speaking,

Hardware (HW)

a multicore processor has multiple CPUs in it
& if we assume that we only have a single-core processor,

then processor = core = CPU

& therefore, unless otherwise specified, this class only talks
about single-core processors (multi-core processor

system = multi-processor system)

Copyright © William C. Cheng

@

Introduction to Operating Systems - CSCI 350

What Is An Operating System?

) Software to manage a
computer’s resources for
its users and applications
= kernel is part of the OS

that can perform

privileged operations

Q e.g., execute privileged
machine instructions

Q e.g., talk to HW

= does OS = kernel?

Q yes for some old OS
(e.g., Sixth Edition Unix)

Q no for modern OSes (many
OS components can run
as user applications that
do not require privilege
at all time — not our focus)

Copyright © William C. Cheng

User-mode <
(non-privileged)

Kernel-mode 3
(privileged)

.
r

<>

Hardware < m
.

-
Users < @ @
.

APP APP APP
System System System
Library Library Library

.
- Kernel-user Interface

(Abstract Virtual Machine)

(File System) (Virtual Memory)

(Networking)(Scheduling)

Hadrware Abstractino Layer

Hardware-Specific Software
and Device Drivers

(CPU/Processors) (MMU)
(RAM)(GPU)(NIC)

@

ﬁ} There are things an application cannot do
= e.g., it cannot run another application

= they don’t know how to talk to HW

Q therefore, they are not permitted

to talk to HW
= they don’t know how to share HW
and system resources (such as
CPU and RAM)
—= they make system calls to ask
the OS for assistance
Q OS does not trust applications

Introduction to Operating Systems - CSCI 350

What Is An Operating System?

APP

APP

8 &

APP

System Calls

Operating System

Hardware Abstraction Layer

Q applications can only enter
the kernel through there

CPU

Disk

RAM Interface

Display
Interface

Network

Interface oee

controlled entry points

Copyright © William C. Cheng

S

Introduction to Operating Systems - CSCI 350

What Is An Operating System?
_) Hardware Abstractino Layer (HAL) @ @

makes the OS independent of the
hardware APP APP APP
= e.g., same OS code can run on

different CPU types (just need

to recompile the OS) System Calls
= e.g., same OS code can talk to
keyboards from any keyboard Operating System

manufacturer

Hardware Abstraction Layer

Disk Display Network
Interface | | Interface | | Interface

#
||
| | | |

CPU | |RAM (Y X))

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(1.2) Operating System
Evaluation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

What Is Kernel?
_) The kernel is the core component of the OS @ @

= |t has full access to all of the HW
= [t’s responsible for APP APP APP
Q process management

Q CPU scheduling
Q memory management
Q storage management Operating System (OS)
Q protection and security Kernel
Q device and I/O management
(not discussed in this class) Hardware (HW)

) Our focus is on the kernel
= most of the time, we use the term "kernel” and "OS"
interchangeably (since the kernel is the focus of this class)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

OS Challenges
ﬁ} Reliability: does the system do what it was designed to do?

ﬁ> Availability: what portion of the time is the system performing
useful work?

ﬁ} Security: can the system be compromised by an attacker?

) Performance

— latency (or response time): how long does an operation take to
complete?
throughput: how many operations can be done per unit of time?
overhead: how much extra work is done by the OS?
fairness: how equal is the performance received by different
users?
= predictability: how consistent is the performance over time?

) Portability
= for programs: API and the Abstract Virtual Machine (AVM) (\
0 —

= for OS: Hardware Abstraction Layer 3 Qy

12

[

[

[

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

OS Is Complex

ﬁ} How can we build and understand a complex, messy system?
= come up with some structure
1) manage complexity through abstraction (e.g., address
space, process, file)
2) apply good design principles (e.g., separation of policy
from mechanism)
3) consider tradeoffs (e.g., optimize for common case)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(1.3) Operating System:
Past, Present, and Future

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

OS History

MVS Multics

MS/DOS VMS VM/370 Unix
Windows : BSD Unix Mach
Windos NT VMware Linux NeXT MacOS
Windows 8 MacOS X
Y l
"""" Influence Android i0S
Descendant

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Computer Performance Over Time

Factor
1981 1997 2014 (2014/1981)
CPU speed (MIPs) 1 200 2500 2.5K
CPUs per computer 1 1 10+ 10+
CPU $/MIPs $100K $25 $0.20 500K
DRAM capacity (MB/$) 0.002 2 1K 500K
Disk capacity (GB/$) 0.003 7 25K 10M
Home Internet 300 bps 256 Kbps 20 Mbps 100K
_ 10 Mbps 100 Mbps 10 Gbps

Machine room network (shared) (switched) (switched) 1000
Users/computer 100:1 1:1 1:several 100+

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Ch 2: The Kernel
Abstraction

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Challenge: Protection

) A central role of OS is protection
= [solating bad applications and users so that they do not corrupt
other applications or the OS (which is the protector of other
applications)

ﬁ> Protection is essential to achiving some of the OS goals

= reliability - when an application crashes, it must not affect the OS

= security - protect other applications and the OS from malicious
applications
Q trusted code vs. untrusted code

= privacy - on a multi-user system, one user must not be able
to access information of another user

= fair resource allocation - an application must not be allowed to
use an unfair amount of shared resources (e.g., CPU time,
memory, disk space, etc.)

) Implementing protection is the job of the OS kernel

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Challenge: Protection

ﬁ} The OS kernel is the lowest level of software running on the system
and has full access to all machine hardware
= must trust the OS kernel to do anything with the hardware
= everything else is untrusted and must run in a restricted
environment

APP APP APP

Untrusted

Trusted
Operating System Kernel

Hardware

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Main Points

) Process concept
= a process is the OS abstraction for executing a program with
limited privileges

) Dual-mode operation: user vs. kernel
= kernel-mode: execute with complete privileges
= user-mode: execute with fewer privileges

_, Safe control transfer
= how do we switch from one mode to the other?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Process Concept

ﬁ} A process is the execution of an application program with restricted
rights
= the process is the abstraction for protected execution provided
by the OS kernel
= a process heeds permission from the OS kernel before accessing
memory of any other process, before reading/writing to disk,
before changing hardware settings, etc.

ﬁ> The OS kernel runs directly on the processor with unlimitted rights
= what about applications?
= In order to have good performance, applications also need to run
directly on the processor
Q but with all potentially dangerous operations disabled
— hardware can help to improve performance
Q in general, the more hardware help the better/faster
< how much can and should hardware help?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Dual-mode Operation

) Split personality of a process

= when running the OS kernel, it’s in charge of everything and
can do anything it wants

= when running applicatino code, it needs to ask permissions
to do anything potentially harmful to other applications or
the OS kernel

—= remember that they are running on the same processor,
sometimes completely trustworthy and other times completely
untrusted

Safe Control Transfer

) Application to OS kernel: make system call
= return from system call

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.1) The Process
Abstraction

Copyright © William C. Cheng

@ edits
_>

Source
Code

compiler

Executable
Image:
Instructions
and Data

0S
Copies

L

Physical

Memory (RAM)

) A process is a running program
— it has an address space that’s made up

of memory segments

Q machine instructions are kept inside the

lext segment

Q global variables are kept inside the data
segment

Q the heap holds dynamically allocated
data structures that the process might

need

Q the stack holds the state of local
variables and function arguments during procedure calls |
= conceptually, the OS kernel has its own address space 4

Copyright © William C. Cheng

machine
instructions

data

heap

stack

Introduction to Operating Systems - CSCI 350

The Process Abstraction

> process

machine
instructions

data

heap

stack

. (0133
kernel

Introduction to Operating Systems - CSCI 350

The Process Abstraction

@ edits
_>

Source
Code

compiler
P -

Executable
Image:
Instructions
and Data

0S
Copies

Physical
Memory (RAM)

L

> What's to keep the process from modifying
data in the OS kernel or other processes?

_, What's to keep the process from modifying
data on disk?

Copyright © William C. Cheng

machine
instructions

data > process

heap

stack

machine
instructions

data s 0S

kernel
heap

stack

Introduction to Operating Systems - CSCI 350

The Process Abstraction

0S Physical
edits compiler Executaple Copies Memory (RAM)
| Source P > Image: P

Code Instructions | coe
and Data 7

machine
i> Solution: Inst;uaci':ons
= process concept - process
. . heap
Q a process is the OS abstraction for o
executing a program with limited ?
privileges "
. B
= dual-mode operation: user vs. kernel machine

instructions

Q kernel-mode: execute with

. . data
complete privileges — - kernel
Q user-mode: execute with fewer —

privileges g
= safe control transfer
Q how do we switch from one mode to the other?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Process Abstraction

ﬁ} Process: an instance of a program, running with limited rights
= thread: a sequence of instructions within a process
Q potentially many threads per process (for now 1:1)
= address space: set of rights of a process
Q memory that a process can access
Q other permissions the process has (e.g., what memory is
shared with another process)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Process Control Block (PCB)

ﬁ} OS maintains information about every process in a data structure
called a Process Control Block (PCB)

_, PCB contains information such as:
— where the process data (e.g., code, global variabls, stack, heap)
is stored in memory
where its executable image resides on disk
which user asked to execute the program
what privileges the process has

0 0 0 [

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.2) Dual-Mode
Operation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.2) Dual-Mode Operation

_) Kernel mode
= execution with the full privileges of the hardware
= read/write to any memory, access any I/O device, read/write
any disk sector, send/read any packet

_) User mode
= limited privileges
= ohnly those granted by the operating system kernel

) On the x86, mode stored in EFLAGS register
> On the MIPS, mode in the status register

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

A Model of a CPU

branch address

@ :
rogram

Select new PC instructions
- - - —
PC Counter fetch &

{ (PC) execute

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

A CPU with Dual-Mode Operation

branch address

@ :
rogram

Select new PC instructions

> o
™ pc > C°:gter fetch &
handler PC —» (PC) — | execute [
\ J
-
Select |new mode d
Mode mode

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

A CPU with Dual-Mode Operation

) Privileged instructions
= available to kernel
= not available to user code

) Limits on memory accesses
= to prevent user code from overwriting the kernel

ﬁ> Timer

= to regain control from a user program in a loop

ﬁ> Safe way to switch from user mode to kernel mode, and vice versa

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Privileged Instructions

ﬁ} What would be an example of a privileged instruction?
change mode bit in EFLAGS register

change which memory location a user program can access
send commands to I/O devices

read data from or write data to I/O devices

jump into kernel code

[

0000

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Privileged Instructions

ﬁ} What should happen if a user program attempts to execute a
privileged instruction?
= would cause a processor exception (in hardware)
Q which would cause the processor to transfer control to an
exception handler in the OS kernel
& usually, the kernel simply halts the process after a
privilege violation

ﬁ> What bad thing can happen if an application can jump into kernel
mode at any location in the kernel?
= it may crash the kernel
= it may allow the application to access privileged data
= It may allow the application to bypass security checks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Simple Memory Protection: Base & Bound Registers

Physical
Memory

base
physical
address
Processor o
base
Hé
bound
bound
:%: raise
exception

ﬁ> Can only modify these registers using privileged instructions
= otherwise, application can access data that belongs to the (\
0 —

kernel or other processes Y/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Towards Virtual Addresses

ﬁ} What’s are the problems with base and bound?
= addresses used by an application must be contiguous (cannot
have gaps)
Q 1t would be nice if the stack and heap can grow and shrink
cannot share code between processes
absolute addresses are difficult to use
Q how to load the same program at two different memory
locations?
& e.g., "jmp 0x12345678"
= memory fragmentation

[

[

Copyright © William C. Cheng

Virtual Addresses

ﬁ} Translation done in hardware (on every address), using a table set

up by the OS kernel
= the (virtual) memory
of every process
starts at the same
place, i.e., 0
Q these memory
"segments" can
be located
anywhere in
physical memory

Copyright © William C. Cheng

Virtual Addresses
(process layout)

0

code

data

heap

v
i

-~y
-y
-~y

-
-~y
- -

-~y
-y
-~y

-
-~y
- -

-
L.

- -
-

-~y
-y
- -

-~ -
-
~ -
-
-
-
-
-
-
-
-
-
-
-
-
-
-~y
-~ -

Introduction to Operating Systems - CSCI 350

Physical
Memory

code

data

heap

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

stack

Introduction to Operating Systems - CSCI 350

Virtual Address Example

int staticvar = 0; // a static wvariable
main () {
staticvVar += 1;
sleep(10); // sleep for 10 seconds
printf ("static address: %x, wvalue: %d\n",
&staticvVar, staticVar);

}

ﬁ> If you run two instances of this program simultaneously, you would
get the same printout from them if virtual addresses are used
= if you don’t have support for virtual addresses and have to use
physical addresses, the printout will be different

Copyright © William C. Cheng

int staticvar = 0; // a static vari

main () {
staticvVar += 1;

sleep(10); // sleep for 10 second

printf ("static address: %x,
&staticvVar, staticVar);

}

Introduction to Operating Systems - CSCI 350

Virtual Address Example

r

value)

L

= my color codes for code
L reserved/key words are
in blue
1 numeric and string
constants are in red
J comments are in green
1 black otherwise

ﬁ> If you run two instances of this program simultaneously, you would
get the same printout from them if virtual addresses are used
= if you don’t have support for virtual addresses and have to use

physical addresses, the printout will be different

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Hardware Timer

ﬁ} What if a programming bug causes a user process to go into an
infinite loop and never give up the processor?
= we need a way for the OS kernel to gain control periodically

ﬁ> Hardware timer is a device that periodically interrupts the
processor
= returns control to the kernel handler
= interrupt frequency set by the kernel
Q not by user code
Q expires every few milliseconds (human reaction time is a
few hundred of milliseconds)
= Interrupts can be temporarily deferred

Q not by user code
Q interrupt deferral crucial for implementing mutual exclusion

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.3) Types of
Mode Transfer

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Types of Mode Transfer
) User Mode To Kernel Mode
ﬁ> Kernel Mode To User Mode

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mode Switch: User Mode To Kernel Mode

ﬁ} Interrupts (if we don’t say "software interrupt”, we mean "hardware
interrupt”)
= triggered by timer and I/O devices

) Exceptions
= triggered by unexpected program behavior

= or malicious behavior!

= e.g., divide by zero, execute a privileged instruction

— wWhen such an exception occurs, the thread in the user process
"traps” into the kernel

ﬁ> System calls (aka protected procedure call)
= request by program for kernel to do some operation on its behalf
— only limited number of very carefully coded kernel entry points
= e.g., read data from disk, create another process

= also "trap” into the kernel

when a thread in a user process makes a system call, it |
"traps’ into the kernel 453

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mode Switch: User Mode To Kernel Mode

) Interrupts (if we don’t say "software interrupt”,(_
. " = frap is a synchronous
mterrupt) event (to transfer from
= triggered by timer and I/O devices user mode to kernel mode
= interruptis an
|:> Exceptions asynchronous event (can
= triggered by unexpected program behavior happen at any time)
.

= or malicious behavior!

= e.g., divide by zero, execute a privileged instruction

— wWhen such an exception occurs, the thread in the user process
"traps” into the kernel

ﬁ> System calls (aka protected procedure call)
= request by program for kernel to do some operation on its behalf
— only limited number of very carefully coded kernel entry points
= e.g., read data from disk, create another process

= also "trap” into the kernel

when a thread in a user process makes a system call, it |
"traps’ into the kernel 453

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Mode Switch: Kernel Mode To User Mode

ﬁ} New process (or new thread) starts
= jump to first instruction in program (or thread)

ﬁ} Return from interrupt, exception, system call
= resume suspended execution

) Process (or thread) context switch
= resume some other process (or thread)

) User-level upcall (UNIX signal)
= asynchronous notification to user program

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(2.4) Implementing
Safe Mode Transfer

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementing Safe Mode Transfer

) Context switch code must be carefully crafted
= relies on hardware support

ﬁ} Most OS has a common sequence of instructions for enter the
kernel and for returning to user level, regardless of cause
= at a minimum, this common sequence must provide
Q limited entry into the kernel
<& an entry point must be set up by the kernel and not allow
entry into the kernel at arbitrary points
Q atomic changes to processor state
& processor mode, program counter, stack pointer, memory
protection registers all change at the same time
Q transparent, restartable execution
& an interrupt must be invisible to the user process (i.e.,
serviced transparently)
<& if an interrupt is serviced in the middle of an instruction
execution, the CPU needs to be able to restart or N

finish the execution of that instruction seamlessly
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Common Interrupt / Exception Handling

ﬁ} On an interrupt (or exception), the following happens
1) the processor saves its current state to memory
2) further events are deferred
3) changes to kernel mode
4) jump to the interrupt or exception handler

ﬁ} When the handler finishes, the steps are reversed and the
processor state is restored from its saved location
= the interrupted entity has no idea that an interrupt has occurred

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Interrupt Vector (Table)

) Table set up by OS kernel

= the interrupt vector is an array of function pointers, pointing to

code to run on different events

= a special purpose processor register stores the address of this

array Processor
Redgister Interrupt
9 Vector
® -
‘_

Copyright © William C. Cheng

—P handleTimerInterrupt () {

}

—P handleDivideByZero () {

}

—P handleSystemCall () {

}

Introduction to Operating Systems - CSCI 350

Interrupt Stack

ﬁ} On most processors, a special hardware register points to an
interrupt stack
= when an interrupt or a trap causes a context switch into the
kernel, the hardware changes the stack pointer to point to the
interrupt stack
QO the hardware automatically saves some of the interrupted
thread’s registers by pushing them onto the interrupt stack
before calling the handler

ﬁ> Why can’t you use the process’s user-level stack to store the saved
state?
= user-level stack pointer may be invalid (malicious user)
= onh a multi-processor system, another thread in the same process
that runs in a different processor may modify the saved state

Copyright © William C. Cheng

