
make sure to "Verify Your Ticket" and "Verify Your Submission"

If you make a submission, read and understand the ticket in the web

page and save the web page as PDF as a record of your submission

0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 13 - 7/15/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA4 is due at 11:45pm on Tuesday, 7/15/2025

if you include files that’s not part of the original

"make pa4-submit" command, the grader will delete them

you must test your code on a "standard" platform since it’s the

only platform the grader is allowed to grade on

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 13 - 7/15/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA5 is due at 11:45pm on Tuesday, 7/29/2025

if you include files that’s not part of the original

"make pa5-submit" command, the grader will delete them

you must test your code on a "standard" platform since it’s the

only platform the grader is allowed to grade on

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

you can use at most one "free late day" on PA5

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(8.2) Towards Flexible

Address Translation

(cont...)

efficient for sparse addresses (compared to array-based paging)

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-level Translation

paged segmentation

Tree of translation tables

multi-level page tables

multi-level paged segmentation

efficient memory allocation (compared to segments)

Fixed-size page as lowest level unit of allocation

efficient disk transfers (fixed size units)

efficient lookup with translation lookaside buffers (next section)

efficient reverse lookup (from physical to virtual, using core map)

page-granularity for protection and sharing

for small programs, not many ⇒ array is not a good choice

How many page table entries are valid?

trees and hash tables are better for sparse data

we will first look at tree data structures

pointer to page table

Segment table entry:

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Paged Segmentation

Process memory is segmented

page table length (# of pages in segment)

access permissions

page frame

Page table entry:

access permissions

Share/protection at either page or segment-level

if a memory segment fits inside a subtree, every subtree would

correspond to a memory segment

if you only have 4 memory segments, you just need 4 subtrees

if you can have up to 1024 subtrees, you are saving a lot of

memory for page tables

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Paged Segmentation (Implementation)

Page Table

Frame 0

Physical
Memory

Frame 1

Frame Access

Physical Addr

OffsetFrame
Frame M-1

Raise
Exception

Processor

Size Access
Page
Table

R/O

R/W

R/W

R/W

Segment Table

Virtual Addr

OffsetPage#Seg

A segment is made out of contiguous pages

size field in segment table is the number of

contiguous pages in the corresponding segment

 Copy

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multilevel Paging

Processor

Frame 0

Physical
Memory

Frame 1

Virtual Addr

OffsetIndex3

Physical Addr

OffsetFrame

 Copy

Frame M-1

Index2Index1

Level 1

Level 2

Level 3
Page table at

each level is

designed to

fit inside a physical page frame

Page table at

each level is

designed to

fit inside a physical page frame 0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multilevel Paging

Processor

Frame 0

Physical
Memory

Frame 1

Virtual Addr

OffsetIndex3

Physical Addr

OffsetFrame

 Copy

Frame M-1

Index2Index1

Level 1

Level 2

Level 3

only top-level page table

must be filled in

lower levels of the tree

are allocated only if the

corresponding virtual

address space are in

use

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

x86 Multilevel Paged Segmentation

each entry (segment descriptor) points to a multilevel page table

Global Descriptor Table (GDT): per process segment table in x86

4KB pages; each level of page table fits in one page

Multilevel page table

32-bit: two level page table (per segment)

64-bit: four level page table (per segment)

omit sub-tree if no valid addresses

Multilevel Paged Segmentation: each segment is managed by a

multilevel page table

segment length

segment access permissions

global descriptor table register (GDTR): contains the address and

length of the GDT

context switch: change GDTR

only 48 bits are used

first 10 bits index a page directory table

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multilevel Translation

allocate/fill only page table entries that are in use

Pros

simple memory allocation

share at segment or page level

space overhead: one pointer per virtual page

Cons

two (or more) lookups per memory reference

list of memory management objects: where are the data pages

for a segment?

OS memory translation data structures:

virtual to physical translation

physical to virtual translation: core map data structure

is a particular page memory-resident or on disk (and where)?

if a particular page is copy-on-write, where is the original page

and where are the copies?

on page fault, need data structure (software page table) to

keep track of whether an invalid page is truly invalid or not

memory-resident, or if a page is truly read-only or not

when kernel updates a page’s status, it needs to update page

table entries of all processes that are sharing that page frame

Some would refer to all of the above as the virtual memory map

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Portability

Software "page table" is the ground truth, while the hardware page

table is a hint

hash table size proportional to number of physical page frames

Hash table approach: inverted page table (the name doesn’t quite

make sense, but it’s called that for historical reasons)

hash from (PID || virtual page) → physical page

if a hardware page table entry is invalid, need to access the

software page table to figure out if it’s truly invalid

typically not done in hardware because it can be quite complex

to handle hash table collisions (which is the usual problem with

hash tables)

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Portability

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(8.3) Towards Efficient

Address Translation

cache of recent virtual page → physical page translations (i.e.,

caches PTEs)

Translation lookaside buffer (TLB): a specialized hardware cache

if cache hit, use translation

if cache miss, walk multi-level page table

TLB Entry = {
 virtual page number; // key
 physical page number;
 access permissions
};

once to fetch the page table entry (to get page frame number

and access information)

With the most basic two-leve page table scheme, needs to access

physical memory twice to read/write a memory location

once to fetch from the translated physical address

100% overhead compared to using physical address directly

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Efficient Address Translation

Raise

Exception

(page fault)

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB and Page Table Translation

Page

Table

Processor

valid

invalid

Data

Data

Virtual Addr

OffsetVPage#

hit

Physical Addr

OffsetFrame

 Copy

Physical

Memory

TLB hit

Frame

Frame

TLB

TLB miss penalty is a (or a few) RAM read (< 1 µsec) while

a page fault would trap into the kernel (mseconds)

Raise

Exception

(page fault)

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB and Page Table Translation

Page

Table

Processor

valid

invalid

Data

Data

Virtual Addr

OffsetVPage#

hit

Physical Addr

OffsetFrame

 Copy

Physical

Memory

TLB miss

Frame

Frame

a TLB miss is quite different from a page fault

TLB

Physical Addr

OffsetFrame

 Copy

Page
Frame

Virtual
Page

Translation Lookaside Buffer (TLB)

Access

Page Table
Lookup

OffsetVPage#

Virtual Addr

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Lookup

Frame 0

Physical
Memory

Frame 1

Frame M-1
TLB hardware typically checks all of the entries

simultaneously against the virtual page number

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Miss

Cost of translation on the average = cost of TLB lookup +

Prob(TLB miss) × cost of a full address translation

on a processor with multi-level page table, the cost of a TLB miss

is the cost of a multi-level page table walk

this can be very expensive

some system would include two levels of TLB (unless

otherwise states, we will stick to a single-level TLB)

TLB is basically a hardware cache, which typically can be organized

in three different ways

fully associative cache: compare all entries in parallel

set associative cache: if the amount of set associativity is N,

compare N entries in parallel (typical Ns are 2, 4, 8)

expensive in terms of hardware

like a hash bucket with a collision resolution chain of length N

direct mapping: same as amount set associativity = 1

lower hit rate, but cheaper to build

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Hardware Design Principle

The bigger the memory, the slower the memory (and further away)

Intel i7

Intel i7 has 8MB of shared 3rd level cache and per-core 2nd level

cache

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Memory Hierarchy

2nd level cache/2nd level TLB

3rd level cache

Memory (DRAM)

Data center memory (DRAM)

Local non-volatile memory (SSD)

Local disk (hard drive)

Data center disk

Remote data center disk

1 ns

4 ns

12 ns

100 ns

100 µs

100 µs

10 ms

10 ms

200 ms

64 KB

256 KB

2 MB

10 GB

100 TB

100 GB

1 TB

100 PB

1 XB

Hit Cost SizeCache

1st level cache/1st level TLB

TLB miss will be like a 1st level cache miss

2nd level miss is likely to have a bunch of page table entries

already in 3rd level cache

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Superpages

On many systems, TLB entry can be a page or a superpage

superpage: a set of contiguous pages in physical memory that

map a contiguous region of virtual memory

x86 page size is 4KB, superpage sizes are 2MB and 1GB

x86: superpage is set of pages in one page table entry

pages are aligned so that they share the same high-order

(superpage) address

e.g., an 8 KB superpage would consist of two adjacent

4 KB pages that lie on an 8 KB boundary in both virtual

and physical memory

Superpages complicate operating system memory allocation by

requiring the system to allocate chunks of memory in different

sizes

Superpages can be used to improve TLB hit rate

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Superpages

for superpages, the TLB matches the superpage number, i.e., it

ignores the portion of the virtual address that is the page number

within the superpage

Each entry in the TLB has a flag, signifying whether the entry is a

page or a superpage

Physical Addr

OffsetFrame

 Copy

Superframe
(SF) or
Frame

Superpage
(SP) or
VPage

Translation Lookaside Buffer (TLB)

Access

Page Table
Lookup

Offset’SP

Virtual Addr

Frame 0

Physical
Memory

Frame 1

Frame M-1

Physical Addr

Offset’SF

OffsetVPage#
 Copy

S/F

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Superpages

S

F

Superpage

In a high resolution frame buffer, each line of the pixel display can

take up an entire page, so that adjacent pixels in the vertical

dimension lie on different pages in physical memory

Page 0

Page 1

Page 2

Page 1022

Page 1023

Video Frame Buffer

if screen resolution is 1920 x 1080

pixels → 2 M pixels → at 4 bytes per

pixel, a frame buffer is 8MB in size

if your TLB can hold 256 entries

(which is considered a large TLB),

with a 4KB page size, you can only

get hits on 1 MB of memory

drawing a line veritically across the screen

will get a TLB miss on every pixel

with superpages, can get pretty much all hits with one page table

entry

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Need For Superpages - Example

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

Since TLB is a cache, we need to worry about cache consistency

3 cases to consider

process context switch

permission reduction

TLB shootdown

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

all entries in the TLB are invalid

Process context switch: on process context switch, we need to

change the hardware page table register to point to the page

table of the new process

flush the entire TLB: mark each TLB entry invalid (slow)

TLB

Processor

Page Table

Physical Memory

Core

Page Table

Page Table

TLB

Processor

Page Table

Physical Memory

Core

Page Table

Page Table

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

all entries in the TLB are invalid

Process context switch: on process context switch, we need to

change the hardware page table register to point to the page

table of the new process

flush the entire TLB: mark each TLB entry invalid (slow)

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

all entries in the TLB are invalid

Process context switch: on process context switch, we need to

change the hardware page table register to point to the page

table of the new process

flush the entire TLB: mark each TLB entry invalid (slow)

tagged TLB: each TLB entry contains the process ID

TLB hit only if process ID also matches current process

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Tagged TLB

PID

Physical Addr

OffsetFrame

 Copy

Page
Frame

Virtual
Page

Translation Lookaside Buffer (TLB)

Access

Page Table
Lookup

OffsetVPage#

Virtual Addr

Frame 0

Physical
Memory

Frame 1

Frame M-1

PID

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

e.g., if a page changes invalid to R/O, performing address

translation will cause the hardware to load the new entry

Nothing needs to be done if the permission of a page is increased

e.g., if a page changes from R/O to R/W, performing address

translation will cause the hardware to cause an exception and

the kernel will get a chance to purge/flush the TLB entry

TLB

Processor

Page Table

Physical Memory

Core

Page Table

Page Tableupdated

remember, a page table is a kernel data structure that is

maintained by the kernel and cached by the hardware

e.g., for demand paging, copy on write, zero on reference

Permission reduction: what happens when the OS reduces the

permissions on a page?

TLB

Processor

Page Table

Physical Memory

Core

Page Table

Page Tableupdated

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

e.g., for demand paging, copy on write, zero on reference

Permission reduction: what happens when the OS reduces the

permissions on a page?

remember, a page table is a kernel data structure that is

maintained by the kernel and used/cached by the hardware

OS must ask hardware to purge/flush/invalidate TLB entry

TLB

Processor

Page Table

Physical Memory

Core

Page Table

Page Tableupdated

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Consistency

OS must ask each CPU to purge/flush/invalidate TLB entry

If processor 1 wants to change the translation for page 0x00053 to

R/O, it must purge/flush the entry from its TLB

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multiprocessor System: TLB Shootdown Example

0x00053

0x040ff

0x00053

0x00001

0x040ff

0x00001

VirtualPage

0x0003

0x0012

0x0003

0x0005

0x0012

0x0005

PageFrame

R/W

R/W

R/W

R/O

R/W

R/O

Access

Processor 1 TLB

Processor 2 TLB

Processor 3 TLB

it also must ensure that no other processor has the old

translation for page 0x00053 in its TLB

Permission reduction on a multicore system: TLB shootdown

// shooter code (processor j is the shooter)
for all processors i ≠ j sharing address space
 interrupt(i);
for all processors i ≠ j sharing address space
 while (noted[i] == 0)
 ;
modify_page_table();
update_or_flush_tlb();
done[j] = 1;

// shootee i ≠ j interrupt handler
receive_interrupt_from_processor j
noted[i] = 1
while (done[j] == 0)
 ;
// doesn’t know which TLB entry was out dated
tlb_flush_all()

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

TLB Shootdown Algorithm Example

Can only modify page table if you are sure that no other processors

are running threads from the same process as you (i.e., using the

same page table)

Too slow to first access TLB to find physical address, then look up

address in the cache

Instead, first level cache is virtually addressed

In parallel, access TLB to generate physical address in case of a

cache miss in the virtually addressed cache

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtually vs. Physically Addressed Caches

Virtually addressed cache: same consistency issues as TLBs

process context switch, premission reduction, shootdown

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Virtually Addressed Cache

valid

invalid Raise

Exception

Data

TLB

hit

Physical Addr

OffsetFrame

Physical

Memory

Frame

Frame

Virtual Addr

OffsetVPage#
Page

Table

Virtual

Cache

Processor

hit

Data

TLB hit

VC hit

Data

Alias: many OSes allow processes sharing memory to use different

virtual addresses to refer to the same memory location

a consequence of a tagged virtually addressed cache

a write to one copy needs to update all copies

Typical solution

lookup virtually addressed cache and TLB in parallel

check if physical address from TLB matches multiple entries,

and update/invalidate other copies

keep both virtual and physical address for each entry in virtually

addressed cache

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Aliasing

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Physically Addressed Cache

Many processor architectures include a physically addressed

cache that is consulted as a second-level cache after the virtually

addressed cache and TLB, but before main memory

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Physically Addressed Cache

valid

invalid Raise

Exception

Data

Data

TLB

hit

Physical Addr

OffsetFrame

Physical

Memory

TLB hit

Frame

Frame

Virtual Addr

OffsetVPage#
Page

Table

Virtual

Cache

Processor

hit

Physical

Cache

Data

hit

Data

VC hit
PC hit

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Physically Addressed Cache

altogether, the hops it that TLB misses can be handled on chip

and quickly

Typically, the 2nd-level physically addressed cache is per-core

with a size of 256KB

the 3rd-level physically addressed cache is shared among all of

the cores on the same chip and can be as large as 2MB

the entire UNIX system (OS+application) from the 70’s would

fit inside of it, with no need to ever go to main memory

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(8.4) Software Protection

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Protection Without Hardware

can this be done in software?

Address translation is done in hardware to protect software from

accessing memory that it doesn’t have access rights to

interpreters check every memory reference to make sure the

script code can only access permitted memory

Sure, only allow scripting languages

this would slow down the script code even further

Is there a way to execute code within a restricted domain efficiently

(without relying on hardware address translation)?

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Why Implement Protection In Software?

Simply hardware: if we don’t really need hardware address

translation, we can get rid of it; this can increase flexibility

Application-level protection: even if we still need hardware

address translation, we still want to run untrusted code within an

application

Protection inside the kernel: we would like to have a way to run

untrusted code inside the kernel (such as 3rd-party device drivers

and code to customize the behavior of the kernel on behalf of

applications)

Portable security: applications need a common runtime

environment that isolates the application from the OS and hardware

device (since no OS run on every hardware platform)

we want user to trust such a runtime system

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Execution Of Untrusted Code Inside
A Region Of Trusted Code

Trusted Program Region

Untrusted Code

Untrusted Data

Untrusted Heap

Untrusted Stack

Entry/Exit Points

trusted region can be a process

(such as a browser), executing

untrusted JavaScript code

Ex:

trusted region can be the OS

kernel, executing untrusted

packet filters or device drivers

How do we provide a software

sandbox for executing untrusted

code?

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Implementation Of Sandboxes

most scripting languages do not support raw pointers

Interpreted languages can perform checks before dereferencing

Microsoft .NET: many languages (C#, VB, etc.) compiled into

intermediate byte-code and then run by an interpreter

Intermediate code (e.g., byte-code)

insert code to perform checks that hardware would do normally

Program analysis

Java JVM is a kind of sandbox

access violation will cause an exception

only code that doesn’t cause access violation can proceed

Python, Ruby, JavaScript can be compiled into Java byte-code

not easy to generate Java byte-code for C or Fortran

this makes JVM a language-independent sandbox

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

CS 350

PA5: Memory Management

And Copy-On-Write

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Based on slides created by Kivilcim Cumbul

Implement an enhanced process details viewer

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PA5

changes in "proc.c"

Test your implementation

Implement copy on write (COW)

changes in "vm.c" and "trap.c"

CPUS := 1

cd ~/cs350
mkdir pa5
cd pa5
wget --user=USERNAME --password=PASSWORD \
 http://merlot.usc.edu/cs350-m25/programming/pa5/xv6-pa5-src.tar.gz
tar xvf xv6-pa5-src.tar.gz
cd xv6-pa5-src

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Preparation

Read Ch 2 of the xv6 book regarding page tables

Download xv6 for PA5

open a terminal and type the following

make sure you choose 1 CPU in your VM

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Submission

pwd
cd ~/cs350/pa5/xv6-pa5-src
make -n pa5-submit

open a terminal and type the following:

Which files do you need to modify?

you should see:

tar cvzf pa5-submit.tar.gz \
 Makefile \
 pa5-README.txt \
 proc.c proc.h \
 trap.c \
 syscall.c syscall.h \
 sysproc.c \
 defs.h \
 user.h \
 usys.S \
 mmu.h \
 vm.c

virtual page number -> physical page number, writable?
...
virtual page number -> physical page number, writable?

Add a procdump() system call to print:

for example, in a system with 2 processes, the information should

be displayed as follows:

1 sleep init 80104907 80104647 8010600a ...
1 -> 300, y
200 -> 500, n
2 sleep sh 80104907 80100966 80101d9e ...
1 -> 306, y
200 -> 500, n

process 1 has 2 pages mapped

the hex numbers after a process name are return addresses

in the process’s call stack (this part is already in

procdump() in "proc.c")

its vpn 1 is mapped (writable) to ppn 300

its vpn 200 is mapped (read-only) to ppn 500

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Enhanced Process Details Viewer

// Page directory and page table constants.
#define NPDENTRIES 1024 // # directory entries per page directory
#define NPTENTRIES 1024 // # PTEs per page table
#define PGSIZE 4096 // bytes mapped by a page

#define PTXSHIFT 12 // offset of PTX in a linear address
#define PDXSHIFT 22 // offset of PDX in a linear address

#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size, 1 for 4MB pages

// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Bits In A Page Table

In "mmu.h", you can use constants and flags for page table

every table and page is 4 KB in size! 0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

XV6 Uses Two Levels Of Page Tables

First level page table is called a page directory table

entry in page directory table is called a page directory entry (pde)

entry in page table is called a page table entry (pte)

Virtual Address

10

Dir

10 12

OffsetTable

Page Directory

PPN

0

1

1023

20 12

Flags

Page Tables

0

1

1023

20 12

PPN Flags
0

1

4096

20 12

Physical Page (4KB)

x86 processor

CR3

entry in page directory table is called a page directory entry (pde)

entry in page table is called a page table entry (pte)

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

XV6 Uses Two Levels Of Page Tables

First level page table is called a page directory table

everything is 4 KB in size!

Virtual Address

10

Dir

10 12

OffsetTable Physical Address

20

PPN

12

Offset

Page Directory

PPN

0

1

1023

20 12

Flags

Page Tables

0

1

1023

20 12

PPN Flags

x86 processor

CR3

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Page Directory/Table Entry

Page directory entries and page table entries are identical except

for the D bit (XV6 doesn’t use all the bits)

P - Present

W - Writable

U - User

WT - 1=write-through, 0=write-back

CD - Cache Disabled

A - PreAccessedsent

D - Dirty (0 in page directory)

AVL - Available for system use

PWU
W

T

C

D
AD

A
V
L

012345678910111231

Physical Page Number (PPN)

// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size, 1 for 4MB pages

// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

XV6 Uses Two Levels Of Page Tables

pde_t *pt = p->pgdir
Page directory in XV6 is referred to as the "page table"

Leading 20 bits of a PDE gives the physical frame number of the

physical page containing the 2nd level page table associated with

that PDE

Virtual Address

10

Dir

10 12

OffsetTable Physical Address

20

PPN

12

Offset

Page Directory

PPN

0

1

1023

20 12

Flags

Page Tables

0

1

1023

20 12

PPN Flags

x86 processor

CR3

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

memlayout.h

// Memory layout

#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses

// Key addresses for address space layout (see kmap in vm.c for layout)
#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))

#define V2P_WO(x) ((x) - KERNBASE) // same as V2P, but without casts
#define P2V_WO(x) ((x) + KERNBASE) // same as P2V, but without casts

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Accessing Page Table

loop through page table, (NPTENTRIES)

After finding the virtual address of the page table

each process’s virtual address space is divided into two parts,

the user part and the kernel part

check if it is present and user

// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size, 1 for 4MB pages

these are bit masks:

if present and user: find physical address (using bit masking

and/or shifting)

(pte & PTE_P) && (pte & PTE_U)

check if writable and print "y" or "n"

(pte & PTE_W)

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Copy-On-Write (COW)

changes in "vm.c"

Implement copy-on-write (COW) in fork()

on fork(), just copy page table so that child would share all the

memory pages with the parent

XV6, by default, would copy memory of all pages when fork() is

called and we need to change it to use copy-on-write

Virtual Address

10

Dir

10 12

OffsetTable

Page Directory

PPN

0

1

1023

20 12

Flags

0

1

1023

20 12

PPN Flags

0

1

4096

20 12

Physical Page (4KB)

Page Tables

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Copy-On-Write (COW)

set PTE_W bit for all PTEs to 0 for both parent and child processes

parent and child can read shared memory locations all they want

on fork(), just copy page table so that child would share all the

memory pages with the parent

Virtual Address

10

Dir

10 12

OffsetTable

Page Directory

PPN

0

1

1023

20 12

Flags

0

1

1023

20 12

PPN Flags

0

1

4096

20 12

Physical Page (4KB)

Page Tables

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Copy-On-Write (COW)

page fault handler must make a copy of the shared page and

update PTE (update PPN and set PTE_W to 1)

when either parent or child wants to modify a shared memory

location for the first time, a page fault will occur

return from page fault handler to retry the operation that

caused the page fault

writing to this page will no longer cause a page fault

Virtual Address

10

Dir

10 12

OffsetTable

Page Directory

PPN

0

1

1023

20 12

Flags

0

1

1023

20 12

PPN Flags

0

1

4096

20 12

Physical Page (4KB)

Page Tables

Need to distinguish between a shared read-only page (i.e., for the

purpose of copy-on-write) and a regular read-only page

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy-On-Write (COW)

add a bit in "mmu.h" to indicate if a page is shared or not (in

every PTE)

#define PTE_SH 0x200 // 1 for shared

P - Present

W - Writable

U - User

WT - 1=write-through, 0=write-back

CD - Cache Disabled

A - PreAccessedsent

D - Dirty (0 in page directory)

AVL - Available for system use

PWU
W

T

C

D
AD

A
V
L

012345678910111231

Physical Page Number (PPN)

(pte & PTE_SH) && ((pte & PTE_W) != PTE_W)

means you need to copy-on-write

hardware ignores these

3 AVL bits

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

In "vm.c"

reference counting: needs to keep track of the number of

processes that are sharing a page frame

If a page frame is shared, when can you "free" the page frame?

since we can have at most 64 processes in XV6, an 8-bit

counter per physical page would work

in wait() system call, when a child process is freed, don’t just

free all the page frames it used blindly

do not deallocate shared pages (use the algorithm on the next

slide)

Hints

need a spinlock to access the counters

one counter per page frame: check PHYSTOP and PGSIZE to

determine how many counters you need

initialize counters in inituvm() and allocuvm()

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

In "vm.c"

if counter is 0: free 2nd-level page table (which is the original

code)

In deallocuvm():

if counter is now 0, update shared and writable flag

only the parent process is using this page, so the page

should be writable and not shared in the parent’s page table

if not: decrement counter and check if counter is 0 again

0123

65

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

cow()

Code of cow() should be similar to the code of copyuvm()
// Given a parent process’s page table, create a copy
// of it for a child.
pde_t* copyuvm(pde_t *pgdir, uint sz)
{
 pde_t *d;
 pte_t *pte;
 char *mem;
 if((d = setupkvm()) == 0) return 0;
 for(uint i = 0; i < sz; i += PGSIZE){
 if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0) panic();
 if(!(*pte & PTE_P)) panic();
 uint pa = PTE_ADDR(*pte);
 uint flags = PTE_FLAGS(*pte);
 if((mem = kalloc()) == 0) goto bad;
 memmove(mem, (char*)P2V(pa), PGSIZE);
 if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) {
 kfree(mem);
 goto bad;
 }
 }
 return d;

bad:
 freevm(d); return 0;
}

0123

66

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

cow()

setupkvm() creates a page directory table and set up the 2nd level

page tables that the kernel uses

// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
 pde_t *pgdir;
 struct kmap *k;

 if((pgdir = (pde_t*)kalloc()) == 0)
 return 0;
 memset(pgdir, 0, PGSIZE);
 if (P2V(PHYSTOP) > (void*)DEVSPACE)
 panic("PHYSTOP too high");
 for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
 if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
 (uint)k->phys_start, k->perm) < 0) {
 freevm(pgdir);
 return 0;
 }
 return pgdir;
}

0123

67

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

cow()

mappages(pde_t *pgdir, void *va, uint size, uint pa,
int perm) sets up mappings in pgdir starting with

PGROUNDDOWN(va) to pa with permissions perm

// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page-aligned.
static int
mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
{
 pte_t *pte;
 char *a = (char*)PGROUNDDOWN((uint)va);
 char *last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
 for(;;){
 if((pte = walkpgdir(pgdir, a, 1)) == 0)
 return -1;
 if(*pte & PTE_P)
 panic("remap");
 *pte = pa | perm | PTE_P;
 if(a == last)
 break;
 a += PGSIZE;
 pa += PGSIZE;
 }
 return 0;
}

0123

68

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

cow()

walkpgdir(pde_t *pgdir, void *va, int alloc) returns the

address of the PTE in 2nd-level page table that corresponds to va

// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int alloc)
{
 pte_t *pgtab;
 pdt_t *pde = &pgdir[PDX(va)];
 if(*pde & PTE_P){
 pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
 } else {
 if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
 return 0;
 // Make sure all those PTE_P bits are zero.
 memset(pgtab, 0, PGSIZE);
 // The permissions here are overly generous, but they can
 // be further restricted by the permissions in the page table
 // entries, if necessary.
 *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
 }
 return &pgtab[PTX(va)];
}

if cannot find and alloc is not 0, create a 2nd-level page table

PDX(va) is the first 10

bits of va, i.e., the page

directory index

0123

69

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

cow()

pde_t* cow(pde_t *pgdir, uint sz) creates a copy of pgdir

and returns it

calls setupkvm() to create and return a page directory table and

set up the kernel portion of it

for every page, use walkpgdir() to locate the parent’s PTE

set up parent’s PTE for copy-on-write (i.e., shared and R/O)

map child to parent’s page using mappages()
increment the refcount on the physical page (with the spinlock

locked)

need to reinstall the parent’s TLB entries by doing the following

just before cow() returns:

lcr3(V2P(pgdir));

0123

70

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Handle Page Fault

1)

Page fault handler in "vm.c" (let’s call this pagefault())

get CR2 register

2) check if the address found by rcr2() method is not 0

3) find page table entry (PTE) by calling walkpgdir()
4) if PTE is not shared, call panic()
5) if PTE is not present, call panic()
6) find physical address (pa)

7) check if the page frame is being shared or not

7.1) if shared, perform the "copy" part of copy-on-write

7.2) if not shared, change PTE to be writable and not shared

8) reinstall TLB entries by calling:

lcr3(V2P(myproc()->pgdir));

0123

71

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Handle Page Fault

Step 1: get CR2 register

CR2 register gives the virtual address that causes the page

fault (https://wiki.osdev.org/CPU_Registers_x86#CR2)

bit

0-31

label

pfla

description

page fault linear address

x86 CPU has 4 control registers: %cr0, %cr2, %cr3, and %cr4
to get the page fault virtual address, do:

uint va = rcr2();

Step 2: check if the address found by rcr2() method is not 0

if va is 0, we have a "segmentation fault" and we should

terminate the user process

for PA5, you can just call panic() since this is not

supposed to happen in PA5

0123

72

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Handle Page Fault

Step 3: find page table entry (PTE) by calling walkpgdir()
pte_t *pte = walkpgdir(...);

Step 4: if PTE is not shared, call panic()

Step 5: if PTE is not present, call panic()

Step 6: find physical address (pa)

in XV6, a page fault can only happen if 2 processes or more

share the same PTE

PTE_ADDR() method in "mmu.h" to find the physical page number

(ppn), which is the leading bits of the pa
// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)

copy the lowest 12 bits from the va
offset within a page stays the same

update pte so that flags contain the right values:

0123

73

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Handle Page Fault

Step 7: check if the page frame is being shared or not

#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))

7.1) if shared, perform the "copy" part of copy-on-write

7.2) if not shared, change PTE to be writable and not shared

allocate a new page by calling kalloc()
copy contents of page by calling memmove()
update pte so that ppn points to the newly allocated page

(can use V2P() to get the ppn)

it should no longer be shared

decrement the reference count of the original page frame

since a pointer to that page frame has just been removed

it should now be writable

it should be present

it should be a user space entry

0123

74

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Additional Changes

In fork(), instead of calling copyuvm(), call cow()

In "defs.h", add definitions of cow() and pagefault() we created

in "vm.c"

In "trap.c", add call to pagefault() if trap number is T_PGFLT

0123

75

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 3: Test Your Implementation

testcow-parent.c: parent process doing copy-on-write

int main()
{
 int pid, i;
 int SIZE = 4096 + 1;
 char *space = (char *)malloc(SIZE);
 printf(1, "testcow-parent: space=%d\n", (unsigned int)space);
 procdump();
 if ((pid = fork()) == 0) {
 exit();
 } else {
 printf(1, "\nParent process before changing values\n\n");
 procdump();
 for (i = 0; i < SIZE; i++) {
 space[i]++;
 }
 printf(1, "\nParent process after changing values\n\n");
 procdump();
 wait();
 }
 free(space);
 exit();
 return 1;
}

need to see copy-on-write

Parent process before changing values

1 sleep init 80103db7 ...
0 -> 57210, y
2 -> 57206, y
2 sleep sh 80103db7 ...
0 -> 57140, y
1 -> 57138, no
3 -> 57135, y
3 run testcow-parent
0 -> 57060, no
2 -> 57134, y
3 -> 57276, no
...
10 -> 57284, no
4 zombie testcow-parent
0 -> 57060, no
2 -> 57057, y
3 -> 57276, no
...
10 -> 57284, no

Ex: running testcow-parent

testcow-parent: space=40952
1 sleep init 80103db7 ...
0 -> 57210, y
2 -> 57206, y
2 sleep sh 80103db7 ...
0 -> 57140, y
1 -> 57138, no
3 -> 57135, y
3 run testcow-parent
0 -> 57060, y
2 -> 57057, y
3 -> 57276, y
4 -> 57277, y
5 -> 57279, y
6 -> 57280, y
7 -> 57281, y
8 -> 57282, y
9 -> 57283, y
10 -> 57284, y

0123

76

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

testcow-parent

Parent process after changing values

1 sleep init 80103db7 ...
0 -> 57210, y
2 -> 57206, y
2 sleep sh 80103db7 ...
0 -> 57140, y
1 -> 57138, no
3 -> 57135, y
3 run testcow-parent
0 -> 57060, no
2 -> 57134, y
3 -> 57276, no
...
8 -> 57282, no
9 -> 57056, y
10 -> 57055, y
4 zombie testcow-parent
0 -> 57060, no
2 -> 57057, y
3 -> 57276, no
...
10 -> 57284, no

Ex: running testcow-parent

0123

77

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

testcow-parent

0123

78

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

testcow-child

testcow-child.c: child process doing copy-on-write

int main()
{
 int pid, i;
 int SIZE = 4096 + 1;
 char *space = (char *)malloc(SIZE);
 printf(1, "testcow-child: space=%d\n", (unsigned int)space);
 procdump();
 if ((pid = fork()) == 0) {
 printf(1, "\nChild process before changing values\n\n");
 procdump();
 for (i = 0; i < SIZE; i++) {
 space[i]++;
 }
 printf(1, "\nChild process after changing values\n\n");
 procdump();
 wait();
 } else {
 exit();
 }
 free(space);
 exit();
 return 1;
}

need to see copy-on-write

Child process before changing values

1 sleep init 80103db7 ...
0 -> 57210, y
2 -> 57206, y
2 sleep sh 80103db7 ...
0 -> 57140, y
1 -> 57138, no
3 -> 57135, y
3 sleep testcow-child ...
0 -> 57060, no
2 -> 57134, y
3 -> 57276, no
...
10 -> 57284, no
4 run testcow-child
0 -> 57060, no
2 -> 57057, y
3 -> 57276, no
...
10 -> 57284, no

0123

79

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

testcow-child

Ex: running testcow-child

testcow-child: space=40952
1 sleep init 80103db7 ...
0 -> 57210, y
2 -> 57206, y
2 sleep sh 80103db7 ...
0 -> 57140, y
1 -> 57138, no
3 -> 57135, y
3 run testcow-child
0 -> 57060, y
2 -> 57057, y
3 -> 57276, y
4 -> 57277, y
5 -> 57279, y
6 -> 57280, y
7 -> 57281, y
8 -> 57282, y
9 -> 57283, y
10 -> 57284, y

Child process after changing values

1 sleep init 80103db7 ...
0 -> 57210, y
2 -> 57206, y
2 sleep sh 80103db7 ...
0 -> 57140, y
1 -> 57138, no
3 -> 57135, y
3 sleep testcow-child 80103db7 ...
0 -> 57060, no
2 -> 57134, y
3 -> 57276, no
...
10 -> 57284, no
4 run testcow-child
0 -> 57060, no
2 -> 57057, y
3 -> 57276, no
...
8 -> 57282, no
9 -> 57056, y
10 -> 57055, y 0123

80

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

testcow-child

Ex: running testcow-child

