Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 13 - 7/15/2025)

) PA4is due at 11:45pm on Tuesday, 7/15/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pa4-submit’ command, the grader will delete them

ﬁ} Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
= you must test your code on a "standard" platform since it’s the

only platform the grader is allowed to grade on

ﬁ> If you make a submission, read and understand the ticket in the web
page and save the web page as PDF as a record of your submission
= make sure to "Verify Your Ticket” and "Verify Your Submission"

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 13 - 7/15/2025)

) PA5 is due at 11:45pm on Tuesday, 7/29/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pa5-submit’ command, the grader will delete them
= you can use at most one "free late day” on PA5

ﬁ> Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
— you must test your code on a "standard" platform since it’s the
only platform the grader is allowed to grade on

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(8.2) Towards Flexible
Address Translation
(cont...)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-level Translation

_, How many page table entries are valid?
= for small programs, not many — array is not a good choice
— trees and hash tables are better for sparse data
= we will first look at tree data structures

) Tree of translation tables
= paged segmentation
= multi-level page tables
= multi-level paged segmentation

) Fixed-size page as lowest level unit of allocation

efficient for sparse addresses (compared to array-based paging)
efficient memory allocation (compared to segments)

efficient disk transfers (fixed size units)

efficient lookup with translation lookaside buffers (next section)
efficient reverse lookup (from physical to virtual, using core map)

page-granularity for protection and sharing (i\

Copyright © William C. Cheng

[

0 00 0 [

Introduction to Operating Systems - CSCI 350

Paged Segmentation

) Process memory is segmented

= If a memory segment fits inside a subtree, every subtree would
correspond to a memory segment
if you only have 4 memory segments, you just need 4 subtrees
if you can have up to 1024 subtrees, you are saving a lot of
memory for page tables

[

[

ﬁ} Segment table entry:
= pointer to page table
= page table length (# of pages in segment)
= access permissions

) Page table entry:
— page frame
= access permissions

ﬁ> Share/protection at either page or segment-level

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Paged Segmentation (Implementation)

ﬁ} A segment is made out of contiguous pages

Physical
= size field in segment table is the nhumber of ""e"‘°rVFrameo
contiguous pages in the corresponding segment Frame 1
Raise
>?_> Exception
Processor
Segment Table
Virtua) Addr Page _
Table Sige Access
——| Seg | Paget# | Offset s Copy
| R/W
R/W
R/W
Page Table
YFrame Access .
°
Physical Addr¢
—P B> Frame | Offset
Frame M-1

=

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multilevel Paging

Processor Copy Physical
Memory
Physical Addr Frame O

Frame | Offset Frame 1
Virtual Addr A
—P»| Index1 | Index2 | Index3 | Offset
_>
Level 1
o
Level 2
|
°
Y
°
Level 3
) Page table at
eaCh Ievel is - Frame M-1

designed to |
fit inside a physical page frame 734

Copyright © William C. Cheng

Multilevel Paging

Introduction to Operating Systems - CSCI 350 1

Physic

Frame

= onhly fop-level page table
must be filled in
L lower levels of the tree

are allocated only if the
corresponding virtual
address space are in
use

Level 3

Processor Copy ™
Virtual Addr
—P»| Index1 | Index2 | Index3 | Offset
Level 1
-
Level 2
|
) Page table at

each level is >

designed to
fit inside a physical page frame
Copyright © William C. Cheng

Frame M-1

&

Introduction to Operating Systems - CSCI 350

x86 Multilevel Paged Segmentation

ﬁ} Multilevel Paged Segmentation: each segment is managed by a
multilevel page table

ﬁ} Global Descriptor Table (GDT): per process segment table in x86
= each entry (segment descriptor) points to a multilevel page table
Q segment length
Q segment access permissions
= global descriptor table register (GDTR): contains the address and
length of the GDT
Q context switch: change GDTR

_) Multilevel page table
—= 4KB pages; each level of page table fits in one page
—= 32-bit: two level page table (per segment)
Q first 10 bits index a page directory table
= 64-bit: four level page table (per segment)
Q only 48 bits are used |
= omit sub-tree if no valid addresses 3 2.?2;
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multilevel Translation

_) Pros

— allocate/fill only page table entries that are in use
— simple memory allocation
= share at segment or page level

ﬁ> Cons

— space overhead: one pointer per virtual page
—= two (or more) lookups per memory reference

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Portability

ﬁ} OS memory translation data structures:
= list of memory management objects: where are the data pages
for a segment?
Q Is a particular page memory-resident or on disk (and where)?
Q Iif a particular page is copy-on-write, where is the original page
and where are the copies?
= virtual to physical translation
Q on page fault, need data structure (software page table) to
keep track of whether an invalid page is truly invalid or not
memory-resident, or if a page is truly read-only or not
= physical to virtual translation: core map data structure
Q when kernel updates a page’s status, it needs to update page
table entries of all processes that are sharing that page frame

ﬁ} Some would refer to all of the above as the virtual memory map

@

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Portability

ﬁ} Hash table approach: inverted page table (the name doesn’t quite
make sense, but it’s called that for historical reasons)
= hash from (PID || virtual page) — physical page
= hash table size proportional to number of physical page frames
= typically not done in hardware because it can be quite complex
to handle hash table collisions (which is the usual problem with

hash tables)

ﬁ> Software "page table" is the ground truth, while the hardware page

table is a hint
= |f a hardware page table entry is invalid, need to access the

software page table to figure out if it’s truly invalid

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(8.3) Towards Efficient
Address Translation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Efficient Address Translation

ﬁ} With the most basic two-leve page table scheme, needs to access
physical memory twice to read/write a memory location
= once to fetch the page table entry (to get page frame number
and access information)
= once to fetch from the translated physical address
= 100% overhead compared to using physical address directly

ﬁ} Translation lookaside buffer (TLB): a specialized hardware cache
= cache of recent virtual page — physical page translations (i.e.,

caches PTESs)

TLB Entry = {
virtual page number; // key
physical page number;
access permissions

};

= if cache hit, use translation |
= [f cache miss, walk multi-level page table 3 @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB and Page Table Translation

Copy
Virtual Addr /

Processor —VPage#| Offset

: : Raise
invalid
- Page —EXxception
Table
A (page fault)
—» TLB valid
Data]
‘hlt Frame Physical Addr
Frame l—»—i'-(;---: Physical
| >—-—o/°_'_ Frame | Offset —¥ Memory
b |
TLB hit Data

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB and Page Table Translation

Copy
Virtual Addr /

Processor [P VPage#| Offset bage | invalid Raise
- 9 —EXxception
Table
Y (page fault)
—p TLB valid
Data
‘h& Frame Physical Addr
Frame |_>_"%_._ Physical
| Frame | Offset —» Memory
b |
TLB miss Data
|

= a TLB miss is quite different from a page faulit

o TLB miss penalty is a (or a few) RAM read (< 1 usec) while
Y/

a page fault would trap into the kernel (mseconds)
Copyright © William C. Cheng

16

Introduction to Operating Systems - CSCI 350

TLB Lookup

Physical

—
Copy Memory

Frame 0
Virtual Addr Frame 1

VPage# Offset

Translation Lookaside Buffer (TLB)

Virtual Page
Page Frame Access

— Physical Addr
— P Frame | Offset

> &

»@» Page Table
Lookup

ﬁ> TLB hardware typically checks all of the entries
simultaneously against the virtual page number 7NN
y ag pag @’

Frame M-1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Miss

ﬁ} Cost of translation on the average = cost of TLB lookup +
Prob(TLB miss) x cost of a full address translation
= Oh a processor with multi-level page table, the cost of a TLB miss
Is the cost of a multi-level page table walk
Q this can be very expensive
& some system would include two levels of TLB (unless
otherwise states, we will stick to a single-level TLB)

ﬁ> TLB is basically a hardware cache, which typically can be organized

in three different ways

= fully associative cache: compare all entries in parallel
Q expensive in terms of hardware

— set associative cache: if the amount of set associativity is N,
compare N entries in parallel (typical Ns are 2, 4, 8)
Q like a hash bucket with a collision resolution chain of length N
Q lower hit rate, but cheaper to build

= direct mapping: same as amount set associativity = 1 3
&

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Hardware Design Principle

ﬁ} The bigger the memory, the slower the memory (and further away)

_) Intel i7

| = B B S S e X T
| I_ntegl_'.a{ted.tM;gl.'nory‘ CnniraIIEEi-*.sB-Ch‘DBRB-

Core 0. Core 1 ' _Core2 . Core3

Shared L3 Cache

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Memory Hierarchy

Cache Hit Cost Size

1st level cache/1st level TLB 1ns 64 KB
2nd level cache/2nd level TLB 4 ns 256 KB
3rd level cache 12 ns 2 MB
Memory (DRAM) 100 ns 10 GB
Data center memory (DRAM) 100 us 100 TB
Local non-volatile memory (SSD) 100 us 100 GB
Local disk (hard drive) 10 ms 1TB
Data center disk 10 ms 100 PB

Remote data center disk 200 ms 1 XB

ﬁ> Intel i7 has 8MB of shared 3rd level cache and per-core 2nd level
cache
= TLB miss will be like a 1st level cache miss
= 2nd level miss is likely to have a bunch of page table entries |
&)

already In 3rd level cache
Copyright © William C. Cheng

20

Introduction to Operating Systems - CSCI 350

Superpages

ﬁ} Superpages can be used to improve TLB hit rate

G> On many systems, TLB entry can be a page or a superpage

= superpage: a set of contiguous pages in physical memory that
map a contiguous region of virtual memory
Q pages are aligned so that they share the same high-order
(superpage) address

& e.g., an 8 KB superpage would consist of two adjacent

4 KB pages that lie on an 8 KB boundary in both virtual
and physical memory

ﬁ> X86: superpage is set of pages in one page table entry
= X86 page size is 4KB, superpage sizes are 2MB and 1GB

ﬁ} Superpages complicate operating system memory allocation by

requiring the system to allocate chunks of memory in different
sizes

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Superpages

ﬁ} Each entry in the TLB has a flag, signhifying whether the entry is a
page or a superpage
— for superpages, the TLB matches the superpage number, i.e., it
ignores the portion of the virtual address that is the page number
within the superpage

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Superpages

Physical

Virtual Addr Copy - Memory

/ Frame 0

Copy A
VPage# | Offset / rame 1
SP Offset’
Translation Lookaside Buffer (TLB
(TLE) > > Superpage
Superpage Superframe
(SP) or (SF) or
VPage Frame S/F Access
(=) Physical Addr)
e — F | Frame | Offset
|
—>-(=)— s
°
°

»@» Page Table o

Lookup

Physical Addr
—P»| SF | Offset’ Frame M-1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Need For Superpages - Example

ﬁ} In a high resolution frame buffer, each line of the pixel display can
take up an entire page, so that adjacent pixels in the vertical
dimension lie on different pages in physical memory

= drawing a line veritically across the screen Video Frame Buffer
will get a TLB miss on every pixel Page 0
= if screen resolution is 1920 x 1080 Page 1
Page 2

pixels — 2 M pixels — at 4 bytes per
pixel, a frame buffer is 8MB in size
= If your TLB can hold 256 entries Page 1022
(which is considered a large TLB), Page 1023
with a 4KB page size, you can only
get hits on 1 MB of memory
= with superpages, can get pretty much all hits with one page table
entry

e

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

ﬁ} Since TLB is a cache, we need to worry about cache consistency
— 3 cases to consider
Q process context switch
Q permission reduction
Q TLB shootdown

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

ﬁ} Process context switch: on process context switch, we need to
change the hardware page table register to point to the page

table of the new process
= all entries in the TLB are invalid
Q flush the entire TLB: mark each TLB entry invalid (slow)

Processor Physical Memory

Core Page Table

TLB Page Table
(h . Page Table

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

ﬁ} Process context switch: on process context switch, we need to
change the hardware page table register to point to the page

table of the new process
= all entries in the TLB are invalid
Q flush the entire TLB: mark each TLB entry invalid (slow)

Processor Physical Memory

Core Page Table

TLB Page Table
(h Page Table

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

ﬁ} Process context switch: on process context switch, we need to
change the hardware page table register to point to the page
table of the new process

= all entries in the TLB are invalid
Q flush the entire TLB: mark each TLB entry invalid (slow)

Q tagged TLB:each TLB entry contains the process ID
<& TLB hit only if process ID also matches current process

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Tagged TLB

Physical
Copy Memory
Frame 0
Virtual Addr Frame 1
VPage# Offset
PID Translation Lookaside Buffer (TLB)
> Virtual Page
PID Page Frame Access
(m) ° ° Physical Addr
e ° ° | Frame | Offset
_>
—>@< ® ®
°
[
»@)> Page Table ®
Lookup
Frame M-1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

ﬁ} Nothing needs to be done if the permission of a page is increased
= e.g., if a page changes from R/O to R/W, performing address
translation will cause the hardware to cause an exception and
the kernel will get a chance to purge/flush the TLB entry
= e.g., if a page changes invalid to R/O, performing address
translation will cause the hardware to load the new entry

Processor Physical Memory

Core Page Table

Page Table

()
_.{ Updated Page Table

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

_) Permission reduction: what happens when the OS reduces the

permissions on a page?
= e.g., for demand paging, copy on write, zero on reference
—= remember, a page table is a kernel data structure that is

maintained by the kernel and cached by the hardware

Processor Physical Memory

Core Page Table

Page Table

TLB

BT Page Table

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Consistency

_) Permission reduction: what happens when the OS reduces the
permissions on a page?
= e.g., for demand paging, copy on write, zero on reference
—= remember, a page table is a kernel data structure that is
maintained by the kernel and used/cached by the hardware
= OS must ask hardware to purge/flush/invalidate TLB entry

Processor Physical Memory

Core Page Table

Page Table

()
_.{ Updated Page Table

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multiprocessor System: TLB Shootdown Example

ﬁ} Permission reduction on a multicore system: TLB shootdown
= OS must ask each CPU to purge/flush/invalidate TLB entry

VirtualPage PageFrame Access

0x00053 0x0003 R/'W
Processor 1 TLB

0x040ff 0x0012 R/W

0x00053 0x0003 R/W
Processor 2 TLB

0x00001 0x0005 R/O

0x040ff 0x0012 R/W
Processor 3 TLB

0x00001 0x0005 R/O

ﬁ} If processor 1 wants to change the translation for page 0x00053 to
R/O, it must purge/flush the entry from its TLB
= it also must ensure that no other processor has the old

translation for page 0x00053 in its TLB (AR
pag B 4‘

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

TLB Shootdown Algorithm Example

ﬁ} Can only modify page table if you are sure that no other processors
are running threads from the same process as you (i.e., using the
same page table)

// shooter code (processor j is the shooter)

for all processors i1 # j sharing address space
interrupt (i) ;

for all processors i1 # j sharing address space
while (noted[i] == 0)

modify_ page_table();
update_or_flush_tlb();
done[j] = 1;

// shootee i # j interrupt handler

receive_interrupt_from_ processor j
noted[i] =1

while (done[]j] == 0)
// doesn’t know which TLB entry was out dated 3@?%
tlb_flush_all () =’

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Virtually vs. Physically Addressed Caches

ﬁ} Too slow to first access TLB to find physical address, then look up
address in the cache

) Instead, first level cache is virtually addressed

ﬁ} In parallel, access TLB to generate physical address in case of a
cache miss in the virtually addressed cache

ﬁ} Virtually addressed cache: same consistency issues as TLBs
= process context switch, premission reduction, shootdown

Copyright © William C. Cheng

Processor

Virtually Addressed Cache

Virtual Addr

VPage#| Offset

A

Data

invalid '
Page I Raise

Introduction to Operating Systems - CSCI 350

Table Exception
valid
TLB hit
Frame {

| --t-5 Physical Addr

>_._{°"' Frame

' TLB
I Virtual]
Cache ‘h“
Frame
hit |
Data

Copyright © William C. Cheng

Offset

Physical
Memory

I
Data

Introduction to Operating Systems - CSCI 350

Aliasing

ﬁ} Alias: many OSes allow processes sharing memory to use different
virtual addresses to refer to the same memory location
= a consequence of a tagged virtually addressed cache
= a write to one copy needs to update all copies

_, Typical solution
— keep both virtual and physical address for each entry in virtually
addressed cache
= lookup virtually addressed cache and TLB in parallel
= check if physical address from TLB matches multiple entries,
and update/invalidate other copies

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Physically Addressed Cache

ﬁ} Many processor architectures include a physically addressed
cache that is consulted as a second-level cache after the virtually
addressed cache and TLB, but before main memory

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Physically Addressed Cache

Virtual Addr
Processor [PVPage#| Offset

= I'd =
> Page | Invall Raise .
" Table Exception
> TLB valid
o o TLB hit
irtua .
Cache |hIt Frame { Physical Addr
Frame L5 o
b | >_._{°"' Frame | Offset
pata 77
Y Y
Physical Physical
Cache Memory
VC hit '
{ PC{hlt |hit

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Physically Addressed Cache

ﬁ} Typically, the 2nd-level physically addressed cache is per-core

with a size of 256KB

= the 3rd-level physically addressed cache is shared among all of
the cores on the same chip and can be as large as 2MB
Q the entire UNIX system (OS+application) from the 70’s would

fit inside of it, with no need to ever go to main memory

— altogether, the hops it that TLB misses can be handled on chip

and quickly

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(8.4) Software Protection

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Protection Without Hardware

ﬁ} Address translation is done in hardware to protect software from
accessing memory that it doesn’t have access rights to
= can this be done in software?

G> Sure, only allow scripting languages
= interpreters check every memory reference to make sure the
script code can only access permitted memory
= this would slow down the script code even further

ﬁ} Is there a way to execute code within a restricted domain efficiently
(without relying on hardware address translation)?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Why Implement Protection In Software?

) Simply hardware: if we don’t really need hardware address
translation, we can get rid of it; this can increase flexibility

ﬁ} Application-level protection: even if we still need hardware
address translation, we still want to run untrusted code within an
application

ﬁ> Protection inside the kernel: we would like to have a way to run
untrusted code inside the kernel (such as 3rd-party device drivers
and code to customize the behavior of the kernel on behalf of
applications)

ﬁ> Portable security: applications heed a common runtime
environment that isolates the application from the OS and hardware
device (since no OS run on every hardware platform)
= we want user to trust such a runtime system

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Execution Of Untrusted Code Inside
A Region Of Trusted Code

I:> Ex:

= trusted region can be a process Trusted Program Region
(such as a browser), executing
untrusted JavaScript code Entry/Exit Points
= trusted region can be the OS Untrusted Code
kernel, executing untrusted Untrusted Data

packet filters or device drivers Untrusted Heap
Untrusted Stack

_ How do we provide a software
sandbox for executing untrusted
code?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Implementation Of Sandboxes

ﬁ} Interpreted languages can perform checks before dereferencing
—= most scripting languages do not support raw pointers

) Program analysis
= Insert code to perform checks that hardware would do normally

Q access violation will cause an exception
Q only code that doesn’t cause access violation can proceed

_) Intermediate code (e.g., byte-code)
= Microsoft .NET: many languages (C#, VB, etc.) compiled into
intermediate byte-code and then run by an interpreter
= Java JVM is a kind of sandbox
Q Python, Ruby, JavaScript can be compiled into Java byte-code
<& this makes JVM a language-independent sandbox
Q not easy to generate Java byte-code for C or Fortran

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

CS 350
PAS: Memory Management

And Copy-On-Write

Bill Cheng

http.://merlot.usc.edu/william/usc/

_ Based on slides created by Kivilcim Cumbul

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PAS

ﬁ} Implement an enhanced process details viewer
= changes in "proc.c"

) Implement copy on write (COW)
= changes in "vm.c" and "trap.c"

) Test your implementation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Preparation
> Read Ch 2 of the xv6 book regarding page tables

) Download xv6 for PA5
= open a terminal and type the following

cd ~/cs350
mkdir pab
cd pas
wget —-user=USERNAME --password=PASSWORD \
http://merlot .usc.edu/cs350-m25/programming/pa5/xv6-paS5—-src.tar.gz
tar xvf xvé6-paS5-src.tar.gz
cd xvé6-paS5-src

= make sure you choose 1 CPU in your VM

CPUS :=1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Submission

> Which files do you need to modify?
= open a terminal and type the following:

pwd
cd ~/cs350/pa5/xv6-pa5-src
make —n paS5-submit

Q you should see:

tar cvzf pa5-submit.tar.gz \
Makefile \
pa5—-README. txt \
proc.c proc.h \
trap.c \
syscall.c syscall.h \
sysproc.c \
defs.h \
user.h \
usys.S \
mmu.h \

vm.cC

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Enhanced Process Details Viewer

—) Add a procdump () system call to print:
virtual page number —> physical page number, writable?

virtual page number -> physical page number, writable?

= for example, in a system with 2 processes, the information should

be displayed as follows:

1 sleep init 80104907 80104647 8010600a ...
1 -—> 300, y

200 -> 500, n

2 sleep sh 80104907 80100966 80101d9%e ...

1 —> 306, y

200 -> 500, n

Q process 1 has 2 pages mapped
& its vpn 1 is mapped (writable) to ppn 300
<& its vpn 200 is mapped (read-only) to ppn 500
Q the hex numbers after a process hame are return addresses
in the process’s call stack (this part is already in |
procdump () In "proc.c") 513
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Bits In A Page Table

ﬁ} In "mmu.h", you can use constants and flags for page table

// Page
#define
#define
##define

#define
##define

##define
##define

// Page
##define
#define
##define
#define

directory and page table constants.

NPDENTRIES 1024 // # directory entries per page directory
NPTENTRIES 1024 // # PTEs per page table

PGSIZE 4096 // bytes mapped by a page

PTXSHIFT 12 // offset of PTX in a linear address
PDXSHIFT 22 // offset of PDX in a linear address
PGROUNDUP (sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
PGROUNDDOWN (a) (((a)) & ~(PGSIZE-1))

table/directory entry flags.

PTE_P 0x001 // Present

PTE_W 0x002 // Writeable

PTE_U 0x004 // User

PTE_PS 0x080 // Page Size, 1 for 4MB pages

// Address in page table or page directory entry

#define
#define

Copyright © William C. Cheng

PTE_ADDR (pte) ((uint) (pte) & ~OxFFF)
PTE_FLAGS (pte) ((uint) (pte) & OxFFF)

Introduction to Operating Systems - CSCI 350

XV6 Uses Two Levels Of Page Tables

ﬁ} First level page table is called a page directory table
= entry in page directory table is called a page directory entry (pde)
= entry in page table is called a page table entry (pte)

10 10 12
Virtual Address | Dir | Table | Offset

X86 processor
B
1 CR3
20 12
20 12 —»lo 20 12
0 [1 0
1 PPN Flags 1

PPN Flagi

1023

1023 4096
Page Directory Physical Page (4KB)

Page Tables I
= every table and page is 4 KB in size! 5334

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

XV6 Uses Two Levels Of Page Tables

ﬁ} First level page table is called a page directory table
= entry in page directory table is called a page directory entry (pde)
= entry in page table is called a page table entry (pte)

10 10 12 20 12
Virtual Address | Dir | Table | Offset Physical Address PPN Offset
! !

X86 processor
B
1 CR3

20 12
20 12 0
/ 1

0
- |) PPN & [Flags

PPN @ |Flags 1023
1023
Page Directory
_ _ _ _ Page Tables 3 @!’}_
= everything is 4 KB in size! Ve

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Page Directory/Table Entry

ﬁ} Page directory entries and page table entries are identical except
for the D bit (XV6 doesn’t use all the bits)

1211109 8 76 543 21 0

31

Physical Page Number (PPN)

A
\'
L

D

A

C
D

ot

// Page table/directory entry flags.
// Present
// Writeable
// User

// Page Size,

##define PTE_P
##define PTE_W
##define PTE_U
##define PTE_PS

0x001
0x002
0x004
0x080

P - Present

W - Writable

U - User
WT - 1=write-through, O=write-back
CD - Cache Disabled

A - PreAccessedsent

D - Dirty (0 in page directory)

AVL - Available for system use

1 for 4MB pages

// Address in page table or page directory entry
((uint) (pte) & ~OxFFF)
((uint) (pte) & OxFFF)

#idefine PTE_ADDR (pte)
##define PTE_FLAGS (pte)

Copyright © William C. Cheng

ﬁ} Page directory in XV6 is referred to as the "page table"

pde_t *pt = p—-—>pgdir

Introduction to Operating Systems - CSCI 350

XV6 Uses Two Levels Of Page Tables

ﬁ} Leading 20 bits of a PDE gives the physical frame number of the
physical page containing the 2nd level page table associated with

that PDE
10 10 20 12
Virtual Address | Dir | Table | Offset Physical Address PPN Offset
f f
X86 processor
B
Ve CR3
20 12
20 12 —>l0
0 / 1
1 PPN @ |Flags
PPN Flags
= 1023
1023 ' (5!,)_
Page Directory Page Tables

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

memlayout.h

// Memory layout

#define EXTMEM 0x100000 // Start of extended memory
##define PHYSTOP 0xE000000 // Top physical memory
##define DEVSPACE OxFE000000 // Other devices are at high addresses

// Key addresses for address space layout (see kmap in vm.c for layout)
#fdefine KERNBASE 0x80000000 // First kernel virtual address
##define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

##define V2P (a) (((uint) (a)) - KERNBASE)
##define P2V (a) ((void *) (((char *) (a)) + KERNBASE))

##define V2P_WO(x) ((x) — KERNBASE) // same as V2P, but without casts
##define P2V_WO(x) ((x) + KERNBASE) // same as P2V, but without casts

B

57

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Accessing Page Table

ﬁ} After finding the virtual address of the page table

Copyright © William C. Cheng

loop through page table, (NPTENTRIES)
each process’s virtual address space is divided into two parts,
the user part and the kernel part
check if it is present and user
(pte & PTE_P) && (pte & PTE_U)
Q these are bit masks:
// Page table/directory entry flags.

##define PTE_P 0x001 // Present

##define PTE_W 0x002 // Writeable

##define PTE_U 0x004 // User

#define PTE_PS 0x080 // Page Size, 1 for 4MB pages

Q if present and user: find physical address (using bit masking
and/or shifting)
check if writable and print "y" or "n"

(pte & PTE_W)

Introduction to Operating Systems - CSCI 350

Part 2: Copy-On-Write (COW)

) Implement copy-on-write (COW) in fork ()
= changes in "vm.c"

ﬁ} XV6, by default, would copy memory of all pages when fork () is
called and we need to change it to use copy-on-write

= oh fork (), just copy page table so that child would share all the
memory pages with the parent

10 10 12
Virtual Address | Dir | Table | Offset
20 12
20 / 12 ‘1)
20 12 0 [
|o 1 I
1 PPN @ |Flags
PPN @ |FI 4096
295 1023 Physical Page (4KB)

1023 3
Page Directory Page Tables 59 =/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 2: Copy-On-Write (COW)

= oh fork (), just copy page table so that child would share all the
memory pages with the parent

— set PTE_W bit for all PTEs to 0 for both parent and child processes

—= parent and child can read shared memory locations all they want

10 10 12
Virtual Address | Dir | Table | Offset
20 12
20 / 12 ‘1)
20 12 0 [
|o 1 I
1 PPN @ |Flags
PPN @ |FI 4096
295 1023 Physical Page (4KB)

1023 3
Page Directory Page Tables 60 U

Copyright © William C. Cheng

frm—

Introduction to Operating Systems - CSCI 350

Part 2: Copy-On-Write (COW)

when either parent or child wants to modify a shared memory

location for the first time, a page fault will occur

Q page fault handler must make a copy of the shared page and
update PTE (update PPN and set PTE_wto 1)

Q return from page fault handler to retry the operation that
caused the page fault

Q writing to this page will no longer cause a page fault

10 10 12
Virtual Address | Dir | Table | Offset
20 12
20 / 12 ‘1)
20 12 0 [
|o 1 I
1 PPN @ |Flags
PPN @ |FI 4096
295 1023 Physical Page (4KB)

1023 3
Page Directory Page Tables 61 U

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Copy-On-Write (COW)

ﬁ} Need to distinguish between a shared read-only page (i.e., for the
purpose of copy-on-write) and a regular read-only page
—= add a bit in "'mmu . h" to indicate if a page is shared or not (in

every PTE)
##define PTE_SH 0x200 // 1 for shared
31 1211109 8 76 54321 0
A C
Physical Page Number (PPN) \' D|A plT UWP
L
— P - Present
—— W - Writable
U - User

WT - 1=write-through, O=write-back
CD - Cache Disabled

= hardware ignores these A - PreAccessedsent
3 AVL bits D - Dirty (0 in page directory)
AVL - Available for system use

— (pte & PTE_SH) && ((pte & PTE_W) != PTE_W) |
means you heed to copy-on-write 3
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

In "vm.c"

ﬁ} If a page frame is shared, when can you "free" the page frame?
= reference counting: needs to keep track of the number of

processes that are sharing a page frame
Q since we can have at most 64 processes in XV6, an 8-bit

counter per physical page would work
— inwait () system call, when a child process is freed, don’t just

free all the page frames it used blindly
Q do not deallocate shared pages (use the algorithm on the next

slide)

) Hints

= heed a spinlock to access the counters
= ohe counter per page frame: check PHYSTOP and PGSIZE to

determine how many counters you need
= jnitialize counters in inituvm () and allocuvm ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

In "vm.c"

I:> In deallocuvm():
= If counter is 0: free 2nd-level page table (which is the original
code)
= if not: decrement counter and check if counter is 0 again
= if counter is now 0, update shared and writable flag
Q only the parent process is using this page, so the page
should be writable and not shared in the parent’s page table

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

cow ()

) Code of cow () should be similar to the code of copyuvm ()

// Given a parent process’s page table, create a copy
// of it for a child.
pde_t* copyuvm(pde_t *pgdir, uint sz)
{
pde_t *d;
pte_t *pte;
char *mem;

if((d = setupkvm()) == 0) return O;
for(uint i = 0; i < sz; i += PGSIZE) {
if ((pte = walkpgdir (pgdir, (void *) i, 0)) == 0) panic();

if(! (*pte & PTE_P)) panic();

uint pa = PTE_ADDR (*pte);

uint flags = PTE_FLAGS (*pte);

if((mem = kalloc()) == 0) goto bad;

memmove (mem, (char*)P2V(pa), PGSIZE);

if (mappages(d, (void*)i, PGSIZE, V2P (mem), flags) < 0) {
kfree (mem) ;
goto bad;

}

}

return d;

bad:
freevm(d); return O;

}
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

cow ()

ﬁ} setupkvm () creates a page directory table and set up the 2nd level
page tables that the kernel uses

// Set up kernel part of a page table.
pde_t*
setupkvm (void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return O;
memset (pgdir, 0, PGSIZE);
if (P2V (PHYSTOP) > (void*)DEVSPACE)
panic ("PHYSTOP too high");
for(k = kmap; k < &kmap[NELEM (kmap)]; k++)
if (mappages (pgdir, k->virt, k->phys_end - k—->phys_start,
(uint) k—->phys_start, k->perm) < 0) {
freevm (pgdir) ;
return O;

}

return pgdir;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

cow ()

[i>»mappages(pde_t *pgdir, void *wva, uint size, uint pa,
int perm) sets up mappings in pgdir starting with
PGROUNDDOWN (va) to pa with permissions perm

// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page—aligned.
static int
mappages (pde_t *pgdir, void *va, uint size, uint pa, int perm)
{
pte_t *pte;
char *a = (char*)PGROUNDDOWN ((uint)wva);
char *last = (char*)PGROUNDDOWN(((uint)wva) + size - 1);
for(;;){
if ((pte = walkpgdir (pgdir, a, 1)) == 0)
return -1;
if (*pte & PTE_P)
panic("remap");
*pte = pa | perm | PTE_P;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return O;

}
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

cow ()

I:> walkpgdir (pde_t *pgdir, void *va, int alloc) returns the
address of the PTE in 2nd-level page table that corresponds to va
= if cannot find and alloc is not 0, create a 2nd-level page table

// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
walkpgdir (pde_t *pgdir, const void *va, int alloc)
{
pte_t *pgtab;
pdt_t *pde = &pgdir[PDX(va)];

-
= PDX (va) is the first 10

if (*pde & PTE_P) { bl.tS of Va,.l.e., the page
pgtab = (pte_t*)P2V (PTE_ADDR (*pde)) ; directory index

} else { _
if(lalloc || (pgtab = (pte_t*)kalloc()) == 0)

return O;
// Make sure all those PTE_P bits are zero.
memset (pgtab, 0, PGSIZE);
// The permissions here are overly generous, but they can
// be further restricted by the permissions in the page table
// entries, if necessary.
*pde = V2P (pgtab) | PTE_P | PTE_W | PTE_U;

}
return &pgtab|[PTX(va)]; 3
} 68

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

cow ()

I:> pde_t* cow(pde_t *pgdir, uint sz) creates a copy of pgdir
and returns it
= calls setupkvm () to create and return a page directory table and
set up the kernel portion of it
= for every page, use walkpgdir () to locate the parent’s PTE
Q set up parent’s PTE for copy-on-write (i.e., shared and R/O)
Q map child to parent’s page using mappages ()
Q increment the refcount on the physical page (with the spinlock

locked)
= heed to reinstall the parent’s TLB entries by doing the following

just before cow () returns:
lcr3 (V2P (pgdir));

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Handle Page Fault

) Page fault handler in "vm.c" (let’s call this pagefault ())
1) get CR2 register
2) check if the address found by rcr2 () method is not 0
3) find page table entry (PTE) by calling walkpgdir ()
4) if PTE is not shared, call panic ()
5) if PTE is not present, call panic ()
6) find physical address (pa)
7) check if the page frame is being shared or not
7.1) if shared, perform the "copy" part of copy-on-write
7.2) if not shared, change PTE to be writable and not shared
8) reinstall TLB entries by calling:
lcr3 (V2P (myproc () —>pgdir)) ;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Handle Page Fault

_) Step 1: get CR2 register
= CR2 register gives the virtual address that causes the page
fault (https://wiki.osdev.org/CPU_Registers x86#CR2)

bit | label description

0-31 | pfla page fault linear address

= X86 CPU has 4 control registers: $cr0, $cr2, $cr3, and $cr4
= to get the page fault virtual address, do:

uint va = rcr2();

ﬁ> Step 2: check if the address found by rcr2 () method is not 0
= If va Is 0, we have a "segmentation fault” and we should
terminate the user process
Q for PA5, you can just call panic () since this is not

supposed to happen in PA5 / @’_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Handle Page Fault
) Step 3: find page table entry (PTE) by calling walkpgdir ()

pte_t *pte = walkpgdir(...);

ﬁ} Step 4: if PTE is not shared, call panic ()
= In XV6, a page fault can only happen if 2 processes or more
share the same PTE

ﬁ> Step 5: if PTE is not present, call panic ()

) Step 6: find physical address (pa)
= PTE_ADDR () method in "mmu.h" to find the physical page humber
(ppn), which is the leading bits of the pa

// Address in page table or page directory entry
##define PTE_ADDR (pte) ((uint) (pte) & ~OxFFF)
##define PTE_FLAGS (pte) ((uint) (pte) & OxFFF)

= copy the lowest 12 bits from the va
Q offset within a page stays the same

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Handle Page Fault

ﬁ} Step 7: check if the page frame is being shared or not
= 7.1) if shared, perform the "copy" part of copy-on-write
Q allocate a new page by calling kalloc ()
Q copy contents of page by calling memmove ()
Q update pte so that ppn points to the newly allocated page
(can use V2P() to get the ppn)

##define V2P (a) (((uint) (a)) - KERNBASE)
##define P2V(a) ((void *) (((char *) (a)) + KERNBASE))

Q update pte so that flags contain the right values:
<& it should no longer be shared
& it should now be writable
& it should be present
& it should be a user space entry

Q decrement the reference count of the original page frame
since a pointer to that page frame has just been removed

= 7.2) if not shared, change PTE to be writable and not shared (;’\

3

e

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Additional Changes

I:> In fork (), instead of calling copyuvm (), call cow ()

_) In"defs.n", add definitions of cow () and pagefault () we created
in "vm.c"

ﬁ} In "trap.c", add call to pagefault () if trap humber is T_PGFLT

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 3: Test Your Implementation

ﬁ} testcow—-parent. c: parent process doing copy-on-write

int main ()
{
int pid, i;
int SIZE = 4096 + 1;
char *space = (char *)malloc(SIZE);
printf (1, "testcow-parent: space=%d\n", (unsigned int) space);
procdump () ;
if ((pid = fork()) == 0) {
exit ();
} else {
printf (1, "\nParent process before changing values\n\n");
procdump () ;
for (i = 0; i < SIZE; i++) {
space[i] ++;
}
printf (1, "\nParent process after changing values\n\n");
procdump () ;
wait () ;
}
free (space);
exit ();
return 1;

}

|
= heed to see copy-on-write y 2.?2;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

testcow—parent

I:> EX: running testcow-parent

testcow—-parent: space=40952 Parent process before changing wvalues
1 sleep init 80103db7

0 —> 57210, y 1l sleep init 80103db7
2 —> 57206, y 0 —> 57210, y

2 sleep sh 80103db7 2 -> 57206, y

0 —> 57140, y 2 sleep sh 80103db7

1 —> 57138, no 0 —> 57140, y

3 —> 57135, y 1 —> 57138, no

3 run testcow—-parent 3 —> 57135, y

0 —> 57060, y 3 run testcow—-parent
2 -> 57057, y 0 —> 57060, no

3 —> 57276, y 2 —> 57134, y

4 —> 57277, y 3 -> 57276, no

5 —> 57279, y .

6 —> 57280, y 10 —> 57284, no

7 —> 57281, y 4 zombie testcow-parent
8 —> 57282, y 0 —> 57060, no

9 —> 57283, y 2 -> 57057, y

10 —> 57284, y 3 —> 57276, no

10 -> 57284, no

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

testcow—parent

I:> EX: running testcow-parent

Parent process after changing wvalues

sleep init 80103db7
-> 57210, y

-> 57206, y

sleep sh 80103db7
—> 57140, y

-> 57138, no

-> 57135, y

run testcow—-parent
-> 57060, no

-> 57134, y

-> 57276, no

WDhNhNOWWEFEFRODMDMNMNOHR

-> 57282, no
-> 57056, y
0 —> 57055, y
zombie testcow-parent
-> 57060, no
-> 57057, y
-> 57276, no

WNObLRKFE OOO:

10 —> 57284, no

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

testcow—-child

_) testcow-child.c: child process doing copy-on-write

int main ()
{
int pid, i;
int SIZE = 4096 + 1;
char *space = (char *)malloc(SIZE);
printf (1, "testcow-child: space=%d\n", (unsigned int) space);
procdump () ;
if ((pid = fork()) == 0) {
printf (1, "\nChild process before changing values\n\n");
procdump () ;
for (i = 0; i < SIZE; i++) {
space[i] ++;
}
printf (1, "\nChild process after changing values\n\n");
procdump () ;
wait () ;
} else {
exit();
}
free (space);
exit ();
return 1;

}
|
= heed to see copy-on-write y 2?2;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

testcow—-child

I:> EX: running testcow-child

testcow-child: space=40952 Child process before changing values
1 sleep init 80103db7

0 —> 57210, y 1l sleep init 80103db7
2 —> 57206, y 0 —> 57210, y

2 sleep sh 80103db7 2 -> 57206, y

0 —> 57140, y 2 sleep sh 80103db7

1 —> 57138, no 0 —> 57140, y

3 —> 57135, y 1 —> 57138, no

3 run testcow—-child 3 —> 57135, y

0 —> 57060, y 3 sleep testcow-child
2 -> 57057, y 0 —> 57060, no

3 —> 57276, y 2 —> 57134, y

4 —> 57277, y 3 -> 57276, no

5 —> 57279, y c.

6 —> 57280, y 10 —> 57284, no

7 —> 57281, y 4 run testcow—-child
8 —> 57282, y 0 —> 57060, no

9 -> 57283, y 2 -> 57057, y

10 —> 57284, y 3 —> 57276, no

10 -> 57284, no

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

testcow—-child

I:> EX: running testcow-child

Child process after changing wvalues

sleep init 80103db7
-> 57210, y

-> 57206, y

sleep sh 80103db7
—> 57140, y

-> 57138, no

-> 57135, y

sleep testcow-child 80103db7
-> 57060, no

-> 57134, y

-> 57276, no

WDhNhNOWWEFEFRODMDMNMNOHR

10 —> 57284, no
4 run testcow—child
0 —> 57060, no
2 —> 57057, y
3 —> 57276, no

8 —> 57282, no
9 -> 57056, y
10 -> 57055, y

Copyright © William C. Cheng

