
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 12 - 7/10/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA4 is due at 11:45pm on Tuesday, 7/15/2025

if you include files that’s not part of the original

"make pa4-submit" command, the grader will delete them

PA4 is probably the most difficult assignment

don’t wait too long to start this assignment

the last part (graph) may be time-consuming

unless you have found a tool that works, you might want to

leave that part until the very end so you don’t have to re-do

the graphs

when a thread gives up the CPU volentarily, you get to choose

to keep the same priority when it get on the ready list next

time (or always use the highest priority next time around)

you must test your code on a "standard" platform since it’s the

only platform the grader is allowed to grade on

although not recommended, you can do your development on a

different platform

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 12 - 7/10/2025)

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

make sure to "Verify Your Ticket" and "Verify Your Submission"

If you make a submission, read and understand the ticket in the web

page and save the web page as PDF as a record of your submission

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.4) Real-Time

Scheduling

(cont...)

For scheduling tasks with deadlines, EDF can be proven to be an

optimal scheduling policy under certain assumptions

Ex: task A must be completed 12ms from now and task B must be

completed 10ms from now

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Earliest Deadline First (EDF)

according to EDF, run task B first

as it turns out, task A has two parts, it needs 1ms of computation,

followed by 10ms of I/O

task B only needs to compute

if schedule task A first, both tasks can complete before their

respective deadlines

what went wrong?

task A’s real deadline on the processor is 2ms from now (we

are looking at processor scheduling and not I/O scheduling)!

but be careful when you specify deadlines

if schedule task B first, task A will miss the deadline

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.5) Queueing Theory

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Queueing Theory

if a service becomes more popular?

Can we predict what will hapen to user performance:

if we buy more hardware?

if we change the implementation to provide more features?

the answer is yes if we are allowed to make certain assumptions

(even though these assumptions may not be realistic)

why make unrealistic assumptions if you know they are

unrealistic?

if you make the right kind of assumptions, it may help you

to understand the underlying system so you can make

educated guesses

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Queueing Model

Assumption: average performance in a stable system, where

the arrival rate (λ tasks/sec) matches the departure rate

Arrivals
Departures

(Throughput)
λ µ

µ is the service rate (tasks/sec)

λ does not have to equal µ since the server can go idle

Service time (S): time to service the request

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Definitions

Q is the number of tasks queued

Queueing delay (W): wait time

Response time (R): R = W + S

Utilization (U): fraction of time the server is busy

Arrivals
Departures

(Throughput)
λ µ

if no overload, X = λ

Throughput (X): rate of task completions, X = U × µ

U = λ / µ

= 1

if λ < µ

if λ ≥ µ

(not overloaded)

(overloaded)

if overload, X = µ

N: number of tasks in the system, N = Q + U

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Little’s Law

applieds to any stable system, where arrivals match departures

(what goes in must comes out)

N: number of tasks in the system

N = X × R

rate in = X

a stable system

rate out = X
N, R

Suppose a system has throughput X = 100 tasks/s, average

response time R = 50 ms/task (or µ = 200 tasks/s)

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

how many tasks are in the system on the average?

if the server takes 5 ms/task, what is its utilization?

what is the average wait time?

what is the average number of queued tasks?

Suppose a system has throughput X = 100 tasks/s, average

response time R = 50 ms/task (or µ = 200 tasks/s)

X = 100 X = 100

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

50 ms

how many tasks are in the system on the average?

if the server takes 5 ms/task, what is its utilization?

what is the average wait time?

what is the average number of queued tasks?

Suppose a system has throughput X = 100 tasks/s, average

response time R = 50 ms/task (or µ = 200 tasks/s)

X = 100 X = 100

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

50 ms

how many tasks are in the system on the average?

if the server takes 5 ms/task, what is its utilization?

what is the average wait time?

what is the average number of queued tasks?

N = X × R = 5 tasks

Suppose a system has throughput X = 100 tasks/s, average

response time R = 50 ms/task (or µ = 200 tasks/s)

X = 100 X = 100

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

5 ms

how many tasks are in the system on the average?

if the server takes 5 ms/task, what is its utilization?

what is the average wait time?

what is the average number of queued tasks?

N = X × R = 5 tasks

U = X × S = 0.5 task = 0.5

Suppose a system has throughput X = 100 tasks/s, average

response time R = 50 ms/task (or µ = 200 tasks/s)

X = 100 X = 100

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

W

how many tasks are in the system on the average?

if the server takes 5 ms/task, what is its utilization?

what is the average wait time?

what is the average number of queued tasks?

N = X × R = 5 tasks

U = X × S = 0.5 task = 0.5

W = R - S = 45 ms/task

Suppose a system has throughput X = 100 tasks/s, average

response time R = 50 ms/task (or µ = 200 tasks/s)

X = 100 X = 100

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

how many tasks are in the system on the average?

if the server takes 5 ms/task, what is its utilization?

what is the average wait time?

what is the average number of queued tasks?

W

N = X × R = 5 tasks

U = X × S = 0.5 task = 0.5

Q = X × W = 4.5 tasks

W = R - S = 45 ms/task

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Utilization

but high utilization typically implies higher queueing delay and

higher response times

In general, we want to maximize utilization (so that resources are

not idling)

low utilization typically implies that resouces are wasted

operating at high utilization also increases the risk of overload

50 years ago, computers are very expensive, people can wait for

computers

now that computers are much cheaper, it’s okay to make the

computer wait

the above claims are not so obvious because we are used to

thinking about a deterministic system (i.e., a conveyor belt) and

not a stochastic system (where queueing theory is needed)

Can R really go to infinity?

Arrival Rate (λ)

µ

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Response Time As A Function Of Arrival Rate

Assuming λ < µ, best response time scenario: evenly spaced arrivals

(fixed-sized tasks that arrive equally spaced from on another)

result is that there is no waiting/queueing (i.e., conveyor belt)

Arrival Rate (λ)

R
e
s
p

o
n

s
e
 T

im
e
 (

R
) λ < µ

no queueing

R = S

λ > µ

growing queues

R undefined

µ
T

h
ro

u
g

h
p

u
t

(X
)

max throughput = µ

µ

you will run out of memory and new arrivals will be dropped

analysis is a lot more complicated

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Response Time As A Function Of Arrival Rate

Assuming λ < µ, worst response time scenario: burst arrivals

(a group of tasks arrive at the same time)

one task in a group can be served right away, others must wait

Arrival Rate (λ)

R
e
s
p

o
n

s
e
 T

im
e
 (

R
) λ < µ

queueing depends

on burstiness

λ > µ

growing queues

R undefined

µ

even spaced arrivals

bursty arriv
als

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Random Arrivals And Random Task Sizes

Most systems are somewhere in between best and worst cases

how do you represent an "average" system?

you would like to assume that arrivals are independent of each

other and task sizes are random

A useful model for understanding queueing behavior is to use an

exponential distribution to describe the time between tasks arriving

(inter-arrival time) and the time it takes to service each task

the exponential distribution provides a stunningly simple

approximate description of real-life queueing system

we are not claiming that all real systems always obey the

exponential model; in fact, most do not

however, the model is often accurate enough to provide

insight on system behavior; it’s also easy to understsand

the circumstances under which it is inaccurate

"All models are wrong, but some models are useful" is a

well-known scientific precept

with a mean of 1 / λ has the probability density function: f(x) = λe
 -λx

In math, an exponential distribution of a continuous random variable

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Exponential Distribution

x

1

λe
 -λx

f(x)

a useful property of an

exponential distribution

is that it is memoryless

A Gaussian/normal

distribution is more like

our best case scenario

A heavy-tailed distribution is closer to our worst case scenario

the longer you have waited for an event, the longer you are

likely to still need to wait

no matter how long

you have waited,

your expected wait

time stays constant

most cases looks like the average case

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Exponential Distribution

our queueing system becomes a finite state machine

With a memoryless distribution, the behavior of queueing systems

become simple to understand

the name of a state is the number of tasks at the system

start in state 0, leaving state 0 at the rate of λ

in state 1, leaving to go to state 2 at the rate of λ and

simultaneously leaving to go to state 0 at the rate of µ

and so on

using this model, we can calculate the average response time

(assuming λ < µ) is: R = S / (1 - U) = 1 / (µ - λ)

R → infinity as λ approaches µ (or, as U → 1)

λ

µ
0 1 2 3

λ

µ

λ

µ

λ

µ

When the utilization is

low, very little queueing

delay and response time

is close to service time

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Average Response Time vs. Utilization

As utilization increases,

queueing and response

time also increases and

the relationship is highly

non-linear

at high utilization, small

increase in utilization

can drastically increase

queueing delay and response time

U

100

S / (1 - U)

R

80

60

40

20

0
0 0.2 0.4 0.6 0.8 1

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Examples

if the utilization is increased by 5% (i.e., to 25% utilization), how

much does the response time increase?

Suppose a queueing system (with exponentially distributed arrivals

and task sizes) is 20% utilized

R = S / (1 - U) = S / (1 - 0.2) = 1.25 S

∆R = (R’ - R) = (1.33 - 1.25) S = 0.08 S

R’ = S / (1 - U’) = S / (1 - 0.25) = 1.33 S

if the utilization is increased by 5% (i.e., to 95% utilization), how

much does the response time increase?

Suppose a queueing system (with exponentially distributed arrivals

and task sizes) is 90% utilized

R = S / (1 - U) = S / (1 - 0.9) = 10 S

∆R = (R’ - R) = (20 - 10) S = 10 S

R’ = S / (1 - U’) = S / (1 - 0.95) = 20 S

small increase in response time

response time doubles

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Variance

For a queueing system with exponentially distributed arrivals and

task sizes, variance in response time Var(R) = S / [(1 - U)
 2

]

What if arrivals are less bursty than exponential?

What if arrivals are more bursty than exponential?

variance would decrease (goes to zero in the extreme case)

variance would increase (goes to infinity in the extreme case)

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Secondary Bottlenecks

If a thread visits multiple resources (e.g., processor, disk, network),

its total response time is just the sum of the individual response

times

R = Σ
i
 Si / (1 - Ui)

the bottleneck resource is the resource with the largest response

time / delay

if you improve the available resource at the bottleneck (e.g., add

another processor or buy a faster processor), the bottleneck can

move to another resource (i.e., the secondary bottleneck)

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.6) Overload

Management

but which ones?

ART would be smaller if you turn away users that have the

highest service demand (although they can get very upset)

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Overload Management

if do nothing, response time will become infinite

What if arrivals occur faster than service can handle them

Turn users away?

compute result with fewer resources

Degrade service?

Ex: CNN static front page on 9/11, Amazon quick response

there are basically two ways to deal with this

either turn arrivals away or slow everyone down (i.e., degrade

service)

Restaurant analogy

solution: once you are in the restaurant, you should get good

service; if you cannot get in, you wait (or leave)

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Increased Load ⇒ Increased Overhead

e.g., if you use a list to manage requests, as the list gets longer,

it takes more time to access the list

at low load, increase

load = more

throughput

In a real system, when load increases, overhead also increases

keep increasing

load can lead to

traffic jam and

throughput can

becomes really low 0 20 40 60 80

occupancy[%]

2000

1500

1000

500

0

m
e
a
s
u

re
d

 t
ra

ff
ic

 f
lo

w

[c
a
rs

 p
e
r

h
o

u
r]

e.g., highway traffic

when congestion

starts, throughput

would decrease

solution: admission

control to limit system load

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Increased Load ⇒ Increased Overhead

e.g., time slicing and caching

when web server load is low, hit rate on web caches are high

and tasks uses cache efficiently

In a real system, when load increases, overhead also increases

as more tasks are added to the system, there are more time

slices and fewer web cache hits

e.g., Internet traffic

when load is low, all packets go through quickly

as load increases, some packets are dropped which causes

senders to retransmit the dropped packets and effectively

increases the load even more

positive feedback

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.7) Case Study:

Servers in a Data Center

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Architecture For Providing Web Services

Many web services, such as Google, Facebook, Amazon

are organized as a set of front-end machines that

redirect incoming requests to a larger set of

backend machines

isolates from the architecture

of the backend systems (can

easily add or remove backend servers)

Network

Packets

Front-End

Servers

Backend

Servers

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Architecture For Providing Web Services

when a client first connects to the service, the front-end node

assigns each customer to a backend server to balance load

To provide good response time to clients:

additional request from the same client would be assigned to the

same backend server (affinity scheduling)

Network

Packets

Front-End

Servers

Backend

Servers

a backend server would favor short tasks over long ones

by keeping track of the resource usage of each

client

must monitor arrival rates of

clients and resource usage of

each client so that backend

servers can be added before server

utilization gets too high

need to predict future load and have a

backup plan for overload conditions since

it can take a long time to bring new servers online

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

Ch 8: Address Translation

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Main Points

how do we convert a virtual address to a physical address?

Address translation concept

base and bound

Flexible address translation

translation lookside buffers

Efficient address translation

segmentation

paging

multilevel translation

virtually and physically addressed caches

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(8.1) Address Translation

Concept

Physical
Memory

TranslationProcessor

Virtual
Address

Physical
Address

valid

invalid Raise
Exception

Data

Data

use virtual address instead and translate it to a physical address

in hardware before accessing physical memory (RAM)

Don’t use physical addresses directly

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Address Translation Concept

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Address Translation Goals

Memory protection: protect processes from accessing each other’s

memory and protect kernel from all processes

shared libraries, shared files, shared data structures

Memory sharing: share selected regions of memory

allows multiple dynamic regions of memory to grow and shrink

Sparse addresses: do not waste RAM

Runtime lookup efficiency: fast and compact hardware

Compact translation table: minimal space overhead

Flexible memory placement: in physical memory / RAM

Portability: make it easy to map kernel data structures to specific

capabilities of various address translation architectures

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(8.2) Towards Flexible

Address Translation

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Base & Bounds Registers

Processor’s View

Usable virtual addresses are from 0 to Bound-1

Base and bound registers are part of the context of the

process

Implementation

Physical
Address

Base

Physical
Memory

Base+
Bound

Virtual
Address

Raise
Exception

Processor

Bound

BaseVirtual
Address

Processor

Virtual
Memory

0

Bound

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Base & Bounds Registers

simple

Pros

fast: 2 registers, adder, comparator

can relocate in physical memory with small change in PCB

cannot keep program from accidentally overwriting its own code

Cons

cannot share code/data with other processes

cannot grow stack/heap as needed

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Segmentation

A segment is a contiguous region of virtual memory

one each per segment

Each process has a segment table (in hardware)

each segment has: start, length, access permission

Segment can be located anywhere in physical memory

if they have the same start and length, although they can have

different access permissions

Processes can share segments

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Segmentation

Processor’s View Implementation

Segment-local
Virtual Addr

Virtual
Memory

0

Bound3

Stack

Code

0

Bound0

Heap

0

Bound2

Data

0

Bound1

Processor

Physical
Address

Raise
Exception

Processor

Bound AccessBase

R/O

R/W

R/W

R/W

Segment Table

OffsetSeg

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Segmentation fault: if an exception is raised during

address translation

Segment-local
Virtual Addr

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Segmentation

Processor’s View Implementation

Segment-local
Virtual Addr

Virtual
Memory

0

Bound3

Stack

Code

0

Bound0

Heap

0

Bound2

Data

0

Bound1

Processor

Physical
Address

Raise
Exception

Processor

Bound AccessBase

R/O

R/W

R/W

R/W

Segment Table

OffsetSeg

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Segmentation fault: if an exception is raised during

address translation

Segment-local
Virtual Addr

segment-local virtual

address is a virtual

address relative to the

beginning of the segment

supported by some

processor architectures

Processor

Processor

Seg

5000

Virtual Addr

Offset

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Segment Sharing

Physical
Address

Bound AccessBase

R/O

R/W

R/W

R/W

P1 Segment Table

Physical
Memory

P1’s+
P2’s
Code

Physical
Address

Bound AccessBase

R/O

R/W

R/W

R/W

P2 Segment Table

Base0

Base0

P1’s
Heap

P2’s
Data

P1’s
Stack

P1’s
Data

P2’s
Heap

P2’s
Stack

Seg

5000

Virtual Addr

Offset

Copy-on-write: you can share all you want if you are just reading,

but when you write to a segment for the first time, you make a copy

of the segment and you write into the copy

makes a complete copy of a process

UNIX fork()

in fork(), copy segment table into child

trap into the kernel

Segments allow more efficient implementation using copy-on-write

mark parent and child segments read-only

start child process; return to the same place as parent, i.e.,

returning from the fork() system call

if child or parent writes to a segment (e.g., data, stack, heap)

make a copy of the segment, change base register to point

to new segment, make new segment R/W, and resume

all subsequent writes will not cause trap

this type of segmentation fault can be repaired

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

UNIX fork() And Copy-On-Write

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

fork()

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Parent Segment Table

OffsetSegx

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Child Segment Table

OffsetSeg

Parent process calls fork()

change access to R/O for all segments in both

parent and child to set up for

copy-on-write

child copies parent segment table

x

Base1

Base1

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy-On-Write

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Parent Segment Table

OffsetSegx

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Child Segment Table

OffsetSeg

Reading shared data is no problem

x

Base1

Base1

OKRead

Op

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy-On-Write

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Parent Segment Table

OffsetSegx

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Child Segment Table

OffsetSegx

write operation is incompatible with R/O access

⇒ segmentation fault

Let’s say child process wants to do x = 3 and x is

a global variable (i.e., lives in the data segment)

Raise
ExceptionWrite

Op

trap into kernel

Base1

Base1

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy-On-Write

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Parent Segment Table

OffsetSegx

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Physical
Address

Bound AccessBase

R/O

R/W

R/O

R/O

Child Segment Table

OffsetSegx

update the base register for the data segment

and change access to R/W

The kernel makes a copy of the data segment

Raise
ExceptionWrite

Op
Base1’

Base1’+
Bound1

Data

Base1’

Base1

Copy

return to user to try again

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Copy-On-Write

Physical
Address

Bound AccessBase

R/O

R/O

R/O

R/O

Parent Segment Table

OffsetSegx

Base3

Physical
Memory

Base3+
Bound3

Heap

Stack

Code

Base0

Base0+
Bound0

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Data

Physical
Address

Bound AccessBase

R/O

R/W

R/O

R/O

Child Segment Table

OffsetSegx

child’s data segment is now modified

This time, write operation is compatible with R/W

OKWrite

Op
Base1’

Base1’+
Bound1

Data’

Base1’

Base1

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Zero-On-Reference

only what is currently in use

How much physical memory is needed for the stack or heap?

segmentation fault into OS kernel

When program uses memory beyond end of stack

kernel allocates some memory

how much?

zeroes the memory

security: avoid accidentally leaking information

modify segment table

resume process

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Segmentation

can share code/data segments between processes

Pros

can protect code segment from being overwritten

can transparently grow stack/heap as needed

can detect if need to copy-on-write

complex memory management

Cons

may need to rearrange memory from time to time to make room

for new segment or growing segment

need to find chunk of a particular size

external fragmentation: wasted space between allocated

chunks

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Paged Memory / Paging

allocation bitmap: 0011111100000001100

pointer to start of page table (i.e., contains the first physical

memory address of the page table)

Manage memory in fixed size units, called page frames

Finding a free page is easy (compared to segmentation)

each bit represents one physical page frame

stored in physical memory (accessible via virtual addr as well)

Each process has its own page table for performing address

translation

hardware registers

page table length

1 means allocated and 0 means unallocated

a page table is a kernel data structure

conceptually, a page table as an array of page table entries

array index is a virtual page number

virtual page size = physical page size

Stack0

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Page Translation (Logical View)

Frame 0

Physical
Memory

Frame 1

Frame M-1

VPage 0

VPage 1

VPage N-1

Code

Data

Heap

Stack

Code0

Data0

Heap1

Code1

Heap0

Data1

Heap2

Satck1

Contiguous virtual address does not

necessary mean contiguous physical

address (when crossing page boundary)

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Page Translation (Implementation)

Processor

Page Table

Frame 0

Physical
Memory

Frame 1

Frame Access
Virtual Addr

Offset1VPage1

Physical Addr

Offset1Frame

Physical Addr

Offset2Frame

Virtual Addr

Offset2VPage2

 Copy

 Copy

Virtual page size =

physical page size

page offset in virtual

address = page offset in

physical address
Frame M-1

Frame number = physical page number

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Page Translation (Implementation)

Processor

Page Table

Frame 0

Physical
Memory

Frame 1

Frame Access
Virtual Addr

Offset1VPage1

Physical Addr

Offset1Frame

Physical Addr

Offset2Frame

Virtual Addr

Offset2VPage2

 Copy

Frame M-1

for x86 CPU, access contains:

P bit: present/valid

R/W bit: 0 means R/O

U/S bit: user or kernel

 Copy

Virtual page size =

physical page size

page offset in virtual

address = page offset in

physical address

Frame number = physical page number

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example

Process View

A

B

C

D

E

F

G

H

I

J

K

L

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

VPage 0

VPage 1

VPage 2

0

1

2

3

4

5

6

7

8

9

10

11

Physical Memory

Suppose page size is 4 bytes

Page Table

4

Frame Access

3

1

where does virtual address 6 map to?

where does virtual address 9 map to?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example

Process View

A

B

C

D

E

F

G

H

I

J

K

L

I

J

K

L

E

F

G

H

A

B

C

D

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

VPage 0

VPage 1

VPage 2

0

1

2

3

4

5

6

7

8

9

10

11

Physical Memory

Suppose page size is 4 bytes

where does virtual address 6 map to?

where does virtual address 9 map to?

Page Table

4

Frame Access

3

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Paging

pointer to page table, size of page table

With paging, what is saved/restored on a process context switch?

page table itself is in main memory

page table will be large

What if page size is very small?

internal fragmentation: if we cannot use all of the space inside a

fixed size chunk

What if page size is very big?

a core map is a data structure used to perform reverse lookup,

i.e., given a page frame, which processes are sharing that

page frame

set entries in both page tables to point to same page frames

Can we share memory between processes?

need a core map to track which processes are pointing to which

page frames

on fork(), copy page table of parent into child process

UNIX fork() with copy on write

mark all pages (in new and old page tables) as read-only

trap into kernel on write (in child or parent)

copy page

mark both as writable

resume execution

a reference counting mechanism is use to know when to

free up page frame

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Paging And Copy-On-Write

returning from page fault will be retried

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Fill On Demand

set all page table entries to invalid

Can I start running a program before its code is in physical

memory?

when a page is referenced for first time, if the page table entry

is invalid, will cause a page fault and trap into kernel

kernel brings page in from disk

resume execution

remaining pages can be transferred in the background while

program is running

This is also referred as demand paging or on-demand paging

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Sparse Address Spaces

Might want to have many separate dynamically created segments

per-thread stacks

memory-mapped files: when you map a file (or part of a file) into

your address space, you must create a new segment

32-bits, 4KB pages ⇒ 500K page table entries (assuming that the

user portion of the address space is 2GB)

What if virtual address space is large?

64-bits ⇒ 4 quadrillion page table entries

efficient for sparse addresses (compared to array-based paging)

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-level Translation

paged segmentation

Tree of translation tables

multi-level page tables

multi-level paged segmentation

efficient memory allocation (compared to segments)

Fixed-size page as lowest level unit of allocation

efficient disk transfers (fixed size units)

efficient lookup with translation lookaside buffers (next section)

efficient reverse lookup (from physical to virtual, using core map)

page-granularity for protection and sharing

for small programs, not many ⇒ array is not a good choice

How many page table entries are valid?

trees and hash tables are better for sparse data

we will first look at tree data structures

