Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 12 - 7/10/2025)

) PA4is due at 11:45pm on Tuesday, 7/15/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pa4-submit’ command, the grader will delete them
= PAA4 is probably the most difficult assignment
Q don’t wait too long to start this assignment
Q the last part (graph) may be time-consuming
<& unless you have found a tool that works, you might want to
leave that part until the very end so you don’t have to re-do
the graphs
Q when a thread gives up the CPU volentarily, you get to choose
to keep the same priority when it get on the ready list next
time (or always use the highest priority next time around)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 12 - 7/10/2025)

_) Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
= although not recommended, you can do your development on a

different platform
Q you must test your code on a "standard” platform since it’s the
only platform the grader is allowed to grade on

ﬁ> If you make a submission, read and understand the ticket in the web
page and save the web page as PDF as a record of your submission
—= make sure to "Verify Your Ticket” and "Verify Your Submission"

Copyright © William C. Cheng

(7.4) Real-Time
Scheduling

Introduction to Operating Systems - CSCI 350

Earliest Deadline First (EDF)

ﬁ} For scheduling tasks with deadlines, EDF can be proven to be an
optimal scheduling policy under certain assumptions

o

but be careful when you specify deadlines

ﬁ> Ex: task A must be completed 12ms from now and task B must be
completed 10ms from now

frm—

frm—

[

[

[

[

Copyright © William C. Cheng

according to EDF, run task B first

as it turns out, task A has two parts, it needs 1ms of computation,

followed by 10ms of I/O

task B only needs to compute

if schedule task A first, both tasks can complete before their

respective deadlines

If schedule task B first, task A will miss the deadline

what went wrong?

Q task A’s real deadline on the processor is 2ms from now (we
are looking at processor scheduling and not I/0 scheduling)!

®

(7.5) Queueing Theory

Introduction to Operating Systems - CSCI 350

Queueing Theory

ﬁ} Can we predict what will hapen to user performance:
= |f a service becomes more popular?
= if we buy more hardware?
= if we change the implementation to provide more features?
= the answer is yes if we are allowed to make certain assumptions
(even though these assumptions may not be realistic)
Q why make unrealistic assumptions if you know they are
unrealistic?
& if you make the right kind of assumptions, it may help you
to understand the underlying system so you can make
educated guesses

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Queueing Model

Departures

Arrivals (Throughput)
A > i >

ﬁ> Assumption: average performance in a stable system, where
the arrival rate (A tasks/sec) matches the departure rate
= L is the service rate (tasks/sec)
Q A does not have to equal 1 since the server can go idle

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Definitions

Departures

Arrivals (Throughput)
A > il >

G> Queueing delay (W): wait time
= Q@ is the number of tasks queued

_) Service time (S): time to service the request
_) Response time (R): R=W + S

ﬁ> Utilization (U): fraction of time the server is busy
U=\A/un ifL<p (notoverloaded)
=1 if L>u (overloaded)

_) Throughput (X): rate of task completions, X = U x p
= if no overload, X =\
= if overload, X =

> N:number of tasks in the system, N= Q + U

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Little’s Law

N=XxR

> N:number of tasks in the system
= applieds to any stable system, where arrivals match departures
(what goes in must comes out)

ratein= X rateout= X
- N, R

a stable system

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples
ﬁ} Suppose a system has throughput X = 700 tasks/s, average
response time R = 50 ms/task (or 1 = 200 tasks/s)
= how many tasks are in the system on the average?
= if the server takes 5 ms/task, what is its utilization?

= what is the average wait time?

= what is the average number of queued tasks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples
ﬁ} Suppose a system has throughput X = 700 tasks/s, average
response time R = 50 ms/task (or 1 = 200 tasks/s)
= how many tasks are in the system on the average?
= if the server takes 5 ms/task, what is its utilization?

= what is the average wait time?

= what is the average number of queued tasks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples

ﬁ} Suppose a system has throughput X = 700 tasks/s, average
response time R = 50 ms/task (or 1 = 200 tasks/s)
= how many tasks are in the system on the average?
Q N=XxR=>5tasks
= if the server takes 5 ms/task, what is its utilization?

= what is the average wait time?

= what is the average number of queued tasks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples

ﬁ} Suppose a system has throughput X = 700 tasks/s, average
response time R = 50 ms/task (or 1 = 200 tasks/s)
= how many tasks are in the system on the average?
Q N=XxR=>5tasks
= if the server takes 5 ms/task, what is its utilization?
Q U=XxS=0.5task=0.5
= what is the average wait time?

= what is the average number of queued tasks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples

ﬁ} Suppose a system has throughput X = 700 tasks/s, average
response time R = 50 ms/task (or 1 = 200 tasks/s)
= how many tasks are in the system on the average?
Q N=XxR=>5tasks
= if the server takes 5 ms/task, what is its utilization?
Q U=XxS=0.5task =0.5
= what is the average wait time?
QO W=R-S =45ms/task
= what is the average number of queued tasks?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples

ﬁ} Suppose a system has throughput X = 700 tasks/s, average
response time R = 50 ms/task (or 1 = 200 tasks/s)
= how many tasks are in the system on the average?
Q N=XxR=>5tasks
= if the server takes 5 ms/task, what is its utilization?
Q U=XxS=0.5task =0.5
= what is the average wait time?
QO W=R-S =45ms/task
= what is the average number of queued tasks?
Q Q=XxW-=4.5tasks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Utilization

ﬁ} In general, we want to maximize utilization (so that resources are

not idling)

= |low utilization typically implies that resouces are wasted

= but high utilization typically implies higher queueing delay and
higher response times

— operating at high utilization also increases the risk of overload

= the above claims are not so obvious because we are used to
thinking about a deterministic system (i.e., a conveyor belt) and
not a stochastic system (where queueing theory is needed)

ﬁ} 50 years ago, computers are very expensive, people can wait for

computers
= now that computers are much cheaper, it’s okay to make the

computer wait

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Response Time As A Function Of Arrival Rate

ﬁ} Assuming A <, best response time scenario: evenly spaced arrivals

(fixed-sized tasks that arrive equally spaced from on another)
= result is that there is no waiting/queueing (i.e., conveyor belt)

A A
—_ A<l As>uU
E no queueing growing queues —
GE) R=S R undefined X max throughput = .1
L H“
— =3
o =
& >
c =
Q o
. c
8 -
o | > | >
| |
u u
Arrival Rate (1) Arrival Rate (1)

_, Can R really go to infinity?
= you will run out of memory and new arrivals will be dropped (\
0 —

Q analysis is a lot more complicated V=)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Response Time As A Function Of Arrival Rate

ﬁ} Assuming A\ <, worst response time scenario: burst arrivals

(a group of tasks arrive at the same time)
= ohe task in a group can be served right away, others must wait

A
—_ A<l A>u
E queueing depends growing queues
Q on burstiness R undefined
E
|_
D
7))
c
(@)
Q.
7))
()
m |

| -

Arrival Rate (1)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Random Arrivals And Random Task Sizes

ﬁ} Most systems are somewhere in between best and worst cases
= how do you represent an "average" system?

= you would like to assume that arrivals are independent of each
other and task sizes are random

ﬁ> A useful model for understanding queueing behavior is to use an
exponential distribution to describe the time between tasks arriving
(inter-arrival time) and the time it takes to service each task
= the exponential distribution provides a stunningly simple
approximate description of real-life queueing system
Q we are not claiming that all real systems always obey the
exponential model; in fact, most do not
Q however, the model is often accurate enough to provide
insight on system behavior; it’s also easy to understsand
the circumstances under which it is inaccurate

ﬁ} "All models are wrong, but some models are useful” is a |
well-known scientific precept 3

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Exponential Distribution

ﬁ} In math, an exponential distribution of a continuous random varlable
with a mean of 7 /A has the probability density function: f(x) = re ™
= a useful property of an
exponential distribution 4.
is that it is memoryless
QO no matter how long
you have waited, f(x)
your expected wait
time stays constant

) A Gaussian/normal
distribution is more like —
our best case scenario
= most cases looks like the average case

ﬁ> A heavy-tailed distribution is closer to our worst case scenario
= the longer you have waited for an event, the longer you are |
likely to still need to wait 4

20

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Exponential Distribution

ﬁ} With a memoryless distribution, the behavior of queueing systems
become simple to understand
= Oour queueing system becomes a finite state machine

A A A A
A

0 1 2 3
U U u U

Q the name of a state is the nhumber of tasks at the system
Q start in state 0, leaving state 0 at the rate of A
Q In state 1, leaving to go to state 2 at the rate of A and

simultaneously leaving to go to state 0 at the rate of u
Q and so on

= using this model, we can calculate the average response time
(assuming A <p)is: R=S/(1-U)=1/(1L-1)
Q R — infinity as A approaches . (or,as U — 1)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Average Response Time vs. Utilization

> When the utilization is R
low, very little queueing 100+
delay and response time
Is close to service time 80+
) As utilization increases, 60
queueing and response
time also increases and 40
the relationship is highly
non-linear 207 S/(1-U)
= at high utilization, small 0 i i : : :
increase in utilization 0 0.2 0.4 0.6 0.8 1
can drastically increase u

queueing delay and response time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Examples

ﬁ} Suppose a queueing system (with exponentially distributed arrivals

and task sizes) is 20% utilized
= if the utilization is increased by 5% (i.e., to 25% utilization), how

much does the response time increase?

Q R=S/(1-U)=8S/(1-02)=1.25S

Q RR=S/(1-U)=S8S/(1-0.25)=1.33S

Q AR=(R’-R)=(1.33-1.25) $=0.08 S
<& small increase in response time

ﬁ> Suppose a queueing system (with exponentially distributed arrivals

and task sizes) is 90% utilized
= if the utilization is increased by 5% (i.e., to 95% utilization), how

much does the response time increase?
Q R=S/(1-U)=S8/(1-0.9) =108
Q RR=S/(1-U)=8/(1-0.95)=20S
Q AR=(R’-R)=(20-10)S=10S
<& response time doubles HATNN

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Variance

ﬁ} For a queueing system with exponentially distributed arrlvals and
task sizes, variance in response time Var(R) =S /[(1 - U)]

ﬁ} What if arrivals are less bursty than exponential?
= variance would decrease (goes to zero in the extreme case)

ﬁ> What if arrivals are more bursty than exponential?
= variance would increase (goes to infinity in the extreme case)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Secondary Bottlenecks

ﬁ} If a thread visits multiple resources (e.g., processor, disk, network),
its total response time is just the sum of the individual response
times

R=2.S;/(1-U)

= the bottleneck resource is the resource with the largest response
time / delay

= If you improve the available resource at the bottleneck (e.g., add
another processor or buy a faster processor), the bottleneck can
move to another resource (i.e., the secondary bottleneck)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(7.6) Overload
Management

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Overload Management

ﬁ} What if arrivals occur faster than service can handle them
= if do nothing, response time will become infinite
= there are basically two ways to deal with this
Q either turn arrivals away or slow everyone down (i.e., degrade
service)

ﬁ} Turn users away?
= but which ones?
Q ART would be smaller if you turn away users that have the
highest service demand (although they can get very upset)

) Degrade service?
= compute result with fewer resources
= EX: CNN static front page on 9/11, Amazon quick response

) Restaurant analogy
= solution: once you are in the restaurant, you should get good

service; if you cannot get in, you wait (or leave) (A
y g y @

27

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Increased Load = Increased Overhead

ﬁ} In a real system, when load increases, overhead also increases
= e.g., If you use a list to manage requests, as the list gets longer,
it takes more time to access the list
= e.g., highway traffic T -

Q atlow load, increase C . i
load = more 3 el T PP A
throughput o § - "J}m :

Q when congestion 5 < 1900 - ""':..,&s:
starts, throughput g Q T _:#:a} |
would decrease Q o 1000 - pa .
% keep increasing §§| :]

load can lead to GEJ 500 “_ :
traffic jam and 1
throughput can 0 — N BT
becomes really low 0 20 40 60 80

Q solution: admission occupancy[%] |
control to limit system load 233

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Increased Load = Increased Overhead

ﬁ} In a real system, when load increases, overhead also increases
= e.(., time slicing and caching
Q when web server load is low, hit rate on web caches are high
and tasks uses cache efficiently
Q as more tasks are added to the system, there are more time
slices and fewer web cache hits
= e.g., Internet traffic
Q when load is low, all packets go through quickly
Q as load increases, some packets are dropped which causes
senders to retransmit the dropped packets and effectively
increases the load even more
& positive feedback

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(7.7) Case Study:
Servers in a Data Center

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Architecture For Providing Web Services

ﬁ} Many web services, such as Google, Facebook, Amazon
are organized as a set of front-end machines that

redirect incoming requests to a larger set of
backend machines
. . Network
= isolates from the architecture Packets | |T—™
of the backend systems (can \
easily add or remove backend servers)
Front-End
Servers
Backend
Servers

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Architecture For Providing Web Services

) To provide good response time to clients:
= When a client first connects to the service, the front-end node
assigns each customer to a backend server to balance load
= additional request from the same client would be assigned to the
same backend server (affinity scheduling)
= a backend server would favor short tasks over long ones
by keeping track of the resource usage of each

client
= must monitor arrival rates of Network
clients and resource usage of Packets | |T—™
each client so that backend \
servers can be added before server
utilization gets too high Front-End
. Servers
= heed to predict future load and have a
backup plan for overload conditions since Bsaef,ti:':

it can take a long time to bring new servers online (i\

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Ch 8: Address Translation

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Main Points

) Address translation concept
= how do we convert a virtual address to a physical address?

) Flexible address translation
= base and bound
= segmentation
= paging
= multilevel translation

ﬁ} Efficient address translation
= translation lookside buffers
= virtually and physically addressed caches

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(8.1) Address Translation
Concept

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Address Translation Concept

> Don’t use physical addresses directly
= use virtual address instead and translate it to a physical address
in hardware before accessing physical memory (RAM)

Virtual
Address invalid '
Processor > Translation >E)a(l::$eeption
A valid
Data
»| Physical
Physical Memory
Address
Data

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Address Translation Goals

ﬁ} Memory protection: protect processes from accessing each other’s
memory and protect kernel from all processes

ﬁ} Memory sharing: share selected regions of memory
= shared libraries, shared files, shared data structures

ﬁ> Flexible memory placement: in physical memory / RAM

ﬁ} Sparse addresses: do not waste RAM
= allows multiple dynamic regions of memory to grow and shrink

ﬁ> Runtime lookup efficiency: fast and compact hardware
G> Compact translation table: minimal space overhead

ﬁ> Portability: make it easy to map kernel data structures to specific
capabilities of various address translation architectures

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(8.2) Towards Flexible
Address Translation

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Base & Bounds Registers

Processor’s View Implementation
Physical
Virtual Memory
Memory
Virtual Base
Address
Processor Base
Virtual Physical
Address Address
Processor -+ -
Bound
Base+
Bound
Bound
Raise
Exception

ﬁ} Usable virtual addresses are from 0 to Bound-1

ﬁ} Base and bound registers are part of the context of the |
process y ‘?}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Base & Bounds Registers

— fast: 2 registers, adder, comparator
= cah relocate in physical memory with small change in PCB

ﬁ> Cons

= cannot keep program from accidentally overwriting its own code
= cannot share code/data with other processes
= cannot grow stack/heap as needed

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Segmentation
ﬁ} A segmentis a contiguous region of virtual memory

_, Each process has a segment table (in hardware)
= ohe each per segment

ﬁ} Segment can be located anywhere in physical memory
— each segment has: start, length, access permission

ﬁ} Processes can share segments
= if they have the same start and length, although they can have
different access permissions

Copyright © William C. Cheng

Segmentation

Processor’s View

Processor

Segment-local
Virtual Addr

Virtual
Memory

Code

Data

Heap

Stack

0
Processor

BoundO

0

Implementation

Segment Table

Seg

Base Bound Access

Offset

Segment-local

Virtual Addr
Bound1i

0

Bound2

Bound3

R/O

-

R/W

R/W

R/W

Physical
Address

L

t{i I Raise
Exception

ﬁ> Segmentation fault: if an exception is raised during
address translation

Copyright © William C. Cheng

Physical
Memory

Stack

Code

Data

Heap

Introduction to Operating Systems - CSCI 350

Base3

Base3+
Bound3

Base0

BaseO+
BoundO

Base1

Base1+
Bound1

Base2

Base2+
Bound2

Segmentation

Processor’s View

Processor

Segment-local
Virtual Addr

ﬁ> Segmentation fault: if an exception is raised during

Virtual
Memory

Code

Data

Heap

Stack

0
Processor

BoundO

0

Introduction to Operating Systems - CSCI 350

-
= segment-local virtual

Implementat address is a virtual

Seg

address relative to the

beginning of the segment

L supported by some
processor architectures

Segment-local

Virtual Addr
Bound1i

0

Bound2

Bound3

address translation

Copyright © William C. Cheng

\,
Segment Taore Stack
Base Bound Access Base3+
Offset R/O Bound3
| R/W Base0
R/W Code
R/W Base0+
BoundO
Physical Base1l
A
T+ ddress
Data | gaseq+
Raise Bound1
Exception
Base2
H
eap Base2+
Bound2

Introduction to Operating Systems - CSCI 350

Segment Sharing Physica
P2’s
Data
Processor P1’s
Heap
Virtual Addr
Seg Offset

P1 Segment Table
—P 0 500 g

Base Bound Access P1’s
Stack
P Base0 R/O

R/W P1’s
R/W Data
Heap

Physical

Processor " Address

Virtual Addr
Seg Offset

—P> 0 500

P2 Segment Table
Base Bound Access

P Base0 R/O
P1’s+
R/W P2’s
R/W Code
R/W P2’s
Stack
Physical
n Address

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

UNIX fork () And Copy-On-Write

) UNIX fork ()
—= makes a complete copy of a process

ﬁ} Segments allow more efficient implementation using copy-on-write
= In fork (), copy segment table into child
= mark parent and child segments read-only
= start child process; return to the same place as parent, i.e.,
returning from the fork () system call
= |If child or parent writes to a segment (e.g., data, stack, heap)
Q trap into the kernel
Q make a copy of the segment, change base register to point
to new segment, make new segment R/W, and resume
Q this type of segmentation fault can be repaired

ﬁ> Copy-on-write: you can share all you want if you are just reading,
but when you write to a segment for the first time, you make a copy

of the segment and you write into the copy |
= all subsequent writes will not cause trap 4534

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Physical
f or k () Meﬁlc::r?/
) Parent process calls fork ()
= child copies parent segment table Base2
. H
= change access to R/O for all segments in both =P Base2s
parent and child to set up for Parent Segment Table
. Base3
- - Base Bound Access
copy-on write x =P Seg | Offset R/O Stack fces
| Baset R/O Bgz(:d;
R/O Base0
R/O
Code
Physical BaseO+
) é"‘ Address BoundO
Base1
Child Segment Table
Base Bound Access
x = Seg | Offset RIO Data gzlsjil;‘.l
| Baset R/O
R/O
R/O

Physical :
A
n ddress ‘g_

Copyright © William C. Cheng

Copy-On-Write
_) Reading shared data is no problem

Parent Segment Table
Base Bound Access

x—| Seg | Offset

R/O

P Basel R/O

R/O
Physical
T Address

R/O
Child Segment Table
Base Bound Access

x—| Seg | Offset

R/O
P Basel R/O

Op
Read 9 OK R/O
R/O

Physical
n Address

Copyright © William C. Cheng

Physical
Memory

Heap

Stack

Code

Data

Introduction to Operating Systems - CSCI 350

Base2

Base2+
Bound2

Base3

Base3+
Bound3

Base0

BaseO+
BoundO

Base1

Base1+
Bound1

Introduction to Operating Systems - CSCI 350

Co py-o n-Write Physical

Memory
) Let’s say child process wants to do x = 3 and x is
a global variable (i.e., lives in the data segment) Base2
. H
= write operation is incompatible with R/O access T [Base2s
= Segmentation fault Parent Segment Table Base3
i Base Bound Access ase
Q trap into kernel __ seq | orrest = Stack
Base3+
| Baset R/O Bound3
R/O Base0
R/O
Code
Physical BaseO+
) é"‘ Address Bound0
Base1
Child Segment Table
Base Bound Access Data |g.se1
x — Seg Offset R/O Bﬁls.lid:
Op | Baset R/O
- Raise R/O
Write [~ Exception s

Physical |
A
n ddress ‘@_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Co py-o n-Write Physical

Memory
) The kernel makes a copy of the data segment
= update the base register for the data segment Base2
H
and change access to R/'W T [Base2s
= return to user to iry again Parent Segment Table
Base Bound Access Base3
x—| Seg | Offset R/O Stack Base3
ase
P> Basel R/O Bound;
R/O Base0
R/O
Code
Physical BaseO+
Address Bound0
4><.|.>
Base1
Child Segment Table
Base Bound Access Data |g.se1
x =9 Seg | Offset 50 Copy/ Bﬁfj‘; d,‘;
Op | Base1’ R/W (Basel
- Raise R/O
Write % Exception R/O \ Data | g,se1s
Bound1

Physical |
Address
_,é EN
B2y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Co py-o n-Write Physical

Memory
) This time, write operation is compatible with R/W
= child’s data segment is now modified Base2
Heap Base2+
Bound2
Parent Segment Table
Base Bound Access Base3
x =P Seg | Offset Stack
R/O
Base3+
P> Base1 R/O Bound3
R/O Base0
R/O
Code
Physical BaseO+
Address BoundO
+
Base1l
Child Segment Table
Base Bound Access Data
Basel+
x—| Seg | Offset R/O Bound
’ Basetl’
op P> Base1 R/W
Write |9 OK RO ,
R/O Data’ |gasert’s
Bound1

Physical
n Address

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Zero-On-Reference

ﬁ} How much physical memory is needed for the stack or heap?
= only what is currently in use

ﬁ} When program uses memory beyond end of stack

= segmentation fault into OS kernel

— kernel allocates some memory

Q how much?

= zeroes the memory
Q security: avoid accidentally leaking information
modify segment table
resume process

[

[

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Segmentation

_) Pros

= cah share code/data segments between processes
= cah protect code segment from being overwritten
= can transparently grow stack/heap as needed

= can detect if need to copy-on-write

_) Cons

—= complex memory management
Q need to find chunk of a particular size
= may heed to rearrange memory from time to time to make room
for new segment or growing segment
Q external fragmentation: wasted space between allocated
chunks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Paged Memory / Paging
ﬁ} Manage memory in fixed size units, called page frames

ﬁ> Finding a free page is easy (compared to segmentation)
= allocation bitmap: 0011111100000001100
Q 1 means allocated and 0 means unallocated
= each bit represents one physical page frame

ﬁ> Each process has its own page table for performing address
translation
= a page table is a kernel data structure
Q conceptually, a page table as an array of page table entries
& array index is a virtual page number
<& virtual page size = physical page size
— stored in physical memory (accessible via virtual addr as well)
— hardware registers
Q pointer to start of page table (i.e., contains the first physical

memory address of the page table) |
Q page table length 5434

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Page Translation (Logical View)

Physical
Memory
Frame 0
|Code0|Frame 1
VPage 0 Code —»| Data0
VPage 1 > Heap1
Data P>|Code1
| >|Heap0
| Data1
Heap
+ —»-|Heap?2
P>[Satck1
+ P>IStack0
VPage N-1 Stack
.
ﬁ} Contiguous virtual address does not .
necessary mean contiguous physical Frame -1
address (when crossing page boundary) NN
2y

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Page Translation (Implementation)

Copy Physical
Memory
Physical ®ddr Frame 0

—| Frame | Offset1 Frame 1
Processor
. ge Table >
L Virtual Adglr Frame Access
VPage1|Offset1
-
Virtual Addr
—P»|VPage2| Offset2 —
-
) Virtual page size =
physical page size e
= page offset in virtual °
dd _ Offset in Physical Addr
address = page —| Frame | Offset2

physical address ~ Frame M-1

Copy |

> Frame number = physical page number
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Page Translation (Implementation)

Copy —

— for x86 CPU, access contains:
PH 1 P bit: present/valid
— Fr; 0 R/W bit: 0 means R/O

Processor 3 U/S bit: user or kernel
.
_ ge Table I
L Virtual Adgr Frgme Access
VPage1|Offset1
-
Virtual Addr
—P»|VPage2| Offset2 —
-
) Virtual page size =
physical page size .
= page offset in virtual -
ddr - page offset in Physical Addr
d ?SS = pag —P» Frame | Offset2 Frame M-1
physical address 4

Copy

> Frame number = physical page number
Copyright © William C. Cheng

Example

) Suppose page size is 4 bytes
= where does virtual address 6 map to?
= where does virtual address 9 map to?

Process View

o

I OTMMmM|ODO W >

- O WO NOOhE, WODN =

-t -k
r X« -

Copyright © William C. Cheng

VPage 0

VPage 1

VPage 2

Page Table
Frame Access

4
3
1

Introduction to Operating Systems - CSCI 350

Physical Memory

0O NoOOohs, WN =0

I
- O

I W G
ar~r, WD

- ek -l
0 N O

19

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Introduction to Operating Systems - CSCI 350

Example

Physical Memory

) Suppose page size is 4 bytes 0
= where does virtual address 6 map to? 1 Frame 0
= where does virtual address 9 map to? 2
4|1
Process View Page Table 5|4
Frame 1
0lA Frame Access 6| K
11 B 4 7| L
VP
ol c age 0 3 :
3|D 1 9
al E 10 Frame 2
S| F VPage 1 1
g ‘H5 12(E
13| F
sl 14l 6 Frame 3
9 VPage 2 15| H
|1 16/ A
17|B
F 4
18l ¢ rame
19|D i @!,}_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Paging

ﬁ} With paging, what is saved/restored on a process context switch?
= pointer to page table, size of page table
= page table itself is in main memory

) What if page size is very small?
= page table will be large

_, What if page size is very big?
= Internal fragmentation: if we cannot use all of the space inside a
fixed size chunk

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Paging And Copy-On-Write

ﬁ} Can we share memory between processes?
= set entries in both page tables to point to same page frames
= heed a core map to track which processes are pointing to which
page frames
Q a core map is a data structure used to perform reverse lookup,
I.e., given a page frame, which processes are sharing that
page frame
& areference counting mechanism is use to know when to
free up page frame

_)> UNIX fork () with copy on write

on fork (), copy page table of parent into child process

mark all pages (in new and old page tables) as read-only

trap into kernel on write (in child or parent)

copy page

mark both as writable

resume execution (D

[

I N N R |

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fill On Demand

ﬁ} Can | start running a program before its code is in physical
memory?
= set all page table entries to invalid
= When a page is referenced for first time, if the page table entry
is invalid, will cause a page fault and trap into kernel
kernel brings page in from disk
resume execution
Q returning from page fault will be retried
= remaining pages can be transferred in the background while
program is running

[

[

ﬁ> This is also referred as demand paging or on-demand paging

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Sparse Address Spaces

ﬁ} Might want to have many separate dynamically created segments
= per-thread stacks
= memory-mapped files: when you map a file (or part of a file) into
your address space, you must create a new segment

_, What if virtual address space is large?
= 32-bits, 4KB pages = 500K page table entries (assuming that the

user portion of the address space is 2GB)
= 64-bits = 4 quadrillion page table entries

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-level Translation

_, How many page table entries are valid?
= for small programs, not many — array is not a good choice
— trees and hash tables are better for sparse data
= we will first look at tree data structures

) Tree of translation tables
= paged segmentation
= multi-level page tables
= multi-level paged segmentation

) Fixed-size page as lowest level unit of allocation

efficient for sparse addresses (compared to array-based paging)
efficient memory allocation (compared to segments)

efficient disk transfers (fixed size units)

efficient lookup with translation lookaside buffers (next section)
efficient reverse lookup (from physical to virtual, using core map)

page-granularity for protection and sharing @\

Copyright © William C. Cheng

[

0 00 0 [

