Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 11 - 7/8/2025)

) PA4is due at 11:45pm on Tuesday, 7/15/2025
= if you have code from current or a previous semester, do not
look at/copy/share any code from it
Q Iit’s best if you just get rid of it
= if you include files that’s not part of the original
"make pa4-submit’ command, the grader will delete them
= PAA4 is probably the most difficult assignment
Q it’s probably a good idea to start early
Q the last part (graph) may be time-consuming
<& unless you have found a tool that works, you might want to
leave that part until the very end so you don’t have to re-do

the graphs

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Housekeeping (Lecture 11 - 7/8/2025)

_) Grading guidelines is the ONLY way we will grade and we can only
grade on a standard 32-bit Ubuntu Linux 16.04 inside
VirtualBox/UTM or on AWS Free Tier
= although not recommended, you can do your development on a

different platform
Q you must test your code on a "standard” platform since it’s the
only platform the grader is allowed to grade on

ﬁ> If you make a submission, read and understand the ticket in the web
page and save the web page as PDF as a record of your submission
—= make sure to "Verify Your Ticket” and "Verify Your Submission"

Copyright © William C. Cheng

(6.5) Deadlock

Introduction to Operating Systems - CSCI 350

Transactions: Which Transaction To Abort?

ﬁ} If a bunch of threads are in a deadlock, which thread should you
abort its transaction?
= typically, you would abort the transaction of the youngest thread
Q to maximize the change that some threads will finish/commit

ﬁ> Wound-Wait:
= if a younger transaction needs a resource held by a older
transaction, just wait
= If an older transaction needs a resource held by a younger
transaction, abort the younger transaction and preempt the
resource held by the younger transaction

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Detecting Deadlock

_, Deadlock detection is difficult to implement
= oftentimes, systems would take a more conservative approach

to detect a possible deadlock instead
Q false positive is possible: a non-deadlocked thread is

incorrectly classified as deadlocked
Q e.g., in the old telephone network, if the connection setup

failed, it would abort call and ask the user to try again

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Resource Allocation Graph

ﬁ} If there are serveral resources and one thread can hold each
resource at a time (e.g., a microphone, a webcam, a mutex), we can
detect a deadlock by analyzing a simple resource allocation graph
= each thread and each resource is represented by a node
= there is a directed edge from a resource to a thread if the
resource is owned by the thread

— there is a directed edge from a thread to a resource if the thread
is waiting for the resource

= there is a deadlock if and only if there is a cycle in the resource
allocation graph

ﬁ> If there are multiple instances of some resources, then we
represent a resource with K interchangeable instances as a node
with K connection points
= there is a directed edge from a thread to a resource if the thread
iIs waiting for one unit of that resource

= a cycle in the resource allocation graph is a necessary but | @J

not a sufficient condition for deadlock 6
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Resource Allocation Graph 1

) Ex: if each resource can only be held by at most

one thread at a time (e.g., mutex)

owned waiting
by Thread A for
Lock 1 Lock 2
waiting owned
for b
Thread B y

thread A:
lockl.acquire();
lock2.acquire();

thread B:
lock2.acquire();
lockl.acquire();

= there is a cycle In this resource allocation graph, it may deadlock
Q i.e., a cycle in the resource allocation graph is a necessary but
not a sufficient condition for deadlock

Copyright © William C. Cheng

&

Introduction to Operating Systems - CSCI 350

Resource Allocation Graph

ﬁ} Ex: if there are multiple instances of some resources

Thread A
waiting owned
for by

Buffer .\m Thread B Lock

owned waiting
by \» for
Thread C

= there is a cycle in this resource allocation graph, but it may not
deadlock

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Resource Allocation Graph

ﬁ} Ex: if there are multiple instances of some resources

Thread A
waiting owned
v/for by
«_
Buffer owned”| Thread B Lock
owned

by

Thread C

waiting
for

= there is a cycle in this resource allocation graph, but it may not

deadlock

Q if thread B releases its buffer and thread A gets the buffer,
threads A and C may both complete their tasks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Resource Allocation Graph

ﬁ} Ex: if there are multiple instances of some resources

owhed

by

Thread A

ownhed

Buffer

Thread B

Lock

J/
?
ov:)r;ed \»

Thread C

waiting
for

= there is a cycle in this resource allocation graph, but it may not

deadlock

Q if thread B releases its buffer and thread A gets the buffer,
threads A and C may both complete their tasks

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Resource Allocation Graph

ﬁ} Ex: if there are multiple instances of some resources

Thread A Thread B Thread C
\.< \o/o/
o o
R1 R2

= who is blocked?
= is there a cycle?

= can this deadlock?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Resource Allocation Graph

ﬁ} Ex: if there are multiple instances of some resources

Thread A Thread B Thread C
\.< \o/o/
o o
R1 R2

= who is blocked?
QO thread B
= is there a cycle?

Q thread B —» R2 — thread C — R1 — thread B
= can this deadlock?

Q need to look at this very carefully to be sure

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

What Do Real OS Do?

_, Not much
= up to programmers to write code that doesn’t deadlock
—= some might do detection, but no recovery

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(6.6) Non-Blocking
Synchronization

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Non-Blocking Synchronization

ﬁ} Goal: data structures that can be read/modified without acquiring a
lock
= ho lock contention
= nho deadlock

ﬁ> General approach using atomic Compare-And-Swap (similar to the
atomic Test-And-Set machine instruction):
— create a private copy of a shared data structure
= modify the private copy
= swap old pointer with the next pointer using CAs ()
= restart if pointer has changed

ﬁ} This is tricky stuff and should be left to the experts!
= e.g., google this: "non-blocking algorithm FIFO queue” to see
some research papers

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Extra Slides

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Ch 7: Scheduling

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Main Points

ﬁ} Scheduling policy: what to do next when there are multiple threads
ready to run

ﬁ} Definitions for response time, throughput, predictability

) Uniprocessor policies
= FIFO, round robin, optimal
= multilevel feedback as approximation of optimal

_, Multiprocessor policies
= affinity scheduling, gang scheduling

ﬁ> Queueing theory
= cah you predict/improve a system’s response time?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Example

ﬁ} You manage a web site that suddenly become wildly popular, what
should you do?
= buy more hardware?
= implement a different scheduling policy?
= turn away some users and which ones (to make the rest of the

users happy)?

ﬁ} How much worse will performance get if the web site becomes
even more popular?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Definitions

ﬁ} Task/Job: a user request, e.g., mouse click, web request, shell
command, ...
= a thread can perform many tasks
= this is not a very precise definition

ﬁ> Service time: time to complete a task, assuming no waiting

ﬁ> Latency/Response time: time it takes for a job take to complete
(including waiting time)

ﬁ> Throughput: number of jobs that can be completed per unit of
time

ﬁ} Overhead: amount of extra work done by the scheduler to switch
jobs

ﬁ} Fairness: how equal is the performance received by different users?
— starvation: lack of progress for one job, due to resource given

to higher priority job

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Definitions

ﬁ} Predictability: how consistent is the performance over time?
= |low variance means more predictable

) Workload: set of jobs for system to perform

) Compute/CPU-bound job: jobs that only (or mostly) use the
processor

ﬁ} I/O-bound job: jobs that rarely use the processor and spend most of
its time waiting for I/O operations to complete

ﬁ> Work-conserving scheduler: never leaves the processor idle if there
is work to do
= for non-preemptive schedulers, work-conserving is not always
better

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Definitions

ﬁ} Preemptive scheduler: scheduler can preempt the processor and
give it to some other job
= preemption can happen due to a timer interrupt or the arrival of a
higher priority job

ﬁ> Scheduling algorithm:
= takes a workload as input
= decides which jobs to do first
= performance metric (throughput, latency) as output
= ohly preemptive, work-conserving schedulers to be considered

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(7.1) Uniprocessor
Scheduling

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

First-In-First-Out (FIFO)

) Also known as First-Come-First-Served (FCFS)
—= schedule jobs in the order they arrive and continue running them
until they give up the processor voluntarily (i.e., job iscomplete)
—= minimize scheduling overhead
— fair: every job waits its turn

_) Weakness:
= a long job can delay short jobs

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Shortest Job First (SJF)

ﬁ} Always do the job that has the shortest remaining amount of work
to do
= this is a preemptive scheduler since a newly arrived job would
preempt the current job if the new job’s service time is less than
the remaining service time of the current job
Q often called Shortest Remaining Time First (SRTF)

_) Weakness:
= unfair to long jobs, even starvation is possible if short jobs keep

arriving

ﬁ> Suppose we have five jobs arrive one right after another, but
the first one is much longer than the others
= Which job completes first (and 2nd) in FIFO?
= which job completes first (and 2nd) in SJF?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Comparing FIFO and SJF

ﬁ} Workload: one 768-hour job followed by 768 one-hour jobs
(assuming no more arrivals)

T1=1
_, FIFO: et B i

<+— Tp=168 —»

- >
Jo J; Jo J3 J;gg time (hour)

ﬁ> Throughput: number of jobs completed / elapsed time
A

Throughput
(Jobs/hour)

0.5

slightly
concave .
Time (hours)
|

|
| (AN
168 336 2% @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

nother Performance Metric: Average Response Tim
ﬁ} Jobs J; with service time T;for 0<i<n

ﬁ> Average Response Time (ART) for FIFO (assuming no new arrivals)
= J; started at time {;
i-1
= t;= 2. T; (for FIFO)
j=0
= RT;=1;+ T; (for non-preemptive schedulers)

n-1 n-1
= ART=2X RT;/n=2% (t+T;)/n
i=0 i=0
ﬁ} For our example (which is the worst-case for FIFO)
= ART = 252 hours (with a standard deviation of 48.79 hours)
o Var(X) = E(X?) - [E(X)]?, StdDev(X) = sqrt(Var(X))
Q large average and large variation (for this example)

ﬁ> In general, ART for FIFO is more difficult to compute
= heed to look at all possible ordering of jobs and the |
probability of getting each particular order . 2.?2;

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

SJF
—> SJF minimizes ART >
= proof by contradiction (CS 270): i
Q assuming that scheduler X 0
X

can create a schedule that
has a smaller ART than SJF

QO this means that the schedule
it creates is different from
the SJF schedule

Q find the first scheduling
decision where they do not
agree, i.e., SJF runs job i while X runs job jand T; > T;

0

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

SJF
Z> SJF minimizes ART >
= proof by contradiction (CS 270): i j
Q assuming that scheduler X 0
X

can create a schedule that
has a smaller ART than SJF
Q this means that the schedule
it creates is different from °+ + + f f + *
the SJF schedule
Q find the first scheduling
decision where theydonot 0
agree, i.e., SJF runs job i while X runs job jand T; > T;
Q in the schedule created by X, find job i and swap jobs i and j
and the resulting schedule has a smaller ART
<& contradiction! g

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Throughput
(Jobs/hour)

1

slightly
convex

| , Time (hours)
| | >
168 336

= ART = 85.99 hours (with a standard deviation of 52.06 hours)

ﬁ> Instantaneous throughputs can be different for different schedulers

= but throughput at time = 336 is identical for all
-)
work-conserving schedulers O\

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Throughput,
(Jobs/hour)

1

slightly
convex

| , Time (hours)
| | >
168 336

> What if short jobs keep arriving?
= starvation
Q is this an unacceptable scheduling policy (too unfair)?
& for lightly loaded web servers, may work nicely / @_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fairness

_, FIFO

= each job eventually gets processed
= that seems fair

) SJF/SRTF
= a long job might have to wait indefinitely

_, What's a good measure of fairness?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

_) Time-slicing
= @ = time quantum or time slice

Tg Ty T3 T, T4 Ty

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

_) Time-slicing
= @ = time quantum or time slice

Tg Ty T3 T, T4 Ty

remaining processing/service time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

_) Time-slicing
= @ = time quantum or time slice

Tg Ty T3 T, T4 Ty

_ Different values of g
= @ — 0: processor-sharing (idealized case)
Q not realistic

Q poor cache performance
—= g too large: some jobs appear to be not making progress

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Time Quantum / Time Slice

Round Robin (1 ms time slice)

task 1 rest of task 1
task 2
task 3
task 4
task 5

L

Round Robin (10 ms time slice) Time

task 1 rest of task 1
task 2
task 3
task 4
task 5

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time
ol RT-, ft

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6x T,
Q whynot6xT,-4xq I0
Q g — 0, we are doing I

calculus, not algebra

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time
= RT,=6xT,
e RT4 i ?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time
= RT,=6xT,
= RT,=5x(T,;-T,) +RT,

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6x T,
= RT,=5x(T,-T;) +RT,
ol RTO=?

Copyright © William C. Cheng

Ro

) How to calculate response time? remaining service time

= RT,=6xT,
= RT,=5x (T,-T;) +RT,
e RTO=4X(T0'T4)+RT4

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

und Robin

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6x T,
RT,=5x(T,-T,) + RT, I0
RT,=4x(Ty-T,) + RT, '
RT, = ?

0 0 [

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time
= RT,=6xT,
= RT,=5x(T,-T,) + RT, jo
= RT,=4x(Ty-T,;) +RT, i
= RT,=3x(T,-Ty) + RT, '

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6xT, ~
= RT,=5x(T,-T,) +RT, o
= RT,=4x (Ty-T,) +RT, it s
= RT,=3x(T,-T,) + RT, 2 |1
= RT;=? |

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6xT, -~
= RT,;=5x(T,-T,) +RT, o {1
= RT,=4x(T,-T,) +RT, i T~
= RT,=3x(T,-T)+RT, __, 22 |1
= RT;=2x (T;-T,) +RT, 30

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6x T, ~
= RT,=5x(T,-T,) +RT, o |
= RT,=4x (Ty-T,) +RT, i s
= RT,=3x(T,-T)+RT, __, 22 _| B
= RT;=2x(Ts-T,) + RT, 3l %

= RT,;=?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

) How to calculate response time? remaining service time

= RT,=6xT, ~>
= RT,=5x(T,-T,) +RT, o T
= RT,=4x(T,-T,) +RT, i T~
= RT,=3x(T,-T)+RT, __, 22 |1
= RT;=2x(Ts-T,) + RT, B b
= RT;=1x (T;-Ts) + RT; . e
5 |
—>{ T3 T,

ﬁ> Does it check out?
— RT3=T0+ T1+ T2+ T3+ T4+ T5

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin
_) ART?

= let quantum approach 0 (and pretend that it’s realistic)
Q if quantum is too small, scheduling overhead will be too large
169 jobs sharing the processor
run at 7/169th speed for first week
short jobs receive one hour of processor time in 769 hours
Q all short jobs finish at about the same time
long job completes in 336 hours
ART = 169.99 hours
Q recall that ART is 252 hours for FIFO in our example and
85.99 hours for SJF
= average deviation = 12.81 hours
Q recall that average deviation = 48.79 hours for FIFO in our
example and 52.06 hours for SJF

[

[

[

[

[

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

I:> Pro:

= appears to be "fair" (no starvation)

I:> Con:

= overhead for time slicing can be high
Q timer interrupt can be serviced in tens of microseconds
Q reloading caches may take longer, depending on the cache
hierarchy of the system
Q it’s typical to set time slice interval to be between 10 to 100
milliseconds
= [f all tasks start at the same time and they all have the same
service time, RR has the worst ART for this workload
Q time slicing added overhead without any benefit!
Q for this workload, FIFO and SJF have optimal ART
Q although for streaming video, it’s important to achieve a
predictable and stable rate of progress and RR is just right

for that (and time to complete download is unimportant) @J

3
50

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin

Round Robin (1 ms time slice)

task 1
task 2
task 3
task 4
task 5

Round Robin (10 ms time slice) Time

task 1
task 2
task 3
task 4
task 5

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Round Robin
I:> Con:

= |f the workload is a mixture of I/O bound and compute bound
tasks, RR may perform poorly
Q e.g., text editor is I/0 bound
& takes a few milliseconds to echo a keystroke to the screen
(faster than human perception)
<& if there are lots of compute bound tasks competing for the
processor and each of them take a 100ms full time slice, the
text editor can appear quite sluggish to the user

/0 bound
req l/O J L

CPU bound
CPU bound

b 4

/0 completes req l/O /0 completes

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Max-Min Fairness

) How do we balance a mixture of tasks?
= some |/O bound, need only a little CPU, some compute bound
and can use as much CPU as they are assigned

) Ex:if the government has $1,000,000 to give to 1,000 citizens, what’s
the fair way to distribute the money?
= is it fair to give everyone $1,000?
Q no, if someone needs less than $1,000, you are not allowed to
waste resource

) Please note that fairness is difficult to define
= RR seems fair, but the mixed worload of I/O bound and compute
bound tasks shows that I/0 bound tasks are treated "unfairly"

ﬁ} If we want to talk about fairness, we have to first define what
fairness means (or what kind of fairness are we trying to achieve)

e

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Max-Min Fairness

ﬁ} Max-Min Fairness: a fair service maximizes the allocation of the

requester requesting the smallest amount of resource

= Nho requester receives more than its request

= if any requester needs less than an equal share, allocate to
satisfy the smallest request first (i.e., maximize the minimum
allocation)
Q split the remaining resource using max-min recursively

= if all remaining tasks need at least equal share, split evenly

_, What's a resource?

= anything finite that’s shared
Q processing time
Q memory
Q network bandwidth
Q user, application, thread?!
Q etc.

= this is broadly refer to as resource allocation problems / @’_

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Max-Min Fairness Example

) Total capacity C divided among N jobs
= X;is the request of job i
— sort jobs based on x;
= initially, assign C/N to each job

I N
X4 Xo

0

= satisfy x,, redistribute remaining capacity evenly

L
—

(C-x1)/(N-1)

X3 00

X2

0
= recursion

ﬁ} This is basically "processor sharing” (i.e., RR with q — 0) |
= although fair, but has performance issues 5534

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Scheduling for Interactive Systems

ﬁ} In general, wants to treat interactive tasks differently from

background tasks
= don’t want an interactive user feel that the system is sluggish
= need some kind of priority-based scheduler

_ How do you know if a task is interactive or not?
= an application can be interactive sometimes (e.g., gathering
information from the user) and non-interactive some other time

ﬁ} Maybe we can use a task’s behavior at the scheduler and give
preferential treatment to I/O bound tasks (i.e., those who give up

the processor quickly)
= give it a time slice and see if it yield the processor voluntarily

Q if not, lower its priority

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-Level Feedback Queues (MFQ)
ﬁ} Goals:

responsiveness: run short tasks quickly, as in SJF
= Jow overhead: minimize the number of preemptions, as in FIFO,
and minimize the time spent making scheduling decisions
starvation freedom: all tasks should make progress, as in RR
background tasks: low priority tasks should not interfere with
user work
= fairness: assigh non-background processeses approximately
their max-min fair share of the processor

[

[

ﬁ} MFQ is not perfect at any of them, but a reasonable compromise in
most real-world cases
= used in Linux, Windows, and Mac OS X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-Level Feedback Queues (MFQ)

_, MFQ s an extension of RR
= instead of only a single queue, MFQ has multiple RR queues,
each with a different priority level and time quantum
task at a higher priority level preempt lower priority tasks
tasks at the same level are scheduled in RR fashion
higher priority levels have shorter time quanta than lower levels
a nhew task enters at the top priority level
every time the task uses up its time quantum, it drops a level

I R [R |

Priority Time Slice (ms) RR queues

1 (highest) 10 new task —» time slice
expiration
2 20 — time slice
expiration
3 40 —- time slice
expiration

4 80 — ! @!,}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Multi-Level Feedback Queues (MFQ)

) Starvation
= if 1/0 bound tasks keep arriving, a compute bound task can

starve
= aging: if a thread hasn’t run for a while, increase its priority

Q different OS does this differently

Priority Time Slice (ms) RR queues

1 (highest) 10 new task —» time slice
expiration
2 20 — time slice
expiration
3 40 —- time slice
expiration

4 80 — ! @!,}

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Uniprocessor Scheduling: Summary

) FIFO is simple and minimizes overhead

ﬁ> If tasks are variable in size, then FIFO can have very poor ART
) If tasks are equal in size, FIFO is optimal in terms of ART

ﬁ> Considering only the processor, SJF is optimal in terms of ART
ﬁ> SJF is pessimal in terms of variance in response time

ﬁ> If tasks are variable in size, Round Robin approximates SJF
ﬁ> If tasks are equal in size, Round Robin will have very poor ART

ﬁ> Tasks that intermix processor and I/O benefit from SJF and can do
poorly under Round Robin

ﬁ> Round Robin and max-min fairness both avoid starvation

_, By manipulating the assignment of tasks to priority queues,
an MFQ scheduler can achieve a balance between A @!,}_

responsiveness, low overhead, and fairness
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(7.2) Multiprocessor
Scheduling

X

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(7.3) Energey-Aware
Scheduling

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Battery

) Battery is an unusual resource

= when a thread uses up battery, the resource is gone and is
unavailable for all activities in the system

= battery is a resource that cannot be virtualized (unlike memory
or processor)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Energy vs. Performance Tradeoffs

ﬁ} Modern hardware systems can trade performance for power
consumption (i.e. energy)
= Increase performance (rate of instruction execution) by
consuming more power
= heterogeneous cores (some high performance high power cores
and some low performance low power cores)
= powering on or off cores and I/O devices

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Energy Policies & Scheduling

ﬁ} On battery powered devices (laptops and phones) user’s can often
select an energy policy
—= |ower performance and greater battery life
= better performance and lower battery life
= or a blend

) To achieve this blend the scheduler needs to be involved
= should | schedule this thread on the high performance, high
power core?
= would allowing threads from this program to get all the resources
for a few time slices allow some 1/O device to be powered down
temporarily?

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Relationship Between Response Time And
User-Perceived Value

_) The longer something takes,

g Ao
the less useful it is to the user limit to human
perception

> Human perception is unable
to tell the difference between
a few tens of milliseconds
—= adding a short delay (and
save some energy) will not
matter much for most tasks

user visible
delay

background
tasks

User-Perceived Value

_) Increased energy use often
provides dinimishing returns
in terms of the perception of . >
improved performance Response Time (Log Scale)
= e.g., quickly updating the display after a user interface

command is probably more important than transferring |
files quickly in the background 663

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Basic Approach

ﬁ} If low performance is below human perception:
= then optimize for energy user, i.e., lower performance and save
energy

ﬁ> If low performance is above human perception:
= then optimize for response time (so the user doesn’t notice any
slowdown)

_, Long running and background tasks
—= balance energy use and responsiveness depending on the
available battery resources (i.e. battery vs. plugged in)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

(7.4) Real-Time
Scheduling

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Real-Time Constraints

) Hard Real-Time vs. Soft Real-Time
— Hard Real-Time: missing a deadline results in failure (i.e. no
value for the computation) or catastrophe (i.e., people die)
= Soft Real-Time: performance/usefulness degrades if deadlines

missed
valuable
) Programs often have - result
deadlines and scheduler o
must do its job trying 2o
. -
to meet those deadlines o ®
o>
S
Q valueless
g result or
worse
-
* Response
deadline 1ime (Log
Scale)

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Real-Time Scheduling Strategies

ﬁ} Over provisioning
= ensure the hardware is more than needed to keep up with the
software workload
= ensure utilization (fraction of time system is busy) is never too
high

) Scheduling is almost always based on priority
= highest priority ready thread is chosen

ﬁ} A more abstract scheduling strategy is Earliest Deadline First (EDF)
= choose the next thread to run based on the earlier deadline (time
at which the job must finish)

ﬁ> Priority donation (also known as priority inheritance)
— solves priority inversion problem by having higher priority tasks
that need a resource held by a low priority task to donate its high
priority to the low priority task temporarily

Q priority donation doesn’t solve all priority inversion 3
Sy

problems
Copyright © William C. Cheng

