
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 11 - 7/8/2025)

if you have code from current or a previous semester, do not

look at/copy/share any code from it

it’s best if you just get rid of it

PA4 is due at 11:45pm on Tuesday, 7/15/2025

if you include files that’s not part of the original

"make pa4-submit" command, the grader will delete them

PA4 is probably the most difficult assignment

it’s probably a good idea to start early

the last part (graph) may be time-consuming

unless you have found a tool that works, you might want to

leave that part until the very end so you don’t have to re-do

the graphs

you must test your code on a "standard" platform since it’s the

only platform the grader is allowed to grade on

although not recommended, you can do your development on a

different platform

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Housekeeping (Lecture 11 - 7/8/2025)

Grading guidelines is the ONLY way we will grade and we can only

grade on a standard 32-bit Ubuntu Linux 16.04 inside

VirtualBox/UTM or on AWS Free Tier

make sure to "Verify Your Ticket" and "Verify Your Submission"

If you make a submission, read and understand the ticket in the web

page and save the web page as PDF as a record of your submission

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(6.5) Deadlock

(cont...)

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Transactions: Which Transaction To Abort?

If a bunch of threads are in a deadlock, which thread should you

abort its transaction?

typically, you would abort the transaction of the youngest thread

to maximize the change that some threads will finish/commit

Wound-Wait:

if a younger transaction needs a resource held by a older

transaction, just wait

if an older transaction needs a resource held by a younger

transaction, abort the younger transaction and preempt the

resource held by the younger transaction

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Detecting Deadlock

oftentimes, systems would take a more conservative approach

to detect a possible deadlock instead

false positive is possible: a non-deadlocked thread is

incorrectly classified as deadlocked

Deadlock detection is difficult to implement

e.g., in the old telephone network, if the connection setup

failed, it would abort call and ask the user to try again

there is a directed edge from a resource to a thread if the

resource is owned by the thread

there is a directed edge from a thread to a resource if the thread

is waiting for one unit of that resource

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

each thread and each resource is represented by a node

If there are serveral resources and one thread can hold each

resource at a time (e.g., a microphone, a webcam, a mutex), we can

detect a deadlock by analyzing a simple resource allocation graph

there is a directed edge from a thread to a resource if the thread

is waiting for the resource

there is a deadlock if and only if there is a cycle in the resource

allocation graph

If there are multiple instances of some resources, then we

represent a resource with K interchangeable instances as a node

with K connection points

a cycle in the resource allocation graph is a necessary but

not a sufficient condition for deadlock

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

Ex: if each resource can only be held by at most

one thread at a time (e.g., mutex)
thread A:

 lock1.acquire();

 lock2.acquire();

 ...

thread B:

 lock2.acquire();

 lock1.acquire();

 ...

Thread A

Thread B

Lock 1 Lock 2

owned
by

owned
by

waiting
for

waiting
for

there is a cycle in this resource allocation graph, it may deadlock

i.e., a cycle in the resource allocation graph is a necessary but

not a sufficient condition for deadlock

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

Ex: if there are multiple instances of some resources

Thread A

Thread C

Buffer Lock

owned
by

owned
by

waiting
for

waiting
for

Thread Bowned
by

there is a cycle in this resource allocation graph, but it may not

deadlock

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

Ex: if there are multiple instances of some resources

Thread A

Thread C

Buffer Lock

owned
by

owned
by

waiting
for

waiting
for

Thread Bowned
by

there is a cycle in this resource allocation graph, but it may not

deadlock

if thread B releases its buffer and thread A gets the buffer,

threads A and C may both complete their tasks

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

Ex: if there are multiple instances of some resources

Thread A

Thread C

Buffer Lock

owned
by

owned
by

waiting
for

Thread B

owned
by

there is a cycle in this resource allocation graph, but it may not

deadlock

if thread B releases its buffer and thread A gets the buffer,

threads A and C may both complete their tasks

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

Ex: if there are multiple instances of some resources

Thread A Thread B Thread C

who is blocked?

is there a cycle?

R1 R2

can this deadlock?

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Resource Allocation Graph

Ex: if there are multiple instances of some resources

Thread A Thread B Thread C

who is blocked?

thread B

is there a cycle?

thread B → R2 → thread C → R1 → thread B

R1 R2

can this deadlock?

need to look at this very carefully to be sure

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Do Real OS Do?

up to programmers to write code that doesn’t deadlock

Not much

some might do detection, but no recovery

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(6.6) Non-Blocking

Synchronization

General approach using atomic Compare-And-Swap (similar to the

atomic Test-And-Set machine instruction):

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Non-Blocking Synchronization

no lock contention

Goal: data structures that can be read/modified without acquiring a

lock

no deadlock

modify the private copy

swap old pointer with the next pointer using CAS()

create a private copy of a shared data structure

restart if pointer has changed

This is tricky stuff and should be left to the experts!

e.g., google this: "non-blocking algorithm FIFO queue" to see

some research papers

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Slides

Ch 7: Scheduling

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Definitions for response time, throughput, predictability

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Main Points

Scheduling policy: what to do next when there are multiple threads

ready to run

FIFO, round robin, optimal

Uniprocessor policies

affinity scheduling, gang scheduling

Multiprocessor policies

multilevel feedback as approximation of optimal

can you predict/improve a system’s response time?

Queueing theory

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Example

buy more hardware?

You manage a web site that suddenly become wildly popular, what

should you do?

implement a different scheduling policy?

turn away some users and which ones (to make the rest of the

users happy)?

How much worse will performance get if the web site becomes

even more popular?

Overhead: amount of extra work done by the scheduler to switch

jobs

Throughput: number of jobs that can be completed per unit of

time

Latency/Response time: time it takes for a job take to complete

(including waiting time)

Task/Job: a user request, e.g., mouse click, web request, shell

command, ...

Fairness: how equal is the performance received by different users?

starvation: lack of progress for one job, due to resource given

to higher priority job

Service time: time to complete a task, assuming no waiting

a thread can perform many tasks

this is not a very precise definition

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Definitions

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Definitions

Work-conserving scheduler: never leaves the processor idle if there

is work to do

Compute/CPU-bound job: jobs that only (or mostly) use the

processor

Workload: set of jobs for system to perform

low variance means more predictable

Predictability: how consistent is the performance over time?

I/O-bound job: jobs that rarely use the processor and spend most of

its time waiting for I/O operations to complete

for non-preemptive schedulers, work-conserving is not always

better

Preemptive scheduler: scheduler can preempt the processor and

give it to some other job

takes a workload as input

Scheduling algorithm:

decides which jobs to do first

performance metric (throughput, latency) as output

only preemptive, work-conserving schedulers to be considered

preemption can happen due to a timer interrupt or the arrival of a

higher priority job

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Definitions

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.1) Uniprocessor

Scheduling

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

First-In-First-Out (FIFO)

Also known as First-Come-First-Served (FCFS)

minimize scheduling overhead

fair: every job waits its turn

a long job can delay short jobs

Weakness:

schedule jobs in the order they arrive and continue running them

until they give up the processor voluntarily (i.e., job iscomplete)

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Shortest Job First (SJF)

this is a preemptive scheduler since a newly arrived job would

preempt the current job if the new job’s service time is less than

the remaining service time of the current job

Always do the job that has the shortest remaining amount of work

to do

unfair to long jobs, even starvation is possible if short jobs keep

arriving

Weakness:

often called Shortest Remaining Time First (SRTF)

which job completes first (and 2nd) in FIFO?

Suppose we have five jobs arrive one right after another, but

the first one is much longer than the others

which job completes first (and 2nd) in SJF?

Workload: one 168-hour job followed by 168 one-hour jobs

(assuming no more arrivals)

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Comparing FIFO and SJF

Throughput

(Jobs/hour)

0.5

168 336

slightly

concave

FIFO:

 T1=1

 T0=168

J0 J1 J2 J3 J168
time (hour)

Throughput: number of jobs completed / elapsed time

Time (hours)

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Another Performance Metric: Average Response Time

Jobs Ji with service time Ti for 0 ≤ i < n

Average Response Time (ART) for FIFO (assuming no new arrivals)

Ji started at time ti

ti = Σ
i-1

j=0
 Tj (for FIFO)

For our example (which is the worst-case for FIFO)

ART = 252 hours (with a standard deviation of 48.79 hours)

ART = Σ
n-1

i=0
 RTi / n = Σ

n-1

i=0
 (ti + Ti) / n

large average and large variation (for this example)

In general, ART for FIFO is more difficult to compute

need to look at all possible ordering of jobs and the

probability of getting each particular order

RTi = ti + Ti (for non-preemptive schedulers)

Var(X) = E(X
 2

) - [E(X)]
 2

, StdDev(X) = sqrt(Var(X))

this means that the schedule

it creates is different from

the SJF schedule

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

SJF

SJF minimizes ART

proof by contradiction (CS 270):

assuming that scheduler X

can create a schedule that

has a smaller ART than SJF j

SJF

i

X
0

0

find the first scheduling

decision where they do not

agree, i.e., SJF runs job i while X runs job j and Tj > Ti

proof by contradiction (CS 270):

in the schedule created by X, find job i and swap jobs i and j

and the resulting schedule has a smaller ART

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

SJF

SJF minimizes ART

assuming that scheduler X

can create a schedule that

has a smaller ART than SJF

this means that the schedule

it creates is different from

the SJF schedule

find the first scheduling

decision where they do not

contradiction! ¤

j i

ji

SJF

i j

X
0

0

0

agree, i.e., SJF runs job i while X runs job j and Tj > Ti

0.5

1

168 336

ART = 85.99 hours (with a standard deviation of 52.06 hours)

Throughput

(Jobs/hour)

Time (hours)

Instantaneous throughputs can be different for different schedulers

but throughput at time = 336 is identical for all

work-conserving schedulers

slightly

convex

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

SJF

What if short jobs keep arriving?

starvation

is this an unacceptable scheduling policy (too unfair)?

0.5

1

168 336

Throughput

(Jobs/hour)

Time (hours)

slightly

convex

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

SJF

for lightly loaded web servers, may work nicely

each job eventually gets processed

FIFO

a long job might have to wait indefinitely

SJF/SRTF

What’s a good measure of fairness?

that seems fair

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Fairness

Time-slicing

q = time quantum or time slice

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

T0T2T3T4T5 T1

T1

q = time quantum or time slice

Time-slicing

CPU

remaining processing/service time

T0

T2

T3

T4

T5

T0T2T3T4T5 T1

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

q = time quantum or time slice

Time-slicing

T0T2T3T4T5 T1

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

Different values of q

q → 0: processor-sharing (idealized case)

q too large: some jobs appear to be not making progress

not realistic

poor cache performance

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Time Quantum / Time Slice

task 1

Round Robin (1 ms time slice)

task 2

task 3

task 4

task 5

rest of task 1

task 1

Round Robin (10 ms time slice)

task 2

task 3

task 4

task 5

rest of task 1

Time

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

CPU

remaining service timeHow to calculate response time?

j0

j1

j2

j3

j4

j5

RT1 =
T0

T2

T3

T4

T5

T1

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

why not 6 × T1 - 4 × q

q → 0, we are doing

calculus, not algebra

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = ?

T4 - T1

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T4 - T1

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T0 - T4

RT0 = ?

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T0 - T4

RT0 = 4 × (T0 - T4) + RT4

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T2 - T0

RT0 = 4 × (T0 - T4) + RT4

RT2 = ?

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T2 - T0

RT0 = 4 × (T0 - T4) + RT4

RT2 = 3 × (T2 - T0) + RT0

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T5 - T2

RT0 = 4 × (T0 - T4) + RT4

RT2 = 3 × (T2 - T0) + RT0

RT5 = ?

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T5 - T2

RT0 = 4 × (T0 - T4) + RT4

RT2 = 3 × (T2 - T0) + RT0

RT5 = 2 × (T5 - T2) + RT2

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T3 - T5

RT0 = 4 × (T0 - T4) + RT4

RT2 = 3 × (T2 - T0) + RT0

RT5 = 2 × (T5 - T2) + RT2

RT3 = ?

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

How to calculate response time?

RT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

RT4 = 5 × (T4 - T1) + RT1

T3 - T5

RT0 = 4 × (T0 - T4) + RT4

RT2 = 3 × (T2 - T0) + RT0

RT5 = 2 × (T5 - T2) + RT2

RT3 = 1 × (T3 - T5) + RT5

Does it check out?

RT3 = T0 + T1 + T2 + T3 + T4 + T5

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

let quantum approach 0 (and pretend that it’s realistic)

ART?

169 jobs sharing the processor

run at 1/169th speed for first week

short jobs receive one hour of processor time in 169 hours

long job completes in 336 hours

ART = 169.99 hours

average deviation = 12.81 hours

all short jobs finish at about the same time

recall that ART is 252 hours for FIFO in our example and

85.99 hours for SJF

recall that average deviation = 48.79 hours for FIFO in our

example and 52.06 hours for SJF

if quantum is too small, scheduling overhead will be too large

if all tasks start at the same time and they all have the same

service time, RR has the worst ART for this workload

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

appears to be "fair" (no starvation)

Pro:

overhead for time slicing can be high

Con:

timer interrupt can be serviced in tens of microseconds

reloading caches may take longer, depending on the cache

hierarchy of the system

it’s typical to set time slice interval to be between 10 to 100

milliseconds

time slicing added overhead without any benefit!

for this workload, FIFO and SJF have optimal ART

although for streaming video, it’s important to achieve a

predictable and stable rate of progress and RR is just right

for that (and time to complete download is unimportant)

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

task 1

Round Robin (1 ms time slice)

task 2

task 3

task 4

task 5

task 1

Round Robin (10 ms time slice)

task 2

task 3

task 4

task 5

Time

Time

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Round Robin

if the workload is a mixture of I/O bound and compute bound

tasks, RR may perform poorly

Con:

e.g., text editor is I/O bound

takes a few milliseconds to echo a keystroke to the screen

(faster than human perception)

if there are lots of compute bound tasks competing for the

processor and each of them take a 100ms full time slice, the

text editor can appear quite sluggish to the user

I/O bound

req I/O

CPU bound

CPU bound

I/O completes req I/O I/O completes

is it fair to give everyone $1,000?

Ex: if the government has $1,000,000 to give to 1,000 citizens, what’s

the fair way to distribute the money?

no, if someone needs less than $1,000, you are not allowed to

waste resource

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Max-Min Fairness

some I/O bound, need only a little CPU, some compute bound

and can use as much CPU as they are assigned

How do we balance a mixture of tasks?

RR seems fair, but the mixed worload of I/O bound and compute

bound tasks shows that I/O bound tasks are treated "unfairly"

Please note that fairness is difficult to define

If we want to talk about fairness, we have to first define what

fairness means (or what kind of fairness are we trying to achieve)

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Max-Min Fairness

Max-Min Fairness: a fair service maximizes the allocation of the

requester requesting the smallest amount of resource

no requester receives more than its request

if any requester needs less than an equal share, allocate to

satisfy the smallest request first (i.e., maximize the minimum

allocation)

split the remaining resource using max-min recursively

if all remaining tasks need at least equal share, split evenly

What’s a resource?

anything finite that’s shared

processing time

memory

network bandwidth

user, application, thread?!

this is broadly refer to as resource allocation problems

etc.

xi is the request of job i

Total capacity C divided among N jobs

sort jobs based on xi

initially, assign C/N to each job

x1 x2 x3 xN0

C/N

x2 x3 xN0

(C-x1)/(N-1)

satisfy x1, redistribute remaining capacity evenly

recursion

This is basically "processor sharing" (i.e., RR with q → 0)
0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Max-Min Fairness Example

although fair, but has performance issues

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Scheduling for Interactive Systems

In general, wants to treat interactive tasks differently from

background tasks

don’t want an interactive user feel that the system is sluggish

need some kind of priority-based scheduler

an application can be interactive sometimes (e.g., gathering

information from the user) and non-interactive some other time

How do you know if a task is interactive or not?

Maybe we can use a task’s behavior at the scheduler and give

preferential treatment to I/O bound tasks (i.e., those who give up

the processor quickly)

give it a time slice and see if it yield the processor voluntarily

if not, lower its priority

MFQ is not perfect at any of them, but a reasonable compromise in

most real-world cases

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-Level Feedback Queues (MFQ)

responsiveness: run short tasks quickly, as in SJF

Goals:

low overhead: minimize the number of preemptions, as in FIFO,

and minimize the time spent making scheduling decisions

starvation freedom: all tasks should make progress, as in RR

background tasks: low priority tasks should not interfere with

user work

fairness: assign non-background processeses approximately

their max-min fair share of the processor

used in Linux, Windows, and Mac OS X

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-Level Feedback Queues (MFQ)

MFQ is an extension of RR

instead of only a single queue, MFQ has multiple RR queues,

each with a different priority level and time quantum

task at a higher priority level preempt lower priority tasks

tasks at the same level are scheduled in RR fashion

higher priority levels have shorter time quanta than lower levels

a new task enters at the top priority level

every time the task uses up its time quantum, it drops a level

RR queues

new task time slice
expiration

time slice
expiration

time slice
expiration

Priority Time Slice (ms)

1 (highest) 10

2 20

3 40

4 80

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Multi-Level Feedback Queues (MFQ)

Starvation

if I/O bound tasks keep arriving, a compute bound task can

starve

aging: if a thread hasn’t run for a while, increase its priority

RR queues

new task time slice
expiration

time slice
expiration

time slice
expiration

Priority Time Slice (ms)

1 (highest) 10

2 20

3 40

4 80

different OS does this differently

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Uniprocessor Scheduling: Summary

FIFO is simple and minimizes overhead

If tasks are variable in size, then FIFO can have very poor ART

If tasks are equal in size, FIFO is optimal in terms of ART

Considering only the processor, SJF is optimal in terms of ART

SJF is pessimal in terms of variance in response time

If tasks are variable in size, Round Robin approximates SJF

If tasks are equal in size, Round Robin will have very poor ART

Tasks that intermix processor and I/O benefit from SJF and can do

poorly under Round Robin

Round Robin and max-min fairness both avoid starvation

By manipulating the assignment of tasks to priority queues,

an MFQ scheduler can achieve a balance between

responsiveness, low overhead, and fairness

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.2) Multiprocessor

Scheduling

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.3) Energey-Aware

Scheduling

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Battery

Battery is an unusual resource

when a thread uses up battery, the resource is gone and is

unavailable for all activities in the system

battery is a resource that cannot be virtualized (unlike memory

or processor)

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Energy vs. Performance Tradeoffs

increase performance (rate of instruction execution) by

consuming more power

Modern hardware systems can trade performance for power

consumption (i.e. energy)

heterogeneous cores (some high performance high power cores

and some low performance low power cores)

powering on or off cores and I/O devices

On battery powered devices (laptops and phones) user’s can often

select an energy policy

0123

65

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Energy Policies & Scheduling

lower performance and greater battery life

better performance and lower battery life

or a blend

To achieve this blend the scheduler needs to be involved

should I schedule this thread on the high performance, high

power core?

would allowing threads from this program to get all the resources

for a few time slices allow some I/O device to be powered down

temporarily?

The longer something takes,

the less useful it is to the user

Increased energy use often

provides dinimishing returns

in terms of the perception of

improved performance

0123

66

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Relationship Between Response Time And
User-Perceived Value

e.g., quickly updating the display after a user interface

command is probably more important than transferring

files quickly in the background

Response Time (Log Scale)

U
s
e
r-

P
e
rc

e
iv

e
d

 V
a
lu

e

limit to human
perception

user visible
delay

background
tasks

Human perception is unable

to tell the difference between

a few tens of milliseconds

adding a short delay (and

save some energy) will not

matter much for most tasks

0123

67

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Basic Approach

then optimize for energy user, i.e., lower performance and save

energy

If low performance is below human perception:

then optimize for response time (so the user doesn’t notice any

slowdown)

If low performance is above human perception:

balance energy use and responsiveness depending on the

available battery resources (i.e. battery vs. plugged in)

Long running and background tasks

0123

68

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

(7.4) Real-Time

Scheduling

0123

69

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Real-Time Constraints

Hard Real-Time: missing a deadline results in failure (i.e. no

value for the computation) or catastrophe (i.e., people die)

Hard Real-Time vs. Soft Real-Time

Soft Real-Time: performance/usefulness degrades if deadlines

missed

Programs often have

deadlines and scheduler

must do its job trying

to meet those deadlines

Response
Time (Log
Scale)

U
s
e
r-

p
e
rc

e
iv

e
d

V

a
lu

e

valuable
result

valueless
result or
worse

deadline

0123

70

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Real-Time Scheduling Strategies

ensure the hardware is more than needed to keep up with the

software workload

Over provisioning

ensure utilization (fraction of time system is busy) is never too

high

highest priority ready thread is chosen

Scheduling is almost always based on priority

choose the next thread to run based on the earlier deadline (time

at which the job must finish)

A more abstract scheduling strategy is Earliest Deadline First (EDF)

solves priority inversion problem by having higher priority tasks

that need a resource held by a low priority task to donate its high

priority to the low priority task temporarily

Priority donation (also known as priority inheritance)

priority donation doesn’t solve all priority inversion

problems

