
0123

1

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

CS 350

Introduction to

Operating Systems

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

2

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

About This Class

there is a CS 402 class on OS, but that’s for grad students

This is a junior/senior level undergrad class covering the

fundamental concepts of operating systems

this is a foundation class and not a "tech class"

it is not about the latest products and functionalities

You will also learn to write OS kernel code

this course is meant to provide background so you can

understand the designs, algorithms, and techniques used in

current operating system products and functionalities

undergrad students must take CS 350 for OS credit

different textbooks, different programming assignments, and

different approaches to programming assignments,

lots more code to write in CS 402 programming assignments

0123

3

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Today’s Topics

Administrative Stuff

Review Course Organization

please read all the administrative information and lecture slides

Please pay special attention to today’s lecture

I don’t want you to get a zero in some assignments because you

are not aware of how serious grading rules must be taken (often

time, literally)

I am a stickler to rules, especially written rules

the grading rules are setup to keep things simple and keep

things fair

0123

4

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Importance of "Written Words"

We communicate (here and in the real world) using "words"

what would we do if you ask us to grade your submission using

a different procedure?

If it’s writtent that X is the only grading procedure and that we must

follow the grading procedure

we won’t, because we take written words very seriously

spoken words may be unreliable

no matter how hard I try, I mis-spoke sometimes

"written words" are different

I can’t slow down much because there is too much to cover

you need to take written words seriously

especially when it comes to rules written in words

if we don’t take them seriously, why write them down?!

things that are not written down can get messy

Words on lecture slides are important even if I skip them

(because they are written words)

0123

5

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

The Importance of "Written Words"

you need to learn to choose your words carefully

When it comes to exams, we can only grade based on what you

wrote on the exam paper (and not what’s in your mind)

Please pay attention to all the written words anywhere in the class

web site, lecture slides, posting to class Piazza by me

setup your email filter to not miss messages from

<bill.cheng@usc.edu>

0123

6

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Fairness

other than the exceptions that are setup at the beginning of

the semester (mostly for students with university-approved

accommodations)

I am required to give you a grade

Without fairness, grades have little meaning

the instructor must treat all students equally and cannot

give special treatment to any particular student

therefore, please do not ask special favors from the

instructor because of your circumstances (except for ones

that are explicitly allowed by the university)

this may seem unfair to you because you believe that your

circumstances are special (understandably, everyone does)

bottom line, the rule the instructor must follow is that whatever

he offers you, he must offer to the entire class

we definitely will not grade based on effort (i.e., there will be

no partial credit for just "effort")

you get partial credit for passing tests

0123

7

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

I Must Stick To All My Written Rules

it’s not a power trip for me

Some students don’t understand why I’m so strict with my rules

I’m responsible of treating all students fairly

If I apply one rule for one student and don’t apply the same rule for

another student, that’s totally unfair

The only way I know to be fair to all is to stick to all my written rules

therefore, I will not bend a rule for you

When you ask me to bend a written rule for you, you are asking me

to be unfair to other students

I am bound by my own rules

rules take away power from me

0123

8

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Structure & Teaching Staff

Instructor: Bill Cheng <bill.cheng@usc.edu>

email policy: 24 hour turn-around

office hours: on Zoom, Tu/Th 9pm-10pm or by appointments

these Zoom meetings will not be recorded

this is my promise to you (but applies only to private emails)!

maximum meeting time for a student will be 15 minutes

individual meeting in a break-out Zoom room where you

can share your screen if you’d like

everyone else wait in the main room, first-come-first-served

(you should raise hand immediately so that Zoom can put

you in a queue)

if your questions can be handled over email, it’s probably

best to send me email, or post to Piazza

if there is a lot of students waiting, you may not end up

with a meeting with me

students in other classes I teach may also come to my

office hours

0123

9

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Appointments

I would grant appointments with me only under very special

circumstances and only for personal/private administrative matters

if you want to talk to me about course materials or programming

assignments, please come to office hours, send me email, or

post in Piazza

using appointments to get extra help on assignments would

be unfair to other students (unless I accept appointments

whenever I’m asked, and that’s usually not feasible)

if such matters can be handled in a break-out room on Zoom

during office hours (which is a private space), that would be

preferred

0123

10

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Office Hours

same goes for the TA’s office hours

Please understand that office hours are for me to help you, not to

"tutor" you

please understand that we are not your paid tutors

Viterbi have tutoring services (may not be available for CS 350,

but you can make a request)

if you are missing background on something, please ask me

and I can point you to the right places to get information

you are expected to read Linux "man pages" and online

documentation to learn how to use new commands and

functions

0123

11

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Structure & Teaching Staff

TA can help you with learning to use the debugger

email: 24 hour turn-around

a TA’s main job is to help you with the course materials and

programming assignments

we have 6 TAs this summer

TAs:

TA cannot do work for you (such as find bugs in your code,

write code for you to use, etc.)

TA cannot tell you what code to write

TA cannot look over your code or comment on your code

it’s not the TA’s job to "tutor" you

You can go to any TA for help with course materials and

programming assignments

their office hours will be posted soon

0123

12

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Structure & Teaching Staff

please don’t contact the TA to ask, "Here’s my assignment. How

many points will I get""

Graders and CPs: none this summer since we have so many TAs

the TAs will grade programming assignments

please just follow the grading guidelines and pretend that you

are a grader (because that’s what the TA must do to grade)

0123

13

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Office Hours

finding bugs is your job and it’s an important that you acquire

such a skill

Office hours are for answering questions

they are not intended for finding bugs in your code

especially since each student can only have 15 minutes

Please understand that we don’t know where your bugs are

some bugs are so difficult to find, even for professionals

therefore, please do not expect that we can find your bugs

Some students think that we are holding out on them, that we know

where the bugs are and we are just not telling them

that may be the case when the bugs are trivial and we want you

to learn to spot the bugs

often times, we just don’t know where your bugs are (there

are just too many possibilities)

if you need debugging help, we can only give you suggestions

and tell you what gdb commands to try

0123

14

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Office Hours On Zoom

If no one comes to an office hour on Zoom, we may walk away from

Zoom temporarily (but we will not be far)

call out our name or send us email to ask us to come back to Zoom

if you don’t see a note on the screen, it’s most likely because we

are in a break-out room and we may not know that you are

waiting (you can send us an email in case there is an operator

error)

we will put a note on the screen to say that we are away

momentarily

If an office hour is moved or canceled, I will add a news item in the

News section of the class home page

if an office hour Zoom meeting is not active, you should check

the class home page to see if it has been moved or canceled

also, send email

0123

15

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Resources

Class web page: http://merlot.usc.edu/cs350-m25

everything about this class is there

get familiar with it

anything related to grading, you are required to know

if you are not used to reading a lot of stuff, you should start

reading a lot of stuff in this class

it’s important to learn how to read documents and interpret

them correctly

lectures and assignments are password protected

0123

16

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Resources

If you see inconsistencies, especially regarding any type of "rules"

between what’s on the class web page, what’s on a set of lecture

slides that has been covered in class, or what I said

but you should ask me which is correct as soon as possible

please understand that I do mis-speak often enough (and my

English is not perfect)

it’s more important that written words are consistent

I will address the inconsistency and make changes so that

things can be consistent again

usually, the lecture slides are correct

0123

17

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Lectures

The lecture slides will mainly follow the textbook

some would say that this is boring

Why not just read the textbook and not come to lectures?

it’s important that you understand the lecture slides well enough

so you can give correct answers for trickier exam questions

you can use the lecture slides as a study guide

our textbook is used by many CS departments in the US and it’s

important to go over the materials there in enough detail so you

don’t miss things that you are supposed to know

there’s a lot of details in the slides

you should also understand the corresponding material in

the textbook, when applicable

most exam questions will be based on lectures and lecture slides

exams are about your knowledge of this class

some stuff in lectures are not in the textbook

exams are not about your general knowledge of OS

0123

18

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Discussion Forum (Piazza)

instructor and TAs will also post answers to questions here

if appropriate for whole class

first offense (in the entire semester) gets a warning

(unless it’s a lot more than the threadhold)

posting code is not allowed (short code segments to illustrate

ideas are allowed; short means < 3 lines and < 3 function calls)

Piazza Forum

student-to-student discussions about labs, programming

assignments, and course material

exchanging ideas are allowed

2nd offense, you will lose 50% of the corresponding

assignment points and lose posting privileges

You must be a member of the class Piazza Forum

all important announcements will be posted to this group

I will add you to the Piazza Forum after Lecture 1

0123

19

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Grading

Programming

Midterm

Final

30%

35%

35%

5 kernel programming assignments

in class, Thu, 6/26/2025 (firm)

in class, Tue, 8/5/2025 (firm)

0123

20

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Grading

turn in PAs more than 48 hours before deadline

Additional extra credit

No individual extra credit (due to my fairness policy)

try your best from the beginning!

extra credit are just "extra"

you keep what’s over 100%

Final letter grade assigned by the instructor

1)

D’s may be given, F’s if necessary

Two methods (assuming that no one games the system)

on a curve

2) fixed scale

your class letter grade will be the higher of the two

a grade of incomplete is only possible for documented illness or

documented family emergency (according to USC policy)

Programming assigments graded by grader

pretty much the only way you would get an F in the class is if

you cheat

Exams graded by the instructor

please understand that it’s not possible for me to get you a

grade of incomplete because you need more time to improve

your grade

0123

21

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Grading

0123

22

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Grading

Curve (assuming that no one games the system)

compute weighted sum and plot on a curve

Avg

StdStd

0123

23

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Grading

Avg

StdStd

AA-B+BB-C+CC-D+DD-F

Curve (assuming that no one games the system)

compute weighted sum and plot on a curve

loose guideline depicted below:

0123

24

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Grading

Fixed scale

Percentage Letter Grade

94% or higher A

88-94% A-

82-88% B+

76-82% B

70-76% B-

64-70% C+

58-64% C

52-58% C-

below 34% F

46-52% D+

40-46% D

34-40% D-

every 6% is a "grade step"

0123

25

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Academic Integrity Policy

for programming assignments, you must not look at/copy/share

code fragments from other students or from previous semesters

The USC Student Conduct Code prohibits plagiarism

Lots of C and OS code on the Internet

you may use them if they are general purpose code (i.e., not

written for CS 350 programming assignments)

if you use AI to generate code for our assignments, it’s

considered cheating since the generated code is not general

purpose code

0123

26

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Academic Integrity Policy

it’s a good habit to cite code you did not write yourself to give

credit to your source

must cite the code inline

no good to give citation in your README file

/* begin code from [URL] */
[code you copied from above URL]
/* end code from [URL] */

What if you end up with the same code fragment as another student

because you copy the code fragment from the same place online

(assuming that the code is not AI generated)?

0123

27

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Academic Integrity Policy

do not write code together

"sharing" even a single line of code is considered cheating

but be very careful when it’s time to write code

You are encouraged to work with other students

"work with" does not mean "copy each other’s work"

"work with" means discussing and solving problems together

this should happen at a high level

If you cannot work together at a high level

you are advised not work together with other students

must write code completely on your own

You can use any code given to you as part of this class

no need to cite such code

For more details, please see the Academic Integrity Policy

section on the Course Description web page

0123

28

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Displaying Your Code in Public Repositories

github.com is considered a public repository (no matter what

they claim)

if you don’t pay, your code becomes public

therefore, you must not use github.com
bitbucket.org is free for students and you can setup

private repositories

if you post it to a private repository, you need to verify that it’s

truly private

You must not post your code to a public code repository

Since our programming assignments will be reused, you must not

knowingly make your code public (not even pseudo-code)

ask your friend or other students to verify

USC Student Conduct Code says that you must not cheat from

other students or knowing help other students to cheat

you have agreed to the USC Student Conduct Code

if I see your code posted in a public place, it would be

considered a violation of USC Student Conduct Code

0123

29

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Displaying Your Code in Public Repositories

the code given to you in our assignments are also private

As a general rule, you should only post code to the public if the

spec is public and the code you are depending on is also public

all our assignment specs are private

you must not post any of your CS 350 code to a public repository

because your code depends on the rest of the assignment

which you do not have the rights to display or distribute

You do not have the right to post it as part of your online resume

this is serious business!

your future boss would/should appreciate that you

understand about software copyrights

they are private because access is password protected

it says so at the beginning of every assignment spec

0123

30

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Program Checker

If MOSS reports an unacceptable level of code match

I will forward the MOSS data to the university to investigate and

decide if there is cheating before we can grade your assignment

if the university decides that plagiarism has occurred, you

will get an F in the class

http://theory.stanford.edu/~aiken/moss/

we use MOSS to analyze your submissions

Do not submit someone else’s code either in whole or in part

How do we catch cheaters?

analyzes code structure intelligently

we have all the submissions from previous semesters

I typically check for plagiarism around final exam time

0123

31

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Email Questions

"I am thinking about not following the spec and do this instead.

Is it acceptable (or is this okay)?"

my answer will always be: "stick to the written words (spec

and grading guidelines)"

One type of question I often get about assignments:

of course, if there is a conflict between the spec and the

grading guidelines, you need to let me know and ask me to

fix one of them

0123

32

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Course Readings

"Operating Systems: Principles &

Practice" (2nd Edition) by

T. Anderson & M. Dahlin

Required textbook

my plan is to mostly follow this

book

0123

33

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Course Readings

Optional free online books

"Pro Git" by S. Chacon

"Unix for the Beginning Mage"

by J. Topjian

"C Programming Language"

by B. Kernighan and D. Ritchie

Optional textbook

all programming assignments

must be done in C

0123

34

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Class Structure

please feel free to ask questions about them

Lectures mostly based on Anderson & Dahlin

lecture slides posted on class web site before class

I expect you to attend every class meeting

if you do happen to miss a class, you are responsible for

finding out what material was covered and what administrative

announcements were made

you will be expected to take exams at scheduled times (although

most likely, the exams will be take-home exams, to be completed

during the pre-specified exam times)

you need to make sure that you are available to take exams at

the scheduled times

no make-up exams

if you miss the midterm for any reason, your final exam

will account for 70% of your overall grade

0123

35

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

"Homeworks Assignments"

There are "homework problems" at the end of each book chapter

we will not do them

0123

36

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programming Assignments

5 programming assignments (must be done individually)

(8%) PA1: add system calls to xv6

(23%) PA2: kernel level threads

PA3 depends on PA2

program in C only

one assignment due every 2 weeks

No solutions will be given for any programming assignments

(23%) PA3: mutex and condition variable

(23%) PA4: MFQ scheduler

(23%) PA5: memory management and copy-on-write

all other PAs start with the same xv6 base code

0123

37

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programming Assignments

All assignments can only be graded on a "standard" 32-bit Ubuntu

16.04 system

follow the instruction at the bottom of the class web page

create an VM instance from my AMI on AWS Free Tier

(free for one year if you don’t go over the usage limit)

install a virtual machine hypervisor, then install my virtual

appliance into the hypervisor to create a virtual machine

or you have to reinstall another "standard" system

VirtualBox if you have Intel/AMD CPU

two choices

UTM if you have Apple CPU (M1/M2/M3)

if you are offered to "upgrade" to a new release, you must refuse

You can do your development on another system

but you won’t get any credit if your assignment cannot run on

the "standard" system

no credit for just "effort"

It’s a really bad idea to do a major upgrade of your host machine in

the middle of the semester because that can break the system

running inside a virtual machine

0123

38

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programming Assignments

One great thing about virtual machine is that you can install as

many virtual machines as you’d like

keep one clean "standard" system for testing so you know

exactly what the grader will see

The "standard" system contains all the pre-approved packages

you need to do all the PAs

once you install something else into this system, you no long

have a "standard" system (i.e., it will be different from the one

the grader will use)

if you ask the grader to install a package, the grader must refuse

to do so

super important to make daily backups

0123

39

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programming Assignments

1) standard 32-bit Ubuntu 16.04 (inside a virtual machine)

2) AWS (which also runs a standard 32-bit Ubuntu 16.04)

In the README file you are required to submit, you must tell the

grader on which system to grade

these two systems are considered to be equivalent

if you notice any significant difference, please inform the

instructor

0123

40

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programming Assignments

the grader has only one way to grade and that’s by following

the grading guidelines

The grader must follow the grading guidelines when grading

programming assignments

if you ask the grader to grade differently (using a different

procedure or grade on a different system), the grader must

refuse

do expect double-jeopardy, triple-jeopardy, etc.

the grader is not permitted to give credit based on "effort"

if you are not sure about something, please ask me and don’t just

assume that whatever you do will be acceptable

due to our fairness policy, there is no other way

it’s your responsibility to make sure that your code passes all

the tests in the grading guidelines on the "standard" system

It’s super important to start your PAs early

don’t under-estimate the amount of time you need to spend

to get your code to work perfectly

0123

41

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Programming Assignments Grading

All input data files for programming assignments will be correctly

formatted

i.e., you can assume that they are perfect

do you have to validate input data?

but if you don’t validate input, what if your code has bugs?

you may end up with a very low score

you don’t have to, IF your code is perfect

it’s best you validate all input data

if your code thinks that an input file is bad, it’s your

responsibility to inform the instructor as soon as possible

if the input is bad, I will fix it and make an announcement

if the input is good, you must fix your bug

In previous semesters, some students’ code would abort on all input

(and pass no tests) and still want partial credit for "effort"

the grader must follow grading guidelines and we cannot give

partial credit just based on "efforts"

you can only get partial credit for passing tests

0123

42

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Electronic Submissions

very important: verify your ticket and verify your submission

very important: read your tickets and save your tickets as PDF

Bistro system gives tickets for your submission

Use the Bistro system (see bottom of PA specs for details)

see the bottom of the Electronic Submission Guidelines

web page for details

if you forget a file in your submission, you are not allowed to

resubmit it after the deadline

submit source code only (or 2 points will be deducted for each

binary file submitted)

these are proofs that my server got your submission

you can make multiple submissions

will grade last submission by default

we cannot trust any file system timestamp

we can only trust things that have made it to my server

it is your responsibility to make sure that your submission

is what you want us to grade - Be a little paranoid!

0123

43

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Electronic Submissions

please understand the nature of emails, i.e., it can take

hours or even days for an email to get delivered (timestamp

of an email submission is my receiving email server’s

timestamp and not your sending email server’s timestamp)

use your judgement under special circumstances or urgent

situation while accepting the risks with email submissions

no other form of submission will be accepted

Use the Bistro system (see bottom of lab and PA specs for details)

Verify what you have submitted

if your submission file is "pa1.tar.gz", the hash_value in the

ticket should match the printout of the following command:

openssl sha1 pa1.tar.gz

SHA1 hash value of a file can be considered as a digital

fingerprint of that file

14 minutes and 59 seconds grace period

"note from a doctor" just means something that shows that you

were at the doctor’s office or student health facility

Extension only possible if you have a "note from a doctor" or other

form of official proof of family emergencies

e.g., scheduling conflict with work, other classes, etc. cannot be

excused

you can submit multiple times, only the last submission will be

graded (unless you send the instructor an email)

Programming assignments submitted electronically

time is based on Bistro server timestamp in the ticket

see next page for details

at 12:00:00am, you will start losing 1% of your grade every 5

minutes (round up to the nearest percent)

you need to be mindful about the difference between your

clock and the clock on the Bistro server

0123

44

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Late Policy For Programming Assignments

0123

45

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Late Policy For Programming Assignments

100%

80%

60%

40%

20%

0%
on time

midnight

 slope = -1% every 5 minutes

(round up to the nearest percent)

0123

46

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Late Policy For Programming Assignments

if you have used a "free late day" on an assignment, once that

assignment is graded, you cannot "un-use" that "free late day"

you decide how you want to distribute these 5 "free late days"

you can even put them all on one PA

Each student has 5 "free late days" that can be applied to any PAs

for PA5, you can use at most 1 "free late day" because we

need to get grading started as early as possible

A "free late day" can only be used on a late submission

0123

47

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Late Policy For Programming Assignments

For a PA, you can submit multiple times, only the last submission

will be graded (unless you send the instructor an email to ask us to

grade an earlier submission)

For PA1, 2, 3 or 4, you can submit before the next PA submission

deadline for a 50% deduction

requirement: you must inform the instructor before the PA grade

is sent to you

once you have received a grade for a PA, this option is not

available for that PA

therefore, if you have made a submission already, you

should send email to the instructor to withdraw that

submission (i.e., tell us not to grade that submission)

please do not send such a request to a TA

0123

48

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Late Policy For Programming Assignments

what if your laptop died? home Internet disrupted? car broken?

cousin got stuck at the airport? need to go to court?

need to go to Miami? and so on ...

I must stick to my policies

1)

2)

please do not ask for individual extension unless you

have a documented proof of illness or a documented

proof of family (not personal) emergency

my "fairness" policy is: "Whatever I offer you, I must

offer it to the whole class"

this is why I cannot give individual extensions

these are personal emergencies

please see (1) and (2) above

best to submit early so personal emergencies will not cause

problems

0123

49

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Modifications After Deadline for PAs

After the submission deadline has past

you are allowed up to 3 lines of free changes, if submitted via

email to the instructor, within 24 hours of the assignment

submission deadline

(cont...)

clearly, this is not meant for major changes

you may want to anticipate that your submission may not be

exactly what you thought you had submitted

additional modifications at 3 points per line within 24 hours of

the assignment submission deadline

add 1 line before (or after) line x

delete line x

replace line x by 1 line

one line (128 characters max) of change is defined as one of the

following:

move line x before (or after) line y

do not forget to submit files, and verify your submission

try things out before your first submission deadline to get

familiar with the Bistro system

re-test your code (by following the Verify Your Submission

procedure) after you have made your final submitted to be

sure

we cannot accept missing files after deadline because that’s

too many lines of changes!

a file system timestamp can be easily forged, so they cannot

be used as proof that you have not modified the file after

deadline

this is your responsibility

afterwards, it costs 15 points per line

24 hours after the submission deadline, additional modifications

cost 6 points per line for the next 6 days

After the submission deadline has past (cont...)

applies to source code and README files

0123

50

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Modifications After Deadline for PAs

0123

51

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Extra Credit

if your submission is more than 72 hours before the posted

deadline, you get an extra 10%

To encourage finishing programming assignments early, you will

get extra credit if you turn in a PA more than 2 or more days early

if your submission is between 48 and 72 hours before the posted

deadline, you get an extra 5%

3 days

early

2 days

early

5%

midnight midnight

1 day

early

midnight

on time

midnight

5%

 slope = -1% every 5 minutes

(round down to the nearest percent)

 +10% +5% no extra credit

110%

105%

100%

.

.

.

0123

52

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Regrade Policy

setup filter to not miss emails from <bill.cheng@usc.edu>

Grades will be sent to individuals via email to your USC email

address

Regrade requests in email

submit within 1 week of initial grade notification

we reserve the right to regrade the whole thing

regrade can be done after the 1-week deadline, but you must

initiate a regrade request within 1 week

must follow instruction in grade notification email

If you have made multiple submissions and after you have received

your grade, you realized that you meant for us to grade a different

submission

it will cost you 20 points to regrade a different submission at this

point

this is why Verify Your Submission is so important to make

sure that we are grading the correct submission

0123

53

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Student Commitments

save a copy of the ticket you see in the browser

Keep up with your course work

Do your own work

Turn in PAs on time (preferably before extra credit deadline)

Ensure gradable assignments

verify your ticket and verify your submission, especially after

you have made your final submission

Turn in lab assignments on time and start PAs early

you are encouraged to ask me questions, pretty much about

anything related to programming

it’s a PROOF that my server has received your submission

if you submitted a wrong file or forgot to include a file, there

is absolutely nothing we can do after the deadline

You are encouraged to study with other students and discuss

(no copying code or pseudo-code) about PAs

0123

54

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Student Commitments

talk to the instructor as soon as possible

If you feel that you are falling behind

You need to manage your time well and start all your assignments

as early as you can

some students only start a programming assignment a couple of

days before the submission deadline

if you do that, it’s very likely that you will get a very very low

score

the assignments may be harder than they look

the grader must follow grading guidelines when grading

0123

55

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Exams

I may also ask you about lab and programming assignment

(higher level concepts, won’t ask you to code)

Exams will be mostly based on lectures (and corresponding material

in the textbook)

Exams are worth a lot

this is not just a programming class, even though you may end

up spending a lot of time programming

I reserve the right to ask anything based on required materials

that I think you should know

just do well in the programming assignments is not enough

If you want to get a good grade in this class, you have to do well in

the exams and assignments

to do well, you have to study to understand the materials well

and be able to think clearly about the concepts learned

0123

56

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Time Programming

Some students complained that they had to spend too much time

programming and debugging

that’s really not supposed to happen

always write your best code with full intent and don’t take the

approach of trying to hack your code until it works because

that approach doesn’t work well in general anyway

you need to understand the spec before you start coding and

know how things are supposed to work

if the specs are not clear, ask me questions before you write

a bunch of code

our assignments are "thinking-type" assignments

0123

57

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Time Programming

Some students complained that they had to spend too much time

programming and debugging (cont...)

for every line of code you are writing, think about the following

(clearly not an exhaustive list)

can this line of code (or function call) fail and did I handle all

the failed cases correctly?

this is extremely important in OS code

can I overflow a buffer with this line of code (or function call)?

if you copy data into a buffer, is the buffer big enough?

what have I assumed before I execute this line of code (or

function)?

what’s the effect after I execute this line of code (or function)?

if you are using an array index, are you sure that the

index is never out of bounds?

it may be a good idea to write code incrementally (and don’t write

everything in one shot and expect everything to just work

because that may not be realistic)

0123

58

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Too Much Time Programming

Some students complained that they had to spend too much time

programming and debugging (cont...)

memory corruption bugs are nasty and difficult to debug

best is to write your code very carefully and make sure that

you don’t have memory corruption bugs

much better to avoid creating bugs than to debug

this can save you a lot of time

remember, the bugs you see are your bugs (although

sometimes error messages are difficult to read)

0123

59

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Things to Do Today

get username and password to access protected part of website

install a standard 32-bit Ubuntu 16.04 system into

VirtualBox/UTM or AWS Free Tier

Read entire class web page: http://merlot.usc.edu/cs350-m25

check PA1 specs and start coding

should do this even if you are not registered for the class but

plan to take this class

Additional things to learn/do quickly

learn a commandline editor: vim/pico/emacs
pico is the easiest

ask for help if there are problems

the AWS Free Tier system is actually a pretty usable system

for this class

learn how to use a command shell in a "terminal"

it’s good to have that on your resume

0123

60

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Zoom Meeting IDs

if you somehow end up in a waiting room, it must mean that

you were using Zoom authentication (and did not use USC

authentication) and I will not admit you

go to class home page, click on Videos, scroll all the way to

the bottom and click on Zoom Meeting IDs

Due to security concerns, we cannot post Zoom meeting IDs in the

public area of our website

USC SSO authentication is required for all Zoom meetings

no waiting room

log out of Zoom then log back in using USC SSO

authentication

0123

61

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Course Content Credit

Slides and course content primarily came with the textbook and

originally written by T. Anderson & M. Dahlin

Additional slides and course content may have come from:

Tatyana Ryutov

Miscellaneous

Someone actually complained about this, so I’m stating it here

I do not use the standard course evaluation window

in the old days, course evaluations are done in class (i.e., the

window was about 15 minutes)

CS 350

PA1: Add System Calls

To XV6

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

62

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

0123

63

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Is Unix/Linux Still Relevant Today?

Apple Lisa & Mac

Darwin
Mac OS X

iOS

Mach

FreeBSD

Linux & Unix

Multics Unix BSD

AT&T

LinuxMinix

MS-DOS, Windows 3.xMicrosoft

Windows NT Vista
OS/2?

VMS?

Android

R.I.P.

R.I.P.

0123

64

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

What Is C?

developed at Cambridge University and University of

London

Early 1960s: CPL (Combined Programming Language)

intended for systems programming

1966: BCPL (Basic CPL): simplified CPL

used to implement earliest Unix

1969: B: simplified BCPL (stripped down so its compiler would

run on minicomputer)

motivation: they wanted to play "Space Travel" on minicomputer

Early 1970s: C: expanded from B

used to implement all subsequent Unix OSes

Unix has been written in C ever since

Unix/Linux system calls have a C functional interface

must use a system call to use hardware

0123

65

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

PA1

download xv6 and get familiar with xv6

Set up a standard 32-bit Ubuntu 16.04 system

trace()
Part 1 - add a new system call

date()
Part 2 - add a second system call

0123

66

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Some Basic Linux Commands

ls
ls -a
ls -l
echo "hello"
echo -n "hello"
echo ‘date‘
echo ‘date +%m%d%y-%H%M%S‘
cat /etc/os-release
more /etc/os-release
mkdir tmp
pwd
cd tmp
pwd
ls
cd ..
cp /etc/os-release tmp
cp tmp/os-release tmp/abc
ls -aF tmp
mv tmp/os-release tmp/xyz
ls -aF tmp
diff tmp/abc tmp/xyz
man gcc
rm tmp/abc

touch tmp/defg
ls -alF tmp
ps -x
ps -auxw
pico tmp/xyz
rm tmp/defg tmp/xyz
ls -alF tmp
rmdir tmp
ls -alF tmp
df
top
exit

0123

67

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Notes On gdb

list source code: (gdb) list
set breakpoint: (gdb) break foo.c:123

The debugger is your friend! Get to know it NOW!

start debugging: gdb

print field after every cmd: (gdb) display f.BlockType
assignment: (gdb) set f.BlockType=0

print field: (gdb) print f.BlockType
print in hex: (gdb) print/x f.BlockType

single-step at same level: (gdb) next
single-step into a function: (gdb) step

continue: (gdb) cont
clear breakpoint: (gdb) clear

quit: (gdb) quit

stack trace: (gdb) where

Start using the debugger with PA1!

list all breakpoints: (gdb) info breakpoints

get help from TAs and me

2)

1)

0123

68

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Set Up A Standard System

Go to class home page, scroll all the way to the bottom and click on

the install a standard 32-bit Ubuntu 16.04 system link

You have two choices

install a virtual machine hypervisor, then install my virtual

appliance into the VM hypervisor to create a virtual machine

install VirtualBox if you have Intel/AMD CPU

install UTM if you have Apple CPU (M1/M2/M3)

create an VM instance from my AMI on AWS Free Tier

(free for one year if you don’t go over the usage limit)

if you like to do development on your host machine, you need to

figure out a way to transfer files between your host machine and

the "standard" system

my recommendation is to use FileZilla

some would like to use SSH in VScode

this would only work with (1) above and you need to give

4 GB RAM becuase VScode is memory hungry

0123

69

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Download XV6

Follow the instructions on the PA1 spec

Open a terminal and type the following

cat /etc/os-release
pwd
mkdir cs350
cd cs350
mkdir pa1
cd pa1
wget --user=USERNAME --password=PASSWORD \
 http://merlot.usc.edu/cs350-m25/programming/pa1/xv6-pa1-src.tar.gz
tar xvf xv6-pa1-src.tar.gz
cd xv6-pa1-src
ls

1)

0123

70

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Run XV6

Three ways to run xv6:

make qemu

run xv6 console in a separate window:

I do not recommend this way

2)

make qemu-nox
$ ls
$ echo Hello
$ cat README

run xv6 in commandline mode:

3)

make qemu-nox-gdb

debug xv6 commandline mode:

in a separate terminal, do:

gdb
(gdb) source .gdbinit
(gdb) list exec.c:11
(gdb) break exec
(gdb) break sys_open
(gdb) cont

by default, you are debugging the kernel

0123

71

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

The last line in .gdbinit says to debug the kernel

(gdb) symbol-file kernel

sometimes, you may need the assembly listing of the kernel

objdump --disassemble --section=".text" kernel > kernel.txt
objdump --disassemble --section=".text" -S kernel > kernel.txt

you can open kernel.txt with your favorite text editor

switch to debug the "ls" user space program

(gdb) symbol-file _ls
(gdb) list 25
(gdb) break ls
(gdb) break open
(gdb) cont

in the first window, when you get the xv6 prompt, type "ls" to

run the "ls" program

you should break at the beginning of the ls() function

(gdb) c
Continuing.

0123

72

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

[1b: 5c2] 0x772 <printf+162>: in (%dx),%al

Thread 1 hit Breakpoint 2, open () at usys.S:20
20 SYSCALL(open)
(gdb) list usys.S:20
15 SYSCALL(read)
16 SYSCALL(write)
17 SYSCALL(close)
18 SYSCALL(kill)
19 SYSCALL(exec)
20 SYSCALL(open)
...
(gdb) list usys.S:9
4 #define SYSCALL(name) \
5 .globl name; \
6 name: \
7 movl $SYS_ ## name, %eax; \
8 int $T_SYSCALL; \
9 ret
10
11 SYSCALL(fork)
...

you should break at the open() functionsystem call

since open() is a system call, things would look different

0123

73

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

(gdb) delete
(gdb) symbol-file kernel
(gdb) break sys_open
(gdb) cont

why now?

An application program doesn’t know how to open a file

only the OS kernel knows how to do that

to ask the OS kernel for help, you make a system call

in xv6, the convention is that if foo() is a system call, the

corresponding OS kernel function is called sys_foo()

there are different types of context switches

To go from user space code to the kernel requires a context switch

here we switch from the user space context to the kernel

space context

we will talk more about this in class

for now, you need to switch to debug kernel code

0123

74

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

The kernel versions of the system calls that are related to the file

system is in sysfile.c
sys_open() looks like regular C code

but remember, you are now in the all power kernel, you can

really mess things up if you are not careful

it’s not comfortable with switching contexts

Gdb is designed to mainly debug regular C code

single-step gdb command (i.e., "next" and "step") may not

work as expected when a context switch is involved

if you know that a context switch will happen, you should set

a breakpoint and use the "cont" gdb command to get there

although if you switch to assembly level debugging, then gdb

will just be debugging machine code and it won’t worry about

context switching

why not?

context switching is just an abstraction

0123

75

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Debugging User Space Code In XV6

How to get back to user space code?

(gdb) delete
(gdb) symbol-file _ls
(gdb) list ls.c:34
29 int fd;
30 struct dirent de;
31 struct stat st;
32
33 if((fd = open(path, 0)) < 0){
34 printf(2, "ls: cannot open %s\n", path);
35 return;
36 }
37
38 if(fstat(fd, &st) < 0){

(gdb) break ls.c:34
(gdb) break ls.c:38
(gdb) cont

you need to get back to where you made the open() system call

open ls.c and see that you called open() on line 33

therefore, you should do:

now you are back in user space

if you really want to know how context switching works from

user space to kernel space, you need to switch to debug

assembly code (you probably have seen this in CS 356)

"Abandon all hope, ye who enter here".

0123

76

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

if you really want to know how context switching works from

user space to kernel space, you need to switch to debug

assembly code (you probably have seen this in CS 356)

0123

77

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

(gdb) layout asm

 +--
B+>|0x5c2 <open> mov $0xf,%ax
 |0x5c5 <open+3> add %al,(%bx,%si)
 |0x5c7 <open+5> int $0x40
 |0x5c9 <open+7> ret
 |0x5ca <mknod> mov $0x11,%ax
 |0x5cd <mknod+3> add %al,(%bx,%si)
 |0x5cf <mknod+5> int $0x40
 |0x5d1 <mknod+7> ret
 +--

the window splits and the top panel would look like:

single step at the assembly code level:

(gdb) si
(gdb) si

"Abandon all hope, ye who enter here".

0123

78

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

 +--
 >|0x80105cf9 push $0x40
 |0x80105cfb jmp 0x8010560a
 |0x80105d00 push $0x0
 |0x80105cf9 push $0x41
 |0x80105cfb jmp 0x8010560a
 |0x80105d00 push $0x0
 |0x80105cf9 push $0x42
 |0x80105cfb jmp 0x8010560a
 |0x80105d00 push $0x0
 +--

the top panel now looks like:

they correspond to the following in "usys.S":

20 SYSCALL(open)
21 SYSCALL(mknod)
22 SYSCALL(unlink)

set a breakpoint at virtual address 0x8010560a
(gdb) break *0x8010560a
(gdb) cont

0123

79

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

what’s at 0x8010560a?

8010560a <alltraps>:
8010560a: 1e push %ds
8010560b: 06 push %es
8010560c: 0f a0 push %fs
8010560e: 0f a8 push %gs
80105610: 60 pusha
80105611: 66 b8 10 00 mov $0x10,%ax
80105615: 8e d8 mov %eax,%ds
80105617: 8e c0 mov %eax,%es
80105619: 54 push %esp
8010561a: e8 e1 00 00 00 call 80105700 <trap>

open kernel.txt and do a string search for 8010560a

in kernel.txt, <trap> looks code generated by a C

compiler

80105700 <trap>:
80105700: 55 push %ebp
80105701: 89 e5 mov %esp,%ebp
...

The assembly code level debugging is optional for now

0123

80

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Advanced Debugging In XV6 (Optional)

to get rid of the top panel:

(gdb) tui disable

to set a breakpoint there, you need to clear all breakpoints,

switch to debug the kernel, and set a breakpoint there

(gdb) delete
(gdb) symbol-file kernel
(gdb) break trap
(gdb) layout src
(gdb) cont

one day, when you have a really tough bug and the only way to

debug your code is to debug context switching at the assembly

code level, then you need to come back here and review all this

hopefully, you won’t need to do that in this class

0123

81

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add A System Call

Ch 3 contains details on traps and system calls (although most

of the low level details are not needed for you to complete this

assignment)

You need to read the xv6 book in the spec to understand how xv6

works

Your job is to add a new system call called trace()
since you know the basic flow from open() to sys_open()
and back to open(), you should be able to add a trace()
system call to reach sys_trace() and get back to trace()

of course, you need to implement sys_trace() according to

the spec

pwd
cd cs350/pa1/xv6-pa1-src
make -n pa1-submit

open a terminal and type the following:

0123

82

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add A System Call

Which files do you need to modify?

you should see:

tar cvzf pa1-submit.tar.gz \
 Makefile \
 pa1-README.txt \
 proc.c \
 proc.h \
 syscall.c \
 syscall.h \
 sysproc.c \
 user.h \
 usys.S

these are the only files are are supposed to submit

if you submit additional files, the grader will have to delete

them before grading

if you submit binary files, points will be deducted

Please take a look at the grading guidelines to see what the grader

will do to grade part 1

need to modify Makefile get it compiled so the grader can run it

0123

83

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 1: Add A System Call

test_project1.c is a test program for part 1

grade_pa1.c is another test program for part 1

need to include that in your Makefile

0123

84

 Introduction to Operating Systems - CSCI 350

 Copyright © William C. Cheng

Part 2: Add Another System Call

Your job is to add a new system call called date()
need to call cmostime() to get read the real time clock (which

is the current UTC time

need to modify Makefile get it compiled so the grader can run it

date.c is a test program for part 2

