Introduction to Operating Systems - CSCI 350

CS 350
Introduction to

Operating Systems

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

About This Class

ﬁ} This is a junior/senior level undergrad class covering the
fundamental concepts of operating systems
= this is a foundation class and not a "tech class"
Q itis not about the latest products and functionalities
Q this course is meant to provide background so you can
understand the designs, algorithms, and techniques used in
current operating system products and functionalities

_, You will also learn to write OS kernel code
= there is a CS 402 class on OS, but that’s for grad students
Q different textbooks, different programming assignments, and
different approaches to programming assighments,
Q lots more code to write in CS 402 programming assignments
= undergrad students must take CS 350 for OS credit

&

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350
Today’s Topics
—) Administrative Stuff

_, Review Course Organization
= please read all the administrative information and lecture slides

ﬁ} Please pay special attention to today’s lecture
— | am a stickler to rules, especially written rules
Q the grading rules are setup to keep things simple and keep
things fair
= | don’t want you to get a zero in some assignments because you
are not aware of how serious grading rules must be taken (often
time, literally)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Importance of "Written Words"™

ﬁ} We communicate (here and in the real world) using "words"
= spoken words may be unreliable
Q no matter how hard | try, | mis-spoke sometimes
& | can’t slow down much because there is too much to cover
= "written words" are different
Q you need to take written words seriously
Q especially when it comes to rules written in words
& if we don’t take them seriously, why write them down?!
= things that are not written down can get messy

) lf it's writtent that X is the only grading procedure and that we must
follow the grading procedure
= what would we do if you ask us to grade your submission using
a different procedure?
Q we won’t, because we take written words very seriously

ﬁ} Words on lecture slides are important even if | skip them |
(because they are written words) 434

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

The Importance of "Written Words"™

ﬁ} When it comes to exams, we can only grade based on what you
wrote on the exam paper (and not what’s in your mind)
= Yyou heed to learn to choose your words carefully

ﬁ> Please pay attention to al/l the written words anywhere in the class
web site, lecture slides, posting to class Piazza by me
= setup your email filter to not miss messages from
<bill.cheng@usc.edu>

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Fairness

) Without fairness, grades have little meaning
= | am required to give you a grade
= the instructor must treat all students equally and cannot
give special treatment to any particular student
= therefore, please do not ask special favors from the
instructor because of your circumstances (except for ones
that are explicitly allowed by the university)
= this may seem unfair to you because you believe that your
circumstances are special (understandably, everyone does)
= bottom line, the rule the instructor must follow is that whatever
he offers you, he must offer to the entire class
Q other than the exceptions that are setup at the beginning of
the semester (mostly for students with university-approved
accommodations)
Q we definitely will not grade based on effort (i.e., there will be
no partial credit for just "effort") |
& you get partial credit for passing tests 53

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

| Must Stick To All My Written Rules

ﬁ} Some students don’t understand why I’m so strict with my rules
= [t’s not a power trip for me
= | am bound by my own rules
Q rules take away power from me

> I'm responsible of treating all students fairly

ﬁ> If | apply one rule for one student and don’t apply the same rule for
another student, that’s totally unfair

) The only way | know to be fair to all is to stick to all my written rules

ﬁ> When you ask me to bend a written rule for you, you are asking me
to be unfair to other students
= therefore, | will not bend a rule for you

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Structure & Teaching Staff

) Instructor: Bill Cheng <bill.cheng@usc.edu>
= email policy: 24 hour turn-around
Q this is my promise to you (but applies only to private emails)!
= office hours: on Zoom, Tu/Th 9pm-10pm or by appointments
Q these Zoom meetings will not be recorded
QO maximum meeting time for a student will be 15 minutes
Q iIndividual meeting in a break-out Zoom room where you
can share your screen if you'd like
& everyone else wait in the main room, first-come-first-served
(you should raise hand immediately so that Zoom can put
you in a queue)
& students in other classes | teach may also come to my
office hours
& if there is a lot of students waiting, you may not end up
with a meeting with me

Q if your questions can be handled over email, it’s probably
best to send me email, or post to Piazza 4

8 /
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Appointments

ﬁ} | would grant appointments with me only under very special
circumstances and only for personal/private administrative matters
= if such matters can be handled in a break-out room on Zoom

during office hours (which is a private space), that would be

preferred

= if you want to talk to me about course materials or programming

assighments, please come to office hours, send me email, or

post in Piazza

Q using appointments to get extra help on assighments would
be unfair to other students (unless | accept appointments
whenever I'm asked, and that’s usually not feasible)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Office Hours

ﬁ} Please understand that office hours are for me to help you, not to
"tutor" you
— same goes for the TA’s office hours
= please understand that we are not your paid tutors
Q if you are missing background on something, please ask me
and | can point you to the right places to get information
Q you are expected to read Linux "man pages” and online
documentation to learn how to use new commands and
functions
= Viterbi have tutoring services (may not be available for CS 350,
but you can make a request)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Structure & Teaching Staff

_) TAs:

= we have 6 TAs this summer

Q their office hours will be posted soon

email: 24 hour turn-around

a TA’s main job is to help you with the course materials and
programming assighments

Q TA cannot do work for you (such as find bugs in your code,
write code for you to use, etc.)

TA cannot tell you what code to write

TA cannot look over your code or comment on your code
it’s not the TA’s job to "tutor" you

Q TA can help you with learning to use the debugger

[

[

© O O

ﬁ} You can go to any TA for help with course materials and
programming assignments

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Structure & Teaching Staff

ﬁ} Graders and CPs: none this summer since we have so many TAs
= the TAs will grade programming assighments

— please don’t contact the TA to ask, "Here’s my assignment. How
many points will | get™"
Q please just follow the grading guidelines and pretend that you
are a grader (because that’s what the TA must do to grade)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Office Hours

ﬁ} Office hours are for answering questions
= they are not intended for finding bugs in your code
Q especially since each student can only have 15 minutes
= finding bugs is your job and it’s an important that you acquire
such a skill
= If you need debugging help, we can only give you suggestions
and tell you what gdb commands to try

ﬁ> Please understand that we don’t know where your bugs are
—= some bugs are so difficult to find, even for professionals
= therefore, please do not expect that we can find your bugs

ﬁ} Some students think that we are holding out on them, that we know
where the bugs are and we are just not telling them
= that may be the case when the bugs are trivial and we want you
to learn to spot the bugs
= often times, we just don’t know where your bugs are (there |
are just too many possibilities) 3
Copyright © William C. Cheng

13

Introduction to Operating Systems - CSCI 350

Office Hours On Zoom

ﬁ} If no one comes to an office hour on Zoom, we may walk away from

Zoom temporarily (but we will not be far)

— we will put a note on the screen to say that we are away
momentarily

= call out our name or send us email to ask us to come back to Zoo

= if you don’t see a note on the screen, it's most likely because we
are in a break-out room and we may not know that you are
waiting (you can send us an email in case there is an operator
error)

ﬁ} If an office hour is moved or canceled, | will add a news item in the
News section of the class home page
= |f an office hour Zoom meeting is not active, you should check
the class home page to see if it has been moved or canceled
Q also, send email

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Resources

ﬁ} Class web page: http://merlot.usc.edu/cs350-m25
= everything about this class is there
Q anything related to grading, you are required to know
= lectures and assignments are password protected
= get familiar with it
Q 1if you are not used to reading a lot of stuff, you should start
reading a lot of stuff in this class
& it’s important to learn how to read documents and interpret

them correctly

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Resources

ﬁ} If you see inconsistencies, especially regarding any type of "rules”
between what’s on the class web page, what’s on a set of lecture
slides that has been covered in class, or what | said
= usually, the lecture slides are correct
= but you should ask me which is correct as soon as possible

Q please understand that | do mis-speak often enough (and my
English is not perfect)
& it’s more important that written words are consistent

Q | will address the inconsistency and make changes so that
things can be consistent again

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Lectures

) The lecture slides will mainly follow the textbook
— some would say that this is boring
= our textbook is used by many CS departments in the US and it’s
important to go over the materials there in enough detail so you
don’t miss things that you are supposed to know

ﬁ} Why not just read the textbook and not come to lectures?
= most exam questions will be based on lectures and lecture slides
Q some stuff in lectures are not in the textbook
Q exams are about your knowledge of this class
& exams are not about your general knowledge of OS
= [t’s important that you understand the lecture slides well enough
SO you can give correct answers for trickier exam questions
Q you should also understand the corresponding material in
the textbook, when applicable
= you can use the lecture slides as a study guide
Q there’s a lot of details in the slides

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Discussion Forum (Piazza)

_) Piazza Forum
= student-to-student discussions about labs, programming

assignments, and course material
exchanging ideas are allowed
posting code is not allowed (short code segments to illustrate
ideas are allowed; short means < 3 lines and < 3 function calls)
Q first offense (in the entire semester) gets a warning

(unless it’s a lot more than the threadhold)
Q 2nd offense, you will lose 50% of the corresponding

assighment points and lose posting privileges
= Instructor and TAs will also post answers to questions here

Q if appropriate for whole class

[

[

_) You must be a member of the class Piazza Forum
= all important announcements will be posted to this group
= | will add you to the Piazza Forum after Lecture 1

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Grading
ﬁ} Programming 30% 5 kernel programming assighments
ﬁ> Midterm 35% in class, Thu, 6/26/2025 (firm)
ﬁ} Final 35% in class, Tue, 8/5/2025 (firm)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Grading

) Additional extra credit
= turn in PAs more than 48 hours before deadline
— extra credit are just "extra”
Q you keep what’s over 100%

_, No individual extra credit (due to my fairness policy)
= try your best from the beginning!

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Grading
ﬁ} Programming assigments graded by grader

_, Exams graded by the instructor

ﬁ> Final letter grade assigned by the instructor
= a grade of incomplete is only possible for documented iliness or
documented family emergency (according to USC policy)
Q please understand that it’s not possible for me to get you a
grade of incomplete because you need more time to improve
your grade

ﬁ} Two methods (assuming that no one games the system)
1) on a curve
2) fixed scale
= your class letter grade will be the higher of the two
—= D’s may be given, F’s if necessary
Q pretty much the only way you would get an F in the class is if

you cheat / @

21

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Grading

ﬁ} Curve (assuming that no one games the system)
= compute weighted sum and plot on a curve

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Grading

ﬁ} Curve (assuming that no one games the system)
= compute weighted sum and plot on a curve
= loose guideline depicted below:

| |
- = 4w 4P L€ L =€ L€ L€ =
I I

A

F ’ C

Copyright © William C. Cheng

ﬁ} Fixed scale

Grading

= every 6% is a "grade step”

Percentage Letter Grade
94% or higher A
88-94% A-
82-88% B+
76-82% B
70-76% B-
64-70% C+
58-64% C
52-58% C-
46-52% D+
40-46% D
34-40% D-
below 34% F

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Introduction to Operating Systems - CSCI 350

Academic Integrity Policy

ﬁ} The USC Student Conduct Code prohibits plagiarism

= for programming assignments, you must not /ook at/copy/share
code fragments from other students or from previous semesters

) Lots of C and OS code on the Internet
= you may use them if they are general purpose code (i.e., not
written for CS 350 programming assignments)
= if you use Al to generate code for our assignments, it's

considered cheating since the generated code is not general
purpose code

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Academic Integrity Policy

ﬁ} What if you end up with the same code fragment as another student
because you copy the code fragment from the same place online
(assuming that the code is not Al generated)?
= it’s a good habit to cite code you did not write yourself to give

credit to your source
Q must cite the code inline

/* begin code from [URL] */
[code you copied from above URL]
/* end code from [URL] */

Q no good to give citation in your README file

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Academic Integrity Policy

ﬁ} You can use any code given to you as part of this class
= ho need to cite such code

ﬁ} You are encouraged to work with other students

= "'work with" does not mean "copy each other’s work"

= "work with" means discussing and solving problems together
Q this should happen at a high level

= but be very careful when it’s time to write code
Q must write code completely on your own
Q do not write code together
Q "sharing" even a single line of code is considered cheating

) If you cannot work together at a high level
= you are advised not work together with other students

ﬁ} For more details, please see the Academic Integrity Policy
section on the Course Description web page

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Displaying Your Code in Public Repositories

ﬁ} You must not post your code to a public code repository

= If you post it to a private repository, you need to verify that it’s
truly private
Q ask your friend or other students to verify

— github.com is considered a public repository (no matter what
they claim)
Q if you don’t pay, your code becomes public
Q therefore, you must not use github.com
Q bitbucket.org is free for students and you can setup

private repositories

G> Since our programming assignments will be reused, you must not
knowingly make your code public (not even pseudo-code)
= USC Student Conduct Code says that you must not cheat from
other students or knowing help other students to cheat
Q you have agreed to the USC Student Conduct Code

= if | see your code posted in a public place, it would be SN\
y Y Y Y | @,

considered a violation of USC Student Conduct Code
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Displaying Your Code in Public Repositories

ﬁ} As a general rule, you should only post code to the public if the
spec is public and the code you are depending on is also public
= all our assignment specs are private
Q it says so at the beginning of every assignment spec
= the code given to you in our assighments are also private
Q they are private because access is password protected
= you must not post any of your CS 350 code to a public repository

ﬁ> You do not have the right to post it as part of your online resume
= because your code depends on the rest of the assighnment
which you do not have the rights to display or distribute
= this is serious business!
Q your future boss would/should appreciate that you
understand about software copyrights

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Program Checker
ﬁ} Do not submit someone else’s code either in whole or in part

_, How do we catch cheaters?
= we use MOSS to analyze your submissions
Q http://theory.stanford.edu/~aiken/moss/
= analyzes code structure intelligently
= we have all the submissions from previous semesters

ﬁ> If MOSS reports an unacceptable level of code match
= | will forward the MOSS data to the university to investigate and
decide if there is cheating before we can grade your assignment
= [If the university decides that plagiarism has occurred, you
will get an Fin the class

ﬁ} | typically check for plagiarism around final exam time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Email Questions

ﬁ} One type of question | often get about assignments:
= "| am thinking about not following the spec and do this instead.
Is it acceptable (or is this okay)?"
Q my answer will always be: "stick to the written words (spec
and grading guidelines)"
& of course, if there is a conflict between the spec and the
grading guidelines, you need to let me know and ask me to
fix one of them

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Course Readings

_) Required textbook
= "Operating Systems: Principles & Operating
Practice" (2nd Edition) by Systems
T. Anderson & M. Dahlin
= my plan is to mostly follow this
book

Principles & Practice

IThomas Anderson .
Michaal Dahlin

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Course Readings

) Optional textbook
= "C Programming Language"
by B. Kernighan and D. Ritchie
= all programming assighments
must be done in C

SECOND EDITION

> Optional free online books
= "Pro Git" by S. Chacon

= "Unix for the Beginning Mage" PROCRA MMING
by J. Topjian LANGUAGE

BRIAN W KERNIGHAN
DENNIS M. RITCHIE

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Class Structure

_) Lectures mostly based on Anderson & Dahlin
= lecture slides posted on class web site before class
— please feel free to ask questions about them

) | expect you to attend every class meeting
= If you do happen to miss a class, you are responsible for
finding out what material was covered and what administrative
announcements were made
= you will be expected to take exams at scheduled times (although
most likely, the exams will be take-home exams, to be completed
during the pre-specified exam times)
Q you need to make sure that you are available to take exams at
the scheduled times
< no make-up exams
<& if you miss the midterm for any reason, your final exam
will account for 70% of your overall grade

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

"Homeworks Assignments”

ﬁ} There are "homework problems™ at the end of each book chapter
= we will not do them

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Programming Assignments

ﬁ} 5 programming assignments (must be done individually)
= (8%) PA1: add system calls to xv6
= (23%) PA2: kernel level threads
= (23%) PA3: mutex and condition variable
= (23%) PA4: MFQ scheduler
= (23%) PA5: memory management and copy-on-write
= ohe assignment due every 2 weeks

ﬁ> No solutions will be given for any programming assignments
—= PA3 depends on PA2
= all other PAs start with the same xv6 base code
= program in C only

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Programming Assignments

ﬁ} All assighments can only be graded on a "standard” 32-bit Ubuntu

16.04 system
— follow the instruction at the bottom of the class web page

= two choices
Q install a virtual machine hypervisor, then install my virtual
appliance into the hypervisor to create a virtual machine
& VirtualBox if you have Intel/AMD CPU
& UTM if you have Apple CPU (M1/M2/M3)
Q create an VM instance from my AMI on AWS Free Tier
(free for one year if you don’t go over the usage limit)
= if you are offered to "upgrade” to a new release, you must refuse
Q or you have to reinstall another "standard" system

ﬁ} You can do your development on another system
= but you won’t get any credit if your assignment cannot run on
the "standard” system
Q no credit for just "effort” (A

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Programming Assignments

ﬁ} One great thing about virtual machine is that you can install as
many virtual machines as you’d like
— keep one clean "standard"” system for festing so you know
exactly what the grader will see

ﬁ> The "standard” system contains all the pre-approved packages
you heed to do all the PAs
= once you install something else into this system, you no long
have a "standard"” system (i.e., it will be different from the one
the grader will use)
= If you ask the grader to install a package, the grader must refuse
to do so

ﬁ> It’s a really bad idea to do a major upgrade of your host machine in
the middle of the semester because that can break the system
running inside a virtual machine
= super important to make daily backups

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Programming Assignments

ﬁ} In the README file you are required to submit, you must tell the
grader on which system to grade
1) standard 32-bit Ubuntu 16.04 (inside a virtual machine)
2) AWS (which also runs a standard 32-bit Ubuntu 16.04)
—= these two systems are considered to be equivalent
Q if you notice any significant difference, please inform the
instructor

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Programming Assignments

ﬁ} The grader must follow the grading guidelines when grading
programming assighments
= due to our fairness policy, there is no other way
= If you ask the grader to grade differently (using a different
procedure or grade on a different system), the grader must
refuse
Q the grader has only one way to grade and that’s by following
the grading guidelines
& do expect double-jeopardy, triple-jeopardy, etc.
<& the grader is not permitted to give credit based on "effort"
Q it’s your responsibility to make sure that your code passes all
the tests in the grading guidelines on the "standard" system
— if you are not sure about something, please ask me and don’t just
assume that whatever you do will be acceptable

ﬁ> It’s super important to start your PAs early
= don’t under-estimate the amount of time you need to spend ()_

to get your code to work perfectly
Copyright © W|II|am C. Cheng

Introduction to Operating Systems - CSCI 350

Programming Assignments Grading

ﬁ} All input data files for programming assignments will be correctly
formatted
= [.e., you can assume that they are perfect
= do you have to validate input data?
Q you don’t have to, /F your code is perfect
Q but if you don’t validate input, what if your code has bugs?
& you may end up with a very low score
Q it’s best you validate all input data
<& if your code thinks that an input file is bad, it’s your
responsibility to inform the instructor as soon as possible
<& if the input is bad, | will fix it and make an announcement
<& if the input is good, you must fix your bug

ﬁ} In previous semesters, some students’ code would abort on all input
(and pass no tests) and still want partial credit for "effort"
= the grader must follow grading guidelines and we cannot give

artial credit just based on "efforts" (AR
P]) (‘

<& you can only get partial credit for passing tests
Copyright © WiIIiaym C. Cheng yo P P g

Introduction to Operating Systems - CSCI 350

Electronic Submissions

ﬁ} Use the Bistro system (see bottom of PA specs for details)
= you can make multiple submissions
Q will grade last submission by default
— Bistro system gives tickets for your submission
Q these are proofs that my server got your submission
Q we cannot trust any file system timestamp
Q we can only trust things that have made it to my server
very important: read your tickets and save your tickets as PDF
very important: verify your ticket and verify your submission
Q see the bottom of the Electronic Submission Guidelines
web page for details
Q if you forget a file in your submission, you are not allowed to
resubmit it after the deadline
= submit source code only (or 2 points will be deducted for each
binary file submitted)
= it is your responsibility to make sure that your submission |
&)

[

[

iIs what you want us to grade - Be a little paranoid!
Copyright © William C. Cheng

42

Introduction to Operating Systems - CSCI 350

Electronic Submissions

ﬁ} Use the Bistro system (see bottom of lab and PA specs for details)
= no other form of submission will be accepted

Q use your judgement under special circumstances or urgent
situation while accepting the risks with email submissions
& please understand the nature of emails, I.e., it can take
hours or even days for an email to get delivered (timestamp
of an email submission is my receiving email server’s
timestamp and not your sending email server’s timestamp)

_) Verify what you have submitted
= if your submission file is "pal.tar.gz", the hash_value in the
ticket should match the printout of the following command:

openssl shal pal.tar.gz

Q SHAT1 hash value of a file can be considered as a digital
fingerprint of that file

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Late Policy For Programming Assignments

ﬁ} Programming assignments submitted electronically
= you can submit multiple times, only the last submission will be
graded (unless you send the instructor an email)
14 minutes and 59 seconds grace period
at 12:00:00am, you will start losing 1% of your grade every 5
minutes (round up to the nearest percent)
see next page for details
time is based on Bistro server timestamp in the ticket
Q you need to be mindful about the difference between your
clock and the clock on the Bistro server

[

[

[

[

ﬁ> Extension only possible if you have a "note from a doctor’ or other
form of official proof of family emergencies
= "note from a doctor" just means something that shows that you
were at the doctor’s office or student health facility
= e.g., scheduling conflict with work, other classes, etc. cannot be

b
excused

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Late Policy For Programming Assignments

A midnight
100% |
80%-
60%-
40%-
slope = -1% every 5 minutes
20%- (round up to the nearest percent)
Oo/o | -
on time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Late Policy For Programming Assignments

ﬁ} Each student has 5 "free late days™ that can be applied to any PAs
= you decide how you want to distribute these 5 "free late days"”
Q you can even put them all on one PA
Q for PA5, you can use at most 1 "free late day" because we
need to get grading started as early as possible
— if you have used a "free late day” on an assignment, once that
assignment is graded, you cannot "un-use" that "free late day"

ﬁ> A "free late day" can only be used on a /ate submission

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Late Policy For Programming Assignments

ﬁ} For a PA, you can submit multiple times, only the last submission
will be graded (unless you send the instructor an email to ask us to

grade an earlier submission)
= please do not send such a requesttoa TA

ﬁ> For PA1, 2, 3 or 4, you can submit before the next PA submission

deadline for a 50% deduction
= requirement: you must inform the instructor before the PA grade

Is sent to you
Q once you have received a grade for a PA, this option is not
available for that PA
<& therefore, if you have made a submission already, you
should send email to the instructor to withdraw that
submission (i.e., tell us not to grade that submission)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Late Policy For Programming Assignments

) | must stick to my policies

1) please do not ask for individual extension unless you
have a documented proof of illness or a documented
proof of family (not personal) emergency

2) my "fairness"” policy is: "Whatever I offer you, | must
offer it to the whole class”
& this is why | cannot give individual extensions

= Wwhat if your laptop died? home Internet disrupted? car broken?

cousin got stuck at the airport? need to go to court?

need to go to Miami? and so on ...

Q these are personal emergencies

Q please see (1) and (2) above

Q best to submit early so personal emergencies will not cause
problems

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Modifications After Deadline for PAs

) After the submission deadline has past

= you are allowed up to 3 lines of free changes, if submitted via
email to the instructor, within 24 hours of the assignment
submission deadline
Q clearly, this is not meant for major changes
Q you may want to anticipate that your submission may not be

exactly what you thought you had submitted

= ohe line (128 characters max) of change is defined as one of the
following:
Q add 1 line before (or after) line x
Q delete line x
Q replace line x by 1 line
Q move line x before (or after) line y

= additional modifications at 3 points per line within 24 hours of
the assighment submission deadline

= (cont...)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Modifications After Deadline for PAs

) After the submission deadline has past (cont...)
= 24 hours after the submission deadline, additional modifications
cost 6 points per line for the next 6 days

afterwards, it costs 715 points per line

applies to source code and README files

Q do not forget to submit files, and verify your submission
<& this Is your responsibility

Q we cannot accept missing files after deadline because that’s
too many lines of changes!

Q a file system timestamp can be easily forged, so they cannot
be used as proof that you have not modified the file after
deadline

= try things out before your first submission deadline to get
familiar with the Bisfro system

= re-test your code (by following the Verify Your Submission
procedure) after you have made your final submitted to be
sure 3

50
Copyright © William C. Cheng

[

[

Introduction to Operating Systems - CSCI 350

Extra Credit

ﬁ} To encourage finishing programming assighments early, you will
get extra credit if you turn in a PA more than 2 or more days early
= if your submission is more than 72 hours before the posted

deadline, you get an extra 10%
= if your submission is between 48 and 72 hours before the posted

deadline, you get an extra 5%

A midnight midnight midnight midnight
110% |
AL
105%
A
100% \ \/—b
. N
slope = -1% every 5 minutes
_ (round down to the nearest percent)
< +10% ,F, +5% »F— no extrla credit —» .
I I

3 days 2 days 1 day on time
early early early ‘D
(o)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Regrade Policy

) Grades will be sent to individuals via email to your USC email
address
= setup filter to not miss emails from <bill.cheng@usc.edu>

_) Regrade requests in email
= submit within 1 week of initial grade notification
Q must follow instruction in grade notification email
= regrade can be done after the 1-week deadline, but you must
initiate a regrade request within 1 week
— we reserve the right to regrade the whole thing

ﬁ> If you have made multiple submissions and after you have received
your grade, you realized that you meant for us to grade a different
submission
= It will cost you 20 points to regrade a different submission at this
point
= this is why Verify Your Submission is so important to make |
&

sure that we are grading the correct submission
Copyright © William C. Cheng

52

Introduction to Operating Systems - CSCI 350

Student Commitments
) Keep up with your course work

_, Do your own work
_, Turn in lab assignments on time and start PAs early

ﬁ> Turn in PAs on time (preferably before extra credit deadline)
= you are encouraged to ask me questions, pretty much about
anything related to programming

) Ensure gradable assignments
— save a copy of the ticket you see In the browser
Q it’s a PROOF that my server has received your submission
= Verify your ticket and verify your submission, especially after
you have made your final submission
Q if you submitted a wrong file or forgot to include a file, there
Is absolutely nothing we can do after the deadline

ﬁ> You are encouraged to study with other students and discuss @J

(no cop(ymg code or pseudo-code) about PAs

Copyright © Willia Cheng

Introduction to Operating Systems - CSCI 350

Student Commitments

) lf you feel that you are falling behind
= talk to the instructor as soon as possible

ﬁ} You need to manage your time well and start all your assignments
as early as you can

—= some students only start a programming assighment a couple of
days before the submission deadline

Q if you do that, it’s very likely that you will get a very very low
score

& the assighments may be harder than they look
& the grader must follow grading guidelines when grading

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Exams

_, Exams are worth a lot
= this is not just a programming class, even though you may end
up spending a lot of time programming

ﬁ> Exams will be mostly based on lectures (and corresponding material

in the textbook)

= | may also ask you about lab and programming assignment
(higher level concepts, won’t ask you to code)

= | reserve the right to ask anything based on required materials
that | think you should know

= to do well, you have to study to understand the materials well
and be able to think clearly about the concepts learned

ﬁ> If you want to get a good grade in this class, you have to do well in
the exams and assignments
= just do well in the programming assignments is not enough

B

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Time Programming

ﬁ} Some students complained that they had to spend too much time
programming and debugging
= that’s really not supposed to happen
Q our assighments are "thinking-type" assighments
Q always write your best code with full intent and don’t take the
approach of trying to hack your code until it works because
that approach doesn’t work well in general anyway
Q you need to understand the spec before you start coding and
know how things are supposed to work
& if the specs are not clear, ask me questions before you write
a bunch of code

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Too Much Time Programming

ﬁ} Some students complained that they had to spend too much time
programming and debugging (cont...)
— for every line of code you are writing, think about the following
(clearly not an exhaustive list)
Q what have | assumed before | execute this line of code (or
function)?
Q what’s the effect after | execute this line of code (or function)?
Q can this line of code (or function call) fail and did | handle all
the failed cases correctly?
<& this is extremely important in OS code
Q can | overflow a buffer with this line of code (or function call)?
<& if you copy data into a buffer, is the buffer big enough?
& if you are using an array index, are you sure that the
index is never out of bounds?
= it may be a good idea to write code incrementally (and don’t write
everything in one shot and expect everything to just work |
because that may not be realistic) 3
Copyright © William C. Cheng

57

Introduction to Operating Systems - CSCI 350

Too Much Time Programming

ﬁ} Some students complained that they had to spend too much time
programming and debugging (cont...)
= memory corruption bugs are nasty and difficult to debug
Q best is to write your code very carefully and make sure that
you don’t have memory corruption bugs
& remember, the bugs you see are your bugs (although
sometimes error messages are difficult to read)
Q much better to avoid creating bugs than to debug
<& this can save you a lot of time

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Things to Do Today

) Read entire class web page: http://merlot.usc.edu/cs350-m25
= get username and password to access protected part of website
Q should do this even if you are not registered for the class but
plan to take this class
—= check PA1 specs and start coding

) Additional things to learn/do quickly

= learn how to use a command shell in a "terminal”

= learn a commandline editor: vim/pico/emacs
Q pico is the easiest

= install a standard 32-bit Ubuntu 16.04 system into
VirtualBox/UTM or AWS Free Tier
Q ask for help if there are problems
Q the AWS Free Tier system is actually a pretty usable system

for this class
|
S

<& it’s good to have that on your resume

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Zoom Meeting IDs

ﬁ} Due to security concerns, we cannot post Zoom meeting IDs in the

public area of our website
= go to class home page, click on Videos, scroll all the way to

the bottom and click on Zoom Meeting IDs

ﬁ> USC SSO authentication is required for all Zoom meetings

= no waiting room
Q if you somehow end up in a waiting room, it must mean that

you were using Zoom authentication (and did not use USC

authentication) and | will not admit you
& log out of Zoom then log back in using USC SSO

authentication

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Course Content Credit

ﬁ} Slides and course content primarily came with the textbook and
originally written by T. Anderson & M. Dahlin

ﬁ} Additional slides and course content may have come from:
— Tatyana Ryutov

Miscellaneous

ﬁ> Someone actually complained about this, so I’'m stating it here
= | do not use the standard course evaluation window
Q in the old days, course evaluations are done in class (i.e., the
window was about 15 minutes)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

CS 350
PA1: Add System Calls
To XV6

Bill Cheng

http.://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Is Unix/Linux Still Relevant Today?
I:> Linux & Unix

[Multics

(i)~

) Microsoft (MsS-DOS, Windows 3.x }— R.LP.
[0S/2? |
—"3(Windows NT}-~(Vista)
VMS? |

) Apple (Lisa & Mac |~ R.LP.
: Mach Z Mac OS X J
) Darwin]<
| FreeBSD i0S

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

What Is C?

> Unix/Linux system calls have a C functional interface
= must use a system call to use hardware

) Early 1960s: CPL (Combined Programming Language)
—= developed at Cambridge University and University of
London

_, 1966: BCPL (Basic CPL): simplified CPL
= intended for systems programming

> 1969: B: simplified BCPL (stripped down so its compiler would
run on minicomputer)
= used to implement earliest Unix

_, Early 1970s: C: expanded from B
= motivation: they wanted to play "Space Travel" on minicomputer
= used to implement all subsequent Unix OSes

Unix has been written in C ever since (AR
~ 2

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

PA1

_ Setup a standard 32-bit Ubuntu 16.04 system
— download xv6 and get familiar with xv6

) Part1-add a new system call

—= trace()

) Part2 - add a second system call
—= date ()

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Some Basic Linux Commands

1s touch tmp/defg
ls -a ls —-alF tmp

ls -1 pPs —x

echo "hello" pPs —auxw

echo -n "hello" pico tmp/xyz
echo ‘date’ rm tmp/defg tmp/xyz
echo ‘date +5m%d%$y—%$HSMS$S' ls —-alF tmp
cat /etc/os-release rmdir tmp

more /etc/os-release 1s —-alF tmp
mkdir tmp df

pwd top

cd tmp exit

pwd

1ls

cd

cp /etc/os-release tmp

cp tmp/os-release tmp/abc
ls —-aF tmp

mv tmp/os-release tmp/xyz
ls —-aF tmp

diff tmp/abc tmp/xyz

man gcc

rm tmp/abc

Copyright © William C. Cheng

Notes On gdb

_ The debugger is your friend! Get to know it NOW!
start debugging:
list source code:

set breakpoint:

list all breakpoints:
continue:

clear breakpoint:

stack trace:

print field:

print in hex:

single-step at same level:
single-step into a function:
print field after every cmd:
assignment:

quit:

gdb

(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)
(gdb)

) Start using the debugger with PA1!

= %et he!:E from TAs and me
Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

list

break foo.c:123
info breakpoints
cont

clear

where

print f.BlockType
print/x f.BlockType
next

step

display f.BlockType
set f.BlockType=0

quit

Introduction to Operating Systems - CSCI 350

Set Up A Standard System

ﬁ} Go to class home page, scroll all the way to the bottom and click on
the install a standard 32-bit Ubuntu 16.04 system link

) You have two choices

1) install a virtual machine hypervisor, then install my virtual
appliance into the VM hypervisor to create a virtual machine
Q install VirtualBox if you have Intel/AMD CPU
Q install UTM if you have Apple CPU (M1/M2/M3)

2) create an VM instance from my AMIon AWS Free Tier
(free for one year if you don’t go over the usage limit)

= If you like to do development on your host machine, you need to

figure out a way to transfer files between your host machine and

the "standard” system

Q my recommendation is to use FileZilla

Q some would like to use SSH in VScode
<& this would only work with (1) above and you need to give

4 GB RAM becuase VScode is memory hungry

68

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Download XV6
) Follow the instructions on the PA1 spec

G> Open a terminal and type the following

cat /etc/os-release
pwd
mkdir c¢s350
cd cs350
mkdir pal
cd pal
wget —-user=USERNAME --password=PASSWORD \
http://merlot .usc.edu/cs350-m25/programming/pal/xv6-pal-src.tar.gz
tar xvf xvé6-pal-src.tar.gz
cd xv6—-pal-src
1s

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Run XV6

) Three ways to run xve:
1) run xv6 console in a separate window:

make gemu

= | do not recommend this way
2) run xv6 in commandline mode:

make gemu-—nox
$ 1ls

$ echo Hello
$ cat README

3) debug xv6 commandline mode:
make gemu—-nox-—gdb
= in a separate terminal, do:

gdb

(gdb) source .gdbinit
(gdb) list exec.c:11
(gdb) break exec
(gdb) break sys_open
(gdb) cont

== i 5 ‘%!’)_
by default, you are debugging the kernel vy

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6
) The last line in .gdbinit says to debug the kernel

(gdb) symbol-file kernel

= sometimes, you may need the assembly listing of the kernel

objdump —--disassemble —--section=".text" kernel > kernel.txt
objdump —--disassemble —--section=".text" —-S kernel > kernel.txt

Q you can open kernel.txt with your favorite text editor
= switch to debug the "1s" user space program

(gdb) symbol-file _1s
(gdb) 1list 25

(gdb) break 1s

(gdb) break open
(gdb) cont

= in the first window, when you get the xv6 prompt, type "1s" to
run the "1s" program
Q you should break at the beginning of the 1s () function
(gdb) c
Continuing. 3 @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

Q you should break at the open () functionsystem call
& since open () is a system call, things would look different
[1b: 5c2] 0x772 <printf+162>: in (%dx) , $al

Thread 1 hit Breakpoint 2, open () at usys.S:20

20 SYSCALL (open)
(gdb) list usys.S:20
15 SYSCALL (read)
16 SYSCALL (write)
17 SYSCALL (close)
18 SYSCALL (kill)
19 SYSCALL (exec)
20 SYSCALL (open)

(gdb) list usys.S:9

4 ##define SYSCALL (name) \

5 .globl name; \

6 name: \

7 movl $SYS_ ## name, %eax; \
8 int $T_SYSCALL; \

9 ret

10

11 SYSCALL (fork)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

ﬁ} An application program doesn’t know how to open a file
= why now?
= only the OS kernel knows how to do that
= to ask the OS kernel for help, you make a system call
= in xv6, the convention is that if £oo () is a system call, the
corresponding OS kernel function is called sys_foo ()

ﬁ} To go from user space code to the kernel requires a context switch
= there are different types of context switches
= here we switch from the user space context to the kernel
space context
Q we will talk more about this in class
Q for now, you need to switch to debug kernel code

(gdb) delete

(gdb) symbol-file kernel
(gdb) break sys_open
(gdb) cont

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

ﬁ} The kernel versions of the system calls that are related to the file
systemisin sysfile.c
= sys_open () looks like regular C code
Q but remember, you are now in the all power kernel, you can
really mess things up if you are not careful

) Gdb is designed to mainly debug regular C code
= it’s not comfortable with switching contexts
Q single-step gdb command (i.e., "'next” and "step'') may not
work as expected when a context switch is involved
Q if you know that a context switch will happen, you should set
a breakpoint and use the "cont" gdb command to get there
= although if you switch to assembly level debugging, then gdb
will just be debugging machine code and it won’t worry about
context switching
Q why not?
Q context switching is just an abstraction / @J

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Debugging User Space Code In XV6

ﬁ} How to get back to user space code?
= you heed to get back to where you made the open () system call
= open 1ls.c and see that you called open () on line 33

(gdb) delete
(gdb) symbol-file _1s
(gdb) list 1s.c:34

29 int £d;

30 struct dirent de;

31 struct stat st;

32

33 if((fd = open(path, 0)) < 0){

34 printf (2, "ls: cannot open %s\n", path);
35 return;

36 }

37

38 if (fstat (fd, &st) < 0){

= therefore, you should do:

(gdb) break 1ls.c:34
(gdb) break l1ls.c:38
(gdb) cont

= NnOw you are back in user space (AR

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q if you really want to know how context switching works from
user space to kernel space, you need to switch to debug
assembly code (you probably have seen this in CS 356)

& "Abandon all hope, ye who enter here".

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q if you really want to know how context switching works from
user space to kernel space, you need to switch to debug
assembly code (you probably have seen this in CS 356)

& "Abandon all hope, ye who enter here".
(gdb) layout asm

Q the window splits and the top panel would look like:

+ __

B+>|0x5c2 <open> mov $0xf, $ax
| 0x5¢5 <open+3> add %al, (3bx, $si)
| 0x5¢7 <open+5> int $0x40
| 0x5¢c9 <open+7> ret
| 0x5ca <mknod> mov $0x11, $ax
| 0x5¢d <mknod+3> add sal, (%bx, $si)
| 0x5¢c£ <mknod+5> int $0x40
| 0x5d1 <mknod+7> ret
+ __

Q single step at the assembly code level:
(gdb) si
(gdb) si |
)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q the top panel now looks like:

>|0x80105c£9
| 0x80105c£b
| 0x80105d00
| 0x80105c£9
| 0x80105c£b
| 0x80105d00
| 0x80105c£9
| 0x80105c£b
| 0x80105d00

$0x40
0x8010560a
$0x0

$0x41
0x8010560a
$0x0

$0x42
0x8010560a
$0x0

Q they correspond to the following in "usys.s":

20 SYSCALL (open)
21 SYSCALL (mknod)
22 SYSCALL (unlink)

Q set a breakpoint at virtual address 0x8010560a
(gdb) break *0x8010560a

(gdb) cont

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

QO what’s at 0x8010560a?
Q open kernel.txt and do a string search for 8010560a
8010560a <alltraps>:

8010560a: le push %ds

8010560b: 06 push ses

8010560c: Of aOl push Sfs

8010560e: Of a8 push %gs

80105610: 60 pusha

80105611: 66 b8 10 00 mov $0x10, $ax
80105615: 8e d8 mov %$eax, %ds
80105617: 8e c0 mov %eax, ses
80105619: 54 push sesp

8010561a: e8 el 00 00 00 call 80105700 <trap>

Q in kernel.txt, <trap> looks code generated by a C

compiler
80105700 <trap>:
80105700: 55 push %ebp
80105701: 89 e5 mov sesp, $ebp

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Advanced Debugging In XV6 (Optional)

Q to set a breakpoint there, you need to clear all breakpoints,
switch to debug the kernel, and set a breakpoint there

(gdb) delete
(gdb) symbol-file kernel
(gdb) break trap
(gdb) layout src
(gdb) cont
Q to get rid of the top panel:

(gdb) tui disable

ﬁ> The assembly code level debugging is optional for now
= hopefully, you won’t need to do that in this class
= onhe day, when you have a really tough bug and the only way to
debug your code is to debug context switching at the assembly
code level, then you need to come back here and review all this

)

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add A System Call

ﬁ} You need to read the xv6 book in the spec to understand how xv6
works
= Ch 3 contains details on traps and system calls (although most
of the low level details are not needed for you to complete this
assignment)

) Your job is to add a new system call called trace ()
= since you know the basic flow from open () t0 sys_open ()
and back to open (), you should be able to add a trace ()
system call to reach sys_trace () and get back to trace ()
Q of course, you need to implement sys_trace () according to
the spec

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add A System Call

> Which files do you need to modify?

= open a terminal and type the following:

pwd
cd cs350/pal/xv6-pal-src
make -n pal-submit

Q you should see:

tar cvzf pal-submit.tar.gz \
Makefile \

pal-README. txt \

proc.c \

proc.h \

syscall.c \

syscall.h \

sysproc.c \

user.h \

usys.S

= these are the only files are are supposed to submit
Q if you submit additional files, the grader will have to delete
them before grading

|
Q if you submit binary files, points will be deducted 323 @

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 1: Add A System Call

ﬁ} test_projectl.c is atest program for part 1
= need to modify Makefile get it compiled so the grader can run it

ﬁ} Please take a look at the grading guidelines to see what the grader
will do to grade part 1
— grade_pal.c is another test program for part 1
Q need to include that in your Makefile

Copyright © William C. Cheng

Introduction to Operating Systems - CSCI 350

Part 2: Add Another System Call

) Your job is to add a new system call called date ()
—= need to call cmostime () to get read the real time clock (which
is the current UTC time

_) date.cis a test program for part 2
—= nheed to modify Makefile get it compiled so the grader can run it

Copyright © William C. Cheng

