
CS271 Homework 3 Solution

5-1-10

a) By computing the first few sums and getting the answers 1/2, 2/3, and 3/4, we guess that the sum is

n/(n + 1).

b) We prove this by induction. It is clear for n = 1, since there is just one term, 1/2. Suppose that
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We want to show that
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Starting from the left, we replace the quantity in brackets by k/(k + 1) (by the inductive hypothesis), and

then do the algebra
k
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5-1-14

We proceed by induction. Notice that the letter k has been used in this problem as the dummy index of

summation, so we cannot use it as the variable for the inductive step. We will use n instead. For the basis

step we have 1 ·21 = (1−1)21+1 +2, which is the true statement 2 = 2. We assume the inductive hypothesis,

that
n∑

k=1

k · 2k = (n− 1)2n+1 + 2

and try to prove that
n+1∑
k=1

k · 2k = n2n+2 + 2

Splitting the left-hand side into its first n terms followed by its last term and invoking the inductive hypoth-

esis, we have

n∑
k=1

k · 2k =

n∑
k=1

k · 2k + (n + 1)2n+1 = (n− 1)2n+1 + 2 + (n + 1)2n+1 = 2n · 2n+1 + 2 = n2n+2 + 2

as desired.

5-1-28

The base case is n = 3. We check that 42−7·4+12 = 0 is nonnegative. Next suppose that n2−7n+12 ≥ 0; we
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must show that (n+1)2−7(n+1)+12 ≥ 0. Expanding the left-hand side, we obtain n2+2n+1−7n−7+12 =

(n2 − 7n + 12) + (2n − 6). The first of the parenthesized expressions is nonnegative by the inductive

hypothesis; the second is clearly also nonnegative by the assumption that n is at least 3. Therefore their

sum is nonnegative, and the inductive step is complete.

5-2-6

a) We can form the following amounts of postage as indicated: 3 = 3, 6 = 3 + 3, 9 = 3 + 3 + 3, 10 = 10,

12 = 3 + 3 + 3 + 3, 13 = 10 + 3, 15 = 3 + 3 + 3 + 3 + 3, 16 = 10 + 3 + 3, 18 = 3 + 3 + 3 + 3 + 3 + 3,

19 = 10 + 3 + 3 + 3, 20 = 10 + 10. By having considered all the combinations, we know that the gaps in this

list cannot be filled. We claim that we can form all amounts of postage greater than or equal to 18 cents

using just 3-cent and 10-cent stamps.

b) Let P (n) be the statement that we can form n cents of postage using just 3-cent and 10-cent stamps.

We want to prove that P (n) is true for all n ≥ 18. The basis step, n = 18, is handled above. Assume that

we can form k cents of postage (the inductive hypothesis); we will show how to form k + 1 cents of postage.

If the k cents included two 10-cent stamps, then replace them by seven 3-cent stamps (7 · 3 = 2 · 10 + 1).

Otherwise, k cents was formed either from just 3-cent stamps, or from one 10-cent stamp and k−10 cents in

3-cent stamps. Because k ≥ 18, there must be at least three 3-cent stamps involved in either case. Replace

three 3-cent stamps by one 10-cent stamp, and we have formed k + 1 cents in postage (10 = 3 · 3 + 1).

c) P (n) is the same as in part (b). To prove that P (n) is true for all n ≥ 18, we note for the basis step that

from part (a), P (n) is true for n = 18, 19, 20. Assume the inductive hypothesis, that P (j) is true for all j

with 18 ≥ j ≥ k, where k is a fixed integer greater than or equal to 20. We want to show that P (k + 1) is

true. Because k − 2 ≥ 18, we know that P (k − 2) is true, that is, that we can form k − 2 cents of postage.

Put one more 3-cent stamp on the envelope, and we have formed k + 1 cents of postage, as desired. In this

proof our inductive hypothesis included all values between 18 and k inclusive, and that enabled us to jump

back three steps to a value for which we knew how to form the desired postage.

5-2-10

We claim that it takes exactly n− 1 breaks to separate a bar (or any connected piece of a bar obtained by

horizontal or vertical breaks) into n pieces. We use strong induction. If n = 1, this is trivially true (one piece,

no breaks). Assume the strong inductive hypothesis, that the statement is true for breaking into k or fewer

pieces, and consider the task of obtaining k + 1 pieces. We must show that it takes exactly k breaks. The

process must start with a break, leaving two smaller pieces. We can view the rest of the process as breaking

one of these pieces into i + 1 pieces and breaking the other piece into k− i pieces, for some i between 0 and

k−1, inclusive. By the inductive hypothesis it will take exactly i breaks to handle the first piece and k− i−1

breaks to handle the second piece. Therefore the total number of breaks will be 1 + i + (k − i− 1) = k, as

desired.

5-2-32

The proof is invalid for k = 4. We cannot increase the postage from 4 cents to 5 cents by either of the

replacements indicated, because there is no 3-cent stamp present and there is only one 4-cent stamp present.

There is also a minor flaw in the inductive step, because the condition that j ≥ 3 is not mentioned.

5-3-8

Many answers are possible.

a) Each term is 4 more than the term before it. We can therefore define the sequence by a1 = 2 and

an+1 = an + 4 for all n ≥ 1.
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b) We note that the terms alternate: 0, 2, 0, 2, and so on. Thus we could define the sequence by a1 = 0,

a2 = 2, and an = an−2 for all n ≥ 3.

c) The sequence starts out 2, 6, 12, 20, 30, and so on. The differences between successive terms are 4, 6, 8,

10, and so on. Thus the nth term is 2n greater than the term preceding it; in symbols: an = an−1 + 2n.

Together with the initial condition a1 = 2, this defines the sequence recursively.

d) The sequence starts out 1, 4, 9, 16, 25, and so on. The differences between successive terms are 3, 5, 7,

9, and so onthe odd numbers. Thus the nth term is 2n− 1 greater than the term preceding it; in symbols:

an = an−1 + 2n− 1. Together with the initial condition a1 = 1, this defines the sequence recursively.

5-3-22

Clearly only positive integers can be in S, since 1 is a positive integer, and the sum of two positive integers

is again a positive integer. To see that all positive integers are in S, we proceed by induction. Obviously

1 ∈ S. Assuming that n ∈ S, we get that n + 1 is in S by applying the recursive part of the definition with

s = n and t = 1. Thus S is precisely the set of positive integers.

5-4-8

The sum of the first n positive integers is the sum of the first n − 1 positive integers plus n. This trivial

observation leads to the recursive algorithm shown here.

proc sum(n)

if n = 1 then return 1

else return sum(n− 1) + n

5-4-24

We use the hint.

proc twopower(n, a)

if n = 1 then return a2

else return twopower(n− 1, a)2

5-4-46

From the analysis given before the statement of Lemma 1, it follows that the number of comparisons is

m+n− r, where the lists have m and n elements, respectively, and r is the number of elements remaining in

one list at the point the other list is exhausted. In this exercise m = n = 5, so the answer is always 10− r.

a) The answer is 10− 1 = 9, since the second list has only 1 element when the first list has been emptied.

b) The answer is 10− 5 = 5, since the second list has 5 elements when the first list has been emptied.

c) The answer is 10− 2 = 8, since the second list has 2 elements when the first list has been emptied.
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