
CS271 Homework 2 Solution

3-1-50
a) This is essentially the same as Algorithm 5 in the book, but working from the other end. However, we
can do the moving while we do the searching for the correct insertion spot, so the pseudocode has only one
section.

backward insertion sort
for j := 2 to n

m := aj

i := j − 1
while (m < ai and i > 0)

ai+1 := ai

i := i − 1
end
ai+1 := m

end

b) On the first pass the 2 is compared to the 3 and found to be less, so 3 moves to the right. We have
reached the beginning of the list and the loop terminates, and the 2 is inserted, yielding 2,3,4,5,1,6. On the
second pass the 4 is compared to the 3, and since 4 > 3, the while loop terminates and nothing changes.
Similarly, no changes are made as 5 is inserted. On the fourth pass, the 1 is compared to all the way to the
front of the list, with each element moving toward the back of the list, and finally the 1 is inserted in its
correction position, yielding 1,2,3,4,5,6. The final pass produces no change.
c) Only one comparison is used during each pass, since the condition m < ai is immediately false, a total of
n − 1 comparisons are used.
d) The j − th pass requires j − 1 comparisons of elements, so the total number of comparison is 1 + 2 + 3 +
... + (n − 1) = n(n − 1)/2.

3-1-54
a) The algorithm uses the maximum number of quarters, three. Then it used the maximum number of
dimes(one) and then two pennies. The greedy algorithm worked.
b) One quarter, two dimes and four pennies. The greedy algorithm worked.
c) The greedy algorithm give use one quarter and eight pennies, a total of nine coins. However, we could
have used three dines and three pennies, a total of six coins. Thus the greedy algorithm is not correct in
this case.

3-1-58
Here is one counterexample with 11 talks. Suppose the start and end times are as follows: A : 1−3, B : 3−5,

1



C : 5 − 7, D : 7 − 9, E : 2 − 4, F : 2 − 4, G : 2 − 4, H : 4 − 6, J : 6 − 8, K : 6 − 8, L : 6 − 8. The optimal
schedule is A, B, C and D. However, the talk with fewest overlaps is H, which only overlaps with B and C,
However, once we decide to take H, we can schedule at most three talks. So this algorithm will not produce
an optimal solution.

3-2-14
a)No. Given a C value, when x > C, it is always the case that x3 > Cx2. Therefore we cannot find the
corresponding k value.
b) Yes, since x3 ≤ x3 for all x(witnesses C = 1, k = 0).
c) Yes, since x3 ≤ x2 + x3 for all x(witnesses C = 1, k = 0).
d) Yes, since x3 ≤ x2 + x4 for all x(witnesses C = 1, k = 0).
e) Yes, since x3 ≤ 2x ≤ 3x for all x > 10(witnesses C = 1, k = 10).
f) Yes, since x3 ≤ 2 · (x3/2) for all x(witnesses C = 2, k = 0).

3-2-30
a) This follows from the fact that for all x > 7, x ≤ 3x + 7 ≤ 4x.
b) For x > 1000, clearly x2 ≤ 2x2 + x − 7. On the other hand, for x ≥ 1, we have 2x2 + x − 7 ≤ 3x2.
c) For x > 2, we have ⌊x + 1

2⌋ ≤ 2x and also x ≤ ⌊x + 1
2⌋.

d) For x > 2, log(x2 + 1) ≤ log(2x2) = 1 + 2 log x ≤ 3 log x. On the other hand, log x ≤ log(x2 + 1).
e) This follows from the fact that log10 x = 1

log
2
10 · log2 x.

3-2-42
This does not follow. Let f(x) = 2x and g(x) = x. Then f(x) is O(g(x)). Now 2f(x) = 22x = 4x and
2g(x) = 2x. Obviously, 4x is not O(2x).

3-3-8
If we successively square k times we get x2k

. Thus we get the result through only k operations.

3-3-12a
There 3 loops, each nested inside the next. The outer loop is executed n times, the middle and inner loops
are executed at most n times. Therefore the statement inside the inner loop is executed at most n3 times.
So the total number of comparison is O(n3).

3-2-38
First we sort the n talks by end time; this takes O(n log n) time. We initialize a variable opentime to be
0; it will be updated whenever we schedule a talk and set to the time at which that talk ends. Then we
go through the talks in order. For each talk we compare its start time to opentime. If it is later than
opentime we schedule that talk and update opentime. This takes O(1) per talk. Since each talk is visited
only once. The total time needed for scheduling is O(n). Combining with the initial sort, we get an overall
time complexity of O(n log n).

2


